Definition. A partial function f is partial recursive $(f \in PR)$ if it can be built up in finitely many steps from the basic functions by use of the operations of composition, primitive recursion and minimization.

In other words, the set **PR** of partial recursive functions is the <u>smallest</u> set (with respect to subset inclusion) of partial functions containing the basic functions and closed under the operations of composition, primitive recursion and minimization.

Computable = partial recursive

Theorem. Not only is every $f \in \mathbf{PR}$ computable, but conversely, every computable partial function is partial recursive.

Proof (sketch). Let f be computed by RM M. Recall how we coded instantaneous configurations $c = (\ell, r_0, \ldots, r_n)$ of M as numbers $\lceil [\ell, r_0, \ldots, r_n] \rceil$. It is possible to construct primitive recursive functions $lab, val_0, next_M \in \mathbb{N} \rightarrow \mathbb{N}$ satisfying

```
lab(\lceil [\ell, r_0, \dots, r_n] \rceil) = \ell
val_0(\lceil [\ell, r_0, \dots, r_n] \rceil) = r_0
next_M(\lceil [\ell, r_0, \dots, r_n] \rceil) = code of M's next configuration
```

(Showing that $next_M \in PRIM$ is tricky—proof omitted.)

Proof sketch, cont.

Let $config_M(\vec{x}, t)$ be the code of M's configuration after t steps, starting with initial register values \vec{x} . It's in **PRIM** because:

$$\begin{cases} config_M(\vec{x}, 0) &= \lceil [0, \vec{x}] \rceil \\ config_M(\vec{x}, t+1) &= next_M(config_M(\vec{x}, t)) \end{cases}$$

Computation Theory, L 9

Proof sketch, cont.

Let $config_M(\vec{x}, t)$ be the code of M's configuration after t steps, starting with initial register values \vec{x} . It's in **PRIM** because:

$$\begin{cases} config_M(\vec{x}, 0) &= \lceil [0, \vec{x}] \rceil \\ config_M(\vec{x}, t+1) &= next_M(config_M(\vec{x}, t)) \end{cases}$$

Can assume M has a single HALT as last instruction, Ith say (and no erroneous halts). Let $halt_M(\vec{x})$ be the number of steps M takes to halt when started with initial register values \vec{x} (undefined if M does not halt). It satisfies

$$halt_M(\vec{x}) \equiv least t$$
 such that $I - lab(config_M(\vec{x}, t)) = 0$

and hence is in **PR** (because lab, $config_M$, $I - () \in PRIM$).

Proof sketch, cont.

Let $config_M(\vec{x}, t)$ be the code of M's configuration after t steps, starting with initial register values \vec{x} . It's in **PRIM** because:

$$\begin{cases} config_M(\vec{x}, 0) &= \lceil [0, \vec{x}] \rceil \\ config_M(\vec{x}, t+1) &= next_M(config_M(\vec{x}, t)) \end{cases}$$

Can assume M has a single HALT as last instruction, Ith say (and no erroneous halts). Let $halt_M(\vec{x})$ be the number of steps M takes to halt when started with initial register values \vec{x} (undefined if M does not halt). It satisfies

$$halt_M(\vec{x}) \equiv \text{least } t \text{ such that } I - lab(config_M(\vec{x}, t)) = 0$$
 and hence is in PR (because $lab, config_M, I - () \in PRIM$). So $f \in PR$, because $f(\vec{x}) \equiv val_0(config_M(\vec{x}, halt_M(\vec{x})))$.

Definition. A partial function f is partial recursive $(f \in PR)$ if it can be built up in finitely many steps from the basic functions by use of the operations of composition, primitive recursion and minimization.

The members of **PR** that are total are called recursive functions.

Fact: there are recursive functions that are not primitive recursive. For example...

Ackermann's function

There is a (unique) function $ack \in \mathbb{N}^2 \to \mathbb{N}$ satisfying

```
ack(0, x_2) = x_2 + 1

ack(x_1 + 1, 0) = ack(x_1, 1)

ack(x_1 + 1, x_2 + 1) = ack(x_1, ack(x_1 + 1, x_2))
```

Computation Theory, L 9

Ackermann's function

There is a (unique) function $ack \in \mathbb{N}^2 \to \mathbb{N}$ satisfying

```
ack(0, x_2) = x_2 + 1

ack(x_1 + 1, 0) = ack(x_1, 1)

ack(x_1 + 1, x_2 + 1) = ack(x_1, ack(x_1 + 1, x_2))
```

► *ack* is computable, hence recursive [proof: exercise].

