The Halting Problem
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Definition. A register machine H decides the Halting
Problem if for all e, a4,...,a, € IN, starting H with

R,():O Ri=e Rzz'_[al,...,an]j

and all other registers zeroed, the computation of H
always halts with Ry containing 0 or 1; moreover when
the computation halts, Rg = 1 if and only if

the register machine program with index e eventually
halts when started with Rg = 0,R; = a1,...,R; = a,
and all other registers zeroed.
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Definition. A register machine H decides the Halting
Problem if for all e, a4,...,a, € IN, starting H with

R.():O Ri=e Rzzr[al,...,an]j

and all other registers zeroed, the computation of H
always halts with Ry containing 0 or 1; moreover when
the computation halts, Rg = 1 if and only if

the register machine program with index e eventually
halts when started with Rg = 0,R; = a1,...,R; = a,
and all other registers zeroed.

Theorem. No such register machine H can exist.
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Proof of the theorem

Assume we have a RM H that decides the Halting
Problem and derive a contradiction, as follows:

» Let H’ be obtained from H by replacing START—

by START—[Z 5= Ry | 1ok 7

(where Z is a register not mentioned in H's program).

» Let C be obtained from H’ by replacing each HALT
(& each erroneous halt) by —=Ry _ "Ry
i
HALT
» Let ¢ € IN be the index of C's program.
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Proof of the theorem

Assume we have a RM H that decides the Halting
Problem and derive a contradiction, as follows:

C started with Ry = ¢ eventually halts
if & only if
H’ started with Ry = ¢ halts with Rg = 0
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Proof of the theorem

Assume we have a RM H that decides the Halting
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C started with Ry = ¢ eventually halts
if & only if
H’ started with Ry = ¢ halts with Rg = 0
if & only if
H started with Ry = ¢,R, = "[¢] " halts with Ry = 0
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Proof of the theorem

Assume we have a RM H that decides the Halting
Problem and derive a contradiction, as follows:

C started with Ry = ¢ eventually halts

if & only if

H’ started with Ry = ¢ halts with Rg = 0
if & only if

H started with Ry = ¢,R, = "[¢] " halts with Ry = 0

if & only if

prog(c) started with Ry = ¢ does not halt
if & only if

C started with Ry = ¢ does not halt
—contradiction!
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Recall:

Definition. f € IN”"~IN is (register machine)
computable if there is a register machine M with at least
n + 1 registers Ro, Ry, ..., R, (and maybe more)

such that for all (x,...,x,) € N" and all y € IN,

the computation of M starting with Rg = 0,
R1 = x1, ..., Ry = x,, and all other registers
set to 0, halts with Ry =y

if and only if f(xq,...,x,) = v.

Note that the same RM M could be used to compute a unary
function (n = 1), or a binary function (n = 2), etc. From now on
we will concentrate on the unary case. ..




For each e € IN, let ¢, € IN—IN be the unary partial
function computed by the RM with program prog(e).
So for all x,y € IN:

@.(x) = y holds iff the computation of prog(e) started

with Rg = 0,R; = x and all other registers zeroed
eventually halts with Rg = v.

Thus
e— @,

defines an onto function from IN to the collection of all
computable partial functions from IN to IN.



For each e € N, let ¢, € IN—IN be the unary partial
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So for all x,y € IN:
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Let f € IN—~IN be the partial function with graph

{(x,0) | @x(x)7}.

B 0 QD\(Y)T
Thus f(x) = undefined  ¢.(x)]




Let f € IN—~IN be the partial function with graph

{(x,0) | @x(x)7}.

0 @x(x)7

Thus f(x) = undefined  ¢.(x)]

f is not computable, because if it were, then f = ¢, for some
e € IN and hence

» if pe(e)T, then f(e) = 0 (by def. of f); so @.(e) = 0 (by
def. of e), i.e. p.(e)]

» if pe(e)l, then(by def. of e); so @.(e)T (by def. of f)
—contradiction! So f cannot be computable. w



(Un)decidable sets of numbers

Given a subset S C N, its characteristic function

1 fxeS
IN—IN is given by: £
Xxs € IN—=IN is given by: xs(x) {0 fxds
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Definition. S C IN is called (register machine)
decidable if its characteristic function xs € IN—=IN is a

register machine computable function. Otherwise it is
called undecidable.

So S is decidable iff there is a RM M with the property: for all
x € IN, M started with Ry = 0,R; = x and all other registers
zeroed eventually halts with Ry containing 1 or 0; and Rg = 1 on
halting iff x € S.



Definition. S C IN is called (register machine)
decidable if its characteristic function xs € IN—=IN is a

register machine computable function. Otherwise it is
called undecidable.

So S is decidable iff there is a RM M with the property: for all
x € IN, M started with Ry = 0,R; = x and all other registers
zeroed eventually halts with Ry containing 1 or 0; and Rg = 1 on
halting iff x € S.

Basic strategy: to prove S C IN undecidable, try to show that
decidability of S would imply decidability of the Halting Problem.

For example. . .



Claim: Sy = {e | ¢.(0)]} is undecidable.



Claim: Sy = {e | ¢.(0)]} is undecidable.

Proof (sketch): Suppose My is a RM computing xs,. From Mp's
program (using the same techniques as for constructing a universal
RM) we can construct a RM H to carry out:

let e =Ry and "[a1,...,a,] ' =Ry in

Rp:=0;
run M

Then by assumption on My, H decides the Halting
Problem—contradiction. So no such My exists, i.e. xs, is
uncomputable, i.e. Sg is undecidable.
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Claim: S; = {e | ¢, a total function} is undecidable.



Claim: S; = {e | ¢, a total function} is undecidable.

Proof (sketch): Suppose M is a RM computing xs,. From Mj's
program we can construct a RM Mj to carry out:

let e = Ry in Ry ::="Ry :=0;prog(e)';
run M;

Then by assumption on M7, My decides membership of So from
previous example (i.e. computes xs,)—contradiction. So no such
M; exists, i.e. xs, is uncomputable, i.e. S1 is undecidable.
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