
Computable functions
Recall:

Definition. f ∈ N
n
⇀N is (register machine)

computable if there is a register machine M with at least
n + 1 registers R0, R1, . . . , Rn (and maybe more)
such that for all (x1, . . . , xn) ∈ N

n and all y ∈ N,

the computation of M starting with R0 = 0,
R1 = x1, . . . , Rn = xn and all other registers
set to 0, halts with R0 = y

if and only if f (x1, . . . , xn) = y.

Computation Theory , L 7 86/171

We’ve seen that a Turing machine’s computation can be
implemented by a register machine.

The converse holds: the computation of a register
machine can be implemented by a Turing machine.

To make sense of this, we first have to fix a tape
representation of RM configurations and hence of
numbers and lists of numbers. . .

Computation Theory , L 7 87/171

Tape encoding of lists of numbers

Definition. A tape over Σ = {., , 0, 1} codes a list of
numbers if precisely two cells contain 0 and the only cells
containing 1 occur between these.

Such tapes look like:

. · · · 0 1 · · · 1︸ ︷︷ ︸
n1

 1 · · · 1︸ ︷︷ ︸

n2 · · ·
 · · · 1 · · · 1︸ ︷︷ ︸

nk

0 · · ·
︸ ︷︷ ︸

all ′s

which corresponds to the list [n1, n2, . . . , nk].

Computation Theory , L 7 88/171

Tape encoding of lists of numbers

Definition. A tape over Σ = {., , 0, 1} codes a list of
numbers if precisely two cells contain 0 and the only cells
containing 1 occur between these.

Such tapes look like:

. · · · 0 1 · · · 1︸ ︷︷ ︸
n1

 1 · · · 1︸ ︷︷ ︸

n2 · · ·
 · · · 1 · · · 1︸ ︷︷ ︸

nk

0 · · ·
︸ ︷︷ ︸

all ′s

which corresponds to the list [n1, n2, . . . , nk].

Computation Theory , L 7 88/171

Tape encoding of lists of numbers

Definition. A tape over Σ = {., , 0, 1} codes a list of
numbers if precisely two cells contain 0 and the only cells
containing 1 occur between these.

Such tapes look like:

. · · · 0 1 · · · 1︸ ︷︷ ︸
n1

 1 · · · 1︸ ︷︷ ︸

n2 · · ·
 · · · 1 · · · 1︸ ︷︷ ︸

nk

0 · · ·
︸ ︷︷ ︸

all ′s

which corresponds to the list [n1, n2, . . . , nk].

Computation Theory , L 7 88/171

Turing computable function

Definition. f ∈ N
n
⇀N is Turing computable if and

only if there is a Turing machine M with the following
property:

Starting M from its initial state with tape head
on the left endmarker of a tape coding
[0, x1, . . . , xn], M halts if and only if
f (x1, . . . , xn)↓, and in that case the final tape
codes a list (of length ≥ 1) whose first
element is y where f (x1, . . . , xn) = y.

Computation Theory , L 7 89/171

Theorem. A partial function is Turing computable if
and only if it is register machine computable.

Proof (sketch). We’ve seen how to implement any TM by a RM.
Hence

f TM computable implies f RM computable.

For the converse, one has to implement the computation of a RM in
terms of a TM operating on a tape coding RM configurations. To
do this, one has to show how to carry out the action of each type of
RM instruction on the tape. It should be reasonably clear that this
is possible in principle, even if the details (omitted) are tedious.

Computation Theory , L 7 90/171

Notions of computability

I Church (1936): λ-calculus [see later]

I Turing (1936): Turing machines.

Turing showed that the two very different approaches
determine the same class of computable functions.
Hence:

Church-Turing Thesis. Every algorithm [in intuitive
sense of Lect. 1] can be realized as a Turing machine.

Computation Theory , L 7 91/171

Notions of computability

Church-Turing Thesis. Every algorithm [in intuitive
sense of Lect. 1] can be realized as a Turing machine.

Further evidence for the thesis:

I Gödel and Kleene (1936): partial recursive functions

I Post (1943) and Markov (1951): canonical systems for
generating the theorems of a formal system

I Lambek (1961) and Minsky (1961): register machines

I Variations on all of the above (e.g. multiple tapes,
non-determinism, parallel execution. . .)

All have turned out to determine the same collection of computable
functions.

Computation Theory , L 7 92/171

Notions of computability

Church-Turing Thesis. Every algorithm [in intuitive
sense of Lect. 1] can be realized as a Turing machine.