Computation Theory, L 9

Ackermann's function

There is a (unique) function $ack \in \mathbb{N}^2 \to \mathbb{N}$ satisfying

$$ack(0, x_2) = x_2 + 1$$

 $ack(x_1 + 1, 0) = ack(x_1, 1)$
 $ack(x_1 + 1, x_2 + 1) = ack(x_1, ack(x_1 + 1, x_2))$

- ack is computable, hence recursive [proof: exercise].
- ► **Fact:** *ack* grows faster than any primitive recursive function $f \in \mathbb{N}^2 \rightarrow \mathbb{N}$:

$$\exists N_f \ \forall x_1, x_2 > N_f \ (f(x_1, x_2) < ack(x_1, x_2)).$$

Hence *ack* is not primitive recursive.

Lambda-Calculus

Notions of computability

- ► Church (1936): λ -calculus
- ► Turing (1936): Turing machines.

Turing showed that the two very different approaches determine the same class of computable functions. Hence:

Church-Turing Thesis. Every algorithm [in intuitive sense of Lect. 1] can be realized as a Turing machine.

λ -Terms, M

are built up from a given, countable collection of

 \triangleright variables x, y, z, \dots

by two operations for forming λ -terms:

- ▶ λ -abstraction: $(\lambda x.M)$ (where x is a variable and M is a λ -term)
- ▶ application: (M M') (where M and M' are λ -terms).

λ -Terms, M

are built up from a given, countable collection of

 \triangleright variables x, y, z, \dots

by two operations for forming λ -terms:

- ▶ λ -abstraction: $(\lambda x.M)$ (where x is a variable and M is a λ -term)
- ▶ application: (M M') (where M and M' are λ -terms).

Some random examples of λ -terms:

$$x (\lambda x.x) ((\lambda y.(xy))x) (\lambda y.((\lambda y.(xy))x))$$

λ -Terms, M

Notational conventions:

- $(\lambda x_1 x_2 \dots x_n M)$ means $(\lambda x_1 (\lambda x_2 \dots (\lambda x_n M) \dots))$
- $(M_1 M_2 ... M_n)$ means $(... (M_1 M_2) ... M_n)$ (i.e. application is left-associative)
- drop outermost parentheses and those enclosing the body of a λ -abstraction. E.g. write $(\lambda x.(x(\lambda y.(yx))))$ as $\lambda x.x(\lambda y.yx)$.
- x # M means that the variable x does not occur anywhere in the λ -term M.

Free and bound variables

In $\lambda x.M$, we call x the bound variable and M the body of the λ -abstraction.

An occurrence of x in a λ -term M is called

- binding if in between λ and . (e.g. $(\lambda x.y x) x$)
- bound if in the body of a binding occurrence of x (e.g. $(\lambda x.y x) x$)
- free if neither binding nor bound (e.g. $(\lambda x.yx)x$).

Free and bound variables

Sets of free and bound variables:

$$FV(x) = \{x\}$$

$$FV(\lambda x.M) = FV(M) - \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

$$BV(x) = \emptyset$$

$$BV(\lambda x.M) = BV(M) \cup \{x\}$$

$$BV(MN) = BV(M) \cup BV(N)$$

If $FV(M) = \emptyset$, M is called a closed term, or combinator.

 $\lambda x.M$ is intended to represent the function f such that

$$f(x) = M$$
 for all x .

So the name of the bound variable is immaterial: if $M' = M\{x'/x\}$ is the result of taking M and changing all occurrences of x to some variable x' # M, then $\lambda x.M$ and $\lambda x'.M'$ both represent the same function.

For example, $\lambda x.x$ and $\lambda y.y$ represent the same function (the identity function).

is the binary relation inductively generated by the rules:

$$\frac{z \# (MN) \qquad M\{z/x\} =_{\alpha} N\{z/y\}}{\lambda x. M =_{\alpha} \lambda y. N}$$

$$\frac{M =_{\alpha} M' \qquad N =_{\alpha} N'}{MN =_{\alpha} M' N'}$$

where $M\{z/x\}$ is M with all occurrences of x replaced by z.

For example:

because
$$\lambda x.(\lambda xx'.x) \, x' =_{\alpha} \lambda y.(\lambda x \, x'.x) \, x'$$
because $(\lambda z \, x'.z) \, x' =_{\alpha} (\lambda x \, x'.x) \, x'$
because $\lambda z \, x'.z =_{\alpha} \lambda x \, x'.x$ and $x' =_{\alpha} x'$
because $\lambda x'.u =_{\alpha} \lambda x'.u$ and $x' =_{\alpha} x'$
because $u =_{\alpha} u$ and $x' =_{\alpha} x'$.

Fact: $=_{\alpha}$ is an equivalence relation (reflexive, symmetric and transitive).

We do not care about the particular names of bound variables, just about the distinctions between them. So α -equivalence classes of λ -terms are more important than λ -terms themselves.

- Textbooks (and these lectures) suppress any notation for α -equivalence classes and refer to an equivalence class via a representative λ -term (look for phrases like "we identify terms up to α -equivalence" or "we work up to α -equivalence").
- For implementations and computer-assisted reasoning, there are various devices for picking canonical representatives of α -equivalence classes (e.g. de Bruijn indexes, graphical representations, . . .).