
Definition. A partial function f is partial recursive
(f ∈ PR) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition, primitive recursion and minimization.

In other words, the set PR of partial recursive functions
is the smallest set (with respect to subset inclusion) of
partial functions containing the basic functions and
closed under the operations of composition, primitive
recursion and minimization.

Computation Theory , L 9 116/171

Computable = partial recursive
Theorem. Not only is every f ∈ PR computable, but
conversely, every computable partial function is partial
recursive.

Proof (sketch). Let f be computed by RM M. Recall how we
coded instantaneous configurations c = (!, r0, . . . , rn) of M as
numbers ![!, r0, . . . , rn]". It is possible to construct primitive
recursive functions lab, val0, nextM ∈ N!N satisfying

lab(![!, r0, . . . , rn]") = !

val0(![!, r0, . . . , rn]") = r0

nextM(![!, r0, . . . , rn]") = code of M’s next configuration

(Showing that nextM ∈ PRIM is tricky—proof omitted.)

Computation Theory , L 9 119/171

Proof sketch, cont.

Let configM("x, t) be the code of M’s configuration after t steps,
starting with initial register values "x. It’s in PRIM because:

{

configM("x, 0) = ![0,"x]"

configM("x, t + 1) = nextM(configM("x, t))

Computation Theory , L 9 120/171

Proof sketch, cont.

Let configM(!x, t) be the code of M’s configuration after t steps,
starting with initial register values !x. It’s in PRIM because:

{

configM(!x, 0) = ![0,!x]"

configM(!x, t + 1) = nextM(configM(!x, t))

Can assume M has a single HALT as last instruction, Ith say (and
no erroneous halts). Let haltM(!x) be the number of steps M takes
to halt when started with initial register values !x (undefined if M
does not halt). It satisfies

haltM(!x) ≡ least t such that I− lab(configM(!x, t)) = 0

and hence is in PR (because lab, configM , I− () ∈ PRIM).

Computation Theory , L 9 120/171

Proof sketch, cont.

Let configM(!x, t) be the code of M’s configuration after t steps,
starting with initial register values !x. It’s in PRIM because:

{

configM(!x, 0) = ![0,!x]"

configM(!x, t + 1) = nextM(configM(!x, t))

Can assume M has a single HALT as last instruction, Ith say (and
no erroneous halts). Let haltM(!x) be the number of steps M takes
to halt when started with initial register values !x (undefined if M
does not halt). It satisfies

haltM(!x) ≡ least t such that I− lab(configM(!x, t)) = 0

and hence is in PR (because lab, configM , I− () ∈ PRIM).

So f ∈ PR, because f (!x) ≡ val0(configM(!x, haltM(!x))).

Computation Theory , L 9 120/171

Definition. A partial function f is partial recursive
(f ∈ PR) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition, primitive recursion and minimization.

The members of PR that are total are called recursive
functions.

Fact: there are recursive functions that are not primitive
recursive. For example. . .

Computation Theory , L 9 121/171

Ackermann’s function
There is a (unique) function ack ∈ N2

!N satisfying

ack(0, x2) = x2 + 1
ack(x1 + 1, 0) = ack(x1, 1)

ack(x1 + 1, x2 + 1) = ack(x1, ack(x1 + 1, x2))

Computation Theory , L 9 122/171

Ackermann’s function
There is a (unique) function ack ∈ N2

!N satisfying

ack(0, x2) = x2 + 1
ack(x1 + 1, 0) = ack(x1, 1)

ack(x1 + 1, x2 + 1) = ack(x1, ack(x1 + 1, x2))

ack is computable, hence recursive [proof: exercise].

Computation Theory , L 9 122/171

Ackermann’s function
There is a (unique) function ack ∈ N2

!N satisfying

ack(0, x2) = x2 + 1
ack(x1 + 1, 0) = ack(x1, 1)

ack(x1 + 1, x2 + 1) = ack(x1, ack(x1 + 1, x2))

ack is computable, hence recursive [proof: exercise].
Fact: ack grows faster than any primitive recursive

function f ∈ N2
!N:

∃Nf ∀x1, x2 > Nf (f (x1, x2) < ack(x1, x2)).
Hence ack is not primitive recursive.