In rest of the course we’ll look at

I Gödel and Kleene (1936): partial recursive functions

(branch of mathematics called recursion theory)

I Church (1936): λ-calculus

(branch of CS called functional programming)

Computation Theory , L 7 93/171

Aim

A more abstract, machine-independent description of the
collection of computable partial functions than provided
by register/Turing machines:

they form the smallest collection of partial
functions containing some basic functions and
closed under some fundamental operations for
forming new functions from old—composition,
primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of
Gödel and Herbrand.

Computation Theory , L 7 94/171

Basic functions
I Projection functions, projn

i ∈ N
n
�N:

projn
i (x1, . . . , xn) , xi

I Constant functions with value 0, zeron ∈ N
n
�N:

zeron(x1, . . . , xn) , 0

I Successor function, succ ∈ N�N:

succ(x) , x + 1

Computation Theory , L 7 95/171

Basic functions

are all RM computable:

I Projection projn
i is computed by

START→ R0 ::= Ri→HALT

I Constant zeron is computed by

START→HALT

I Successor succ is computed by

START→R
+
1→ R0 ::= R1→HALT

Computation Theory , L 7 96/171

Aim

A more abstract, machine-independent description of the
collection of computable partial functions than provided
by register/Turing machines:

they form the smallest collection of partial
functions containing some basic functions and
closed under some fundamental operations for
forming new functions from old—composition,
primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of
Gödel and Herbrand.

Computation Theory , L 7 94/171

Composition

Composition of f ∈ N
n
⇀N with g1, . . . , gn ∈ N

m
⇀N

is the partial function f ◦ [g1, . . . , gn] ∈ N
m

⇀N

satisfying

f ◦ [g1, . . . , gn](x1, . . . , xm) ≡
f (g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

where ≡ is “Kleene equivalence” of possibly-undefined
expressions: LHS ≡ RHS means “either both LHS and
RHS are undefined, or they are both defined and are
equal.”

Computation Theory , L 7 97/171

Composition

Composition of f ∈ N
n
⇀N with g1, . . . , gn ∈ N

m
⇀N

is the partial function f ◦ [g1, . . . , gn] ∈ N
m
⇀N

satisfying

f ◦ [g1, . . . , gn](x1, . . . , xm) ≡
f (g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

So f ◦ [g1, . . . , gn](x1, . . . , xm) = z iff there exist
y1, . . . , yn with gi(x1, . . . , xm) = yi (for i = 1..n) and
f (y1, . . . , yn) = z.

Computation Theory , L 7 98/169

Composition

Composition of f ∈ N
n
⇀N with g1, . . . , gn ∈ N

m
⇀N

is the partial function f ◦ [g1, . . . , gn] ∈ N
m
⇀N

satisfying

f ◦ [g1, . . . , gn](x1, . . . , xm) ≡
f (g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

So f ◦ [g1, . . . , gn](x1, . . . , xm) = z iff there exist
y1, . . . , yn with gi(x1, . . . , xm) = yi (for i = 1..n) and
f (y1, . . . , yn) = z.

N.B. in case n = 1, we write f ◦ g1 for f ◦ [g1].

Computation Theory , L 7 98/169

Composition

f ◦ [g1, . . . , gn] is computable if f and g1, . . . , gn are.

Proof. Given RM programs

{
F
Gi

computing

{
f (y1, . . . , yn)
gi(x1, . . . , xm)

in

R0 starting with

{
R1, . . . , Rn

R1, . . . , Rm
set to

{
y1, . . . , yn

x1, . . . , xm
, then the next

slide specifies a RM program computing
f ◦ [g1, . . . , gn](x1, . . . , xm) in R0 starting with R1, . . . , Rm set to
x1, . . . , xm.

(Hygiene [caused by the lack of local names for registers in the RM
model of computation]: we assume the programs F, G1, . . . , Gn only
mention registers up to RN (where N ≥ max{n, m}) and that
X1, . . . , Xm, Y1, . . . , Yn are some registers Ri with i > N.)

Computation Theory , L 7 99/169

START

(X1,...,Xm)::=(R1,...,Rm) G1 Y1 ::= R0 (R0,...,RN)::=(0,...,0)

(R1,...,Rm)::=(X1,...,Xm) G2 Y2 ::= R0 (R0,...,RN)::=(0,...,0)

· · · · · · · · · · · ·

(R1,...,Rm)::=(X1,...,Xm) Gn Yn ::= R0 (R0,...,RN)::=(0,...,0)

(R1,...,Rn)::=(Y1,...,Yn) F

Computation Theory , L 7 100/169