Computation Theory , L 9 122/171

Lambda-Calculus

Computation Theory , L 10 123/171

Notions of computability

! Church (1936): λ-calculus
! Turing (1936): Turing machines.

Turing showed that the two very different approaches
determine the same class of computable functions.
Hence:

Church-Turing Thesis. Every algorithm [in intuitive
sense of Lect. 1] can be realized as a Turing machine.

Computation Theory , L 10 124/171

λ-Terms, M

are built up from a given, countable collection of

! variables x, y, z, . . .

by two operations for forming λ-terms:

! λ-abstraction: (λx.M)
(where x is a variable and M is a λ-term)

! application: (M M′)
(where M and M′ are λ-terms).

Computation Theory , L 10 125/171

λ-Terms, M

are built up from a given, countable collection of

! variables x, y, z, . . .

by two operations for forming λ-terms:

! λ-abstraction: (λx.M)
(where x is a variable and M is a λ-term)

! application: (M M′)
(where M and M′ are λ-terms).

Some random examples of λ-terms:

x (λx.x) ((λy.(x y))x) (λy.((λy.(x y))x))

Computation Theory , L 10 125/171

λ-Terms, M

Notational conventions:

! (λx1 x2 . . . xn.M) means
(λx1.(λx2 . . . (λxn.M) . . .))

! (M1 M2 . . . Mn) means (. . . (M1 M2) . . . Mn)
(i.e. application is left-associative)

! drop outermost parentheses and those enclosing the
body of a λ-abstraction. E.g. write
(λx.(x(λy.(y x)))) as λx.x(λy.y x).

! x # M means that the variable x does not occur
anywhere in the λ-term M.

Computation Theory , L 10 126/171

Free and bound variables
In λx.M, we call x the bound variable and M the body
of the λ-abstraction.

An occurrence of x in a λ-term M is called

! binding if in between λ and .
(e.g. (λx.y x) x)

! bound if in the body of a binding occurrence of x
(e.g. (λx.y x) x)

! free if neither binding nor bound
(e.g. (λx.y x)x).

Computation Theory , L 10 127/171

Free and bound variables
Sets of free and bound variables:

FV(x) = {x}
FV(λx.M) = FV(M)− {x}
FV(M N) = FV(M)∪ FV(N)

BV(x) = ∅

BV(λx.M) = BV(M)∪ {x}
BV(M N) = BV(M)∪ BV(N)

If FV(M) = ∅, M is called a closed term, or
combinator.

Computation Theory , L 10 128/170

α-Equivalence M =α M′

λx.M is intended to represent the function f such that

f (x) = M for all x.

So the name of the bound variable is immaterial: if
M′ = M{x′/x} is the result of taking M and changing
all occurrences of x to some variable x′ # M, then λx.M
and λx′.M′ both represent the same function.

For example, λx.x and λy.y represent the same function
(the identity function).

Computation Theory , L 10 129/171

α-Equivalence M =α M′

is the binary relation inductively generated by the rules:

x =α x

z # (M N) M{z/x} =α N{z/y}

λx.M =α λy.N

M =α M′ N =α N ′

M N =α M′ N ′

where M{z/x} is M with all occurrences of x replaced
by z.

Computation Theory , L 10 130/171

α-Equivalence M =α M′

For example:

λx.(λxx′.x) x′ =α λy.(λx x′.x)x′

because (λz x′.z)x′ =α (λx x′.x)x′

because λz x′.z =α λx x′.x and x′ =α x′

because λx′.u =α λx′.u and x′ =α x′

because u =α u and x′ =α x′.

Computation Theory , L 10 131/170

α-Equivalence M =α M′

Fact: =α is an equivalence relation (reflexive, symmetric
and transitive).

We do not care about the particular names of bound variables, just
about the distinctions between them. So α-equivalence classes of
λ-terms are more important than λ-terms themselves.

! Textbooks (and these lectures) suppress any notation for
α-equivalence classes and refer to an equivalence class via a
representative λ-term (look for phrases like “we identify terms
up to α-equivalence” or “we work up to α-equivalence”).

! For implementations and computer-assisted reasoning, there
are various devices for picking canonical representatives of
α-equivalence classes (e.g. de Bruijn indexes, graphical
representations, . . .).

Computation Theory , L 10 132/171

