The Halting Problem **Definition.** A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with $$R_0 = 0$$ $R_1 = e$ $R_2 = \lceil [a_1, \dots, a_n] \rceil$ and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if the register machine program with index e eventually halts when started with $R_0 = 0$, $R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed. **Definition.** A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with $$R_0 = 0$$ $R_1 = e$ $R_2 = \lceil [a_1, \dots, a_n] \rceil$ and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0 = 1$ if and only if the register machine program with index e eventually halts when started with $R_0 = 0$, $R_1 = a_1, \ldots, R_n = a_n$ and all other registers zeroed. **Theorem.** No such register machine H can exist. Assume we have a RM \boldsymbol{H} that decides the Halting Problem and derive a contradiction, as follows: ▶ Let H' be obtained from H by replacing START → by START → $Z := R_1$ → $push Z to R_2$ → (where Z is a register not mentioned in H's program). Let C be obtained from H' by replacing each HALT (& each erroneous halt) by $R_0^- \longrightarrow R_0^+$. ▶ Let $c \in \mathbb{N}$ be the index of C's program. Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows: C started with $R_1=c$ eventually halts if & only if H' started with $R_1=c$ halts with $R_0=0$ Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows: ``` C started with R_1=c eventually halts if & only if H' \text{ started with } R_1=c \text{ halts with } R_0=0 if & only if H \text{ started with } R_1=c , R_2=\lceil c\rceil halts with R_0=0 ``` Computation Theory, L 5 Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows: ``` C started with R_1=c eventually halts if & only if H' started with R_1=c halts with R_0=0 if & only if H' started with s ``` Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows: ``` C started with R_1 = c eventually halts if & only if H' started with R_1 = c halts with R_0 = 0 if & only if H started with R_1 = c, R_2 = \lceil \lfloor c \rfloor \rceil halts with R_0 = 0 if & only if prog(c) started with R_1 = c does not halt if & only if C started with R_1 = c does not halt ``` Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows: ``` C started with R_1 = c eventually halts if & only if H' started with R_1 = c halts with R_0 = 0 if & only if H started with R_1 = c, R_2 = \lceil \lfloor c \rfloor \rceil halts with R_0 = 0 if & only if prog(c) started with R_1 = c does not halt if & only if C started with R_1 = c does not halt —contradiction! ``` ## Computable functions #### Recall: ``` Definition. f \in \mathbb{N}^n \rightarrow \mathbb{N} is (register machine) computable if there is a register machine M with at least n+1 registers R_0, R_1, \ldots, R_n (and maybe more) such that for all (x_1, \ldots, x_n) \in \mathbb{N}^n and all y \in \mathbb{N}, the computation of M starting with R_0 = 0, R_1 = x_1, \ldots, R_n = x_n and all other registers set to 0, halts with R_0 = y if and only if f(x_1, \ldots, x_n) = y. ``` Note that the same RM M could be used to compute a unary function (n=1), or a binary function (n=2), etc. From now on we will concentrate on the unary case... ## Enumerating computable functions For each $e \in \mathbb{N}$, let $\varphi_e \in \mathbb{N} \rightarrow \mathbb{N}$ be the unary partial function computed by the RM with program prog(e). So for all $x, y \in \mathbb{N}$: $\varphi_e(x) = y$ holds iff the computation of prog(e) started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with $R_0 = y$. Thus $$e \mapsto \varphi_e$$ defines an <u>onto</u> function from \mathbb{N} to the collection of all computable partial functions from \mathbb{N} to \mathbb{N} . # Enumerating computable functions For each $e \in \mathbb{N}$, let $\varphi_e \in \mathbb{N} \to \mathbb{N}$ be the unary partial function computed by the RM with program prog(e). So for all $x, y \in \mathbb{N}$: $\varphi_e(x) = y$ holds iff the computation of prog(e) started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with $R_0 = y$. sothis is $e\mapsto \varphi_e$ Countable defines an onto function from $\mathbb N$ to the collection of all computable partial functions from $\mathbb N$ to $\mathbb N$. Thus So IV -> IV (uncountable, by Cantor) Contains uncomputable functions 63/171 ## An uncomputable function Let $f \in \mathbb{N} \rightarrow \mathbb{N}$ be the partial function with graph $\{(x,0) \mid \varphi_x(x) \uparrow \}$. Thus $$f(x) = \begin{cases} 0 & \varphi_x(x) \uparrow \\ undefined & \varphi_x(x) \downarrow \end{cases}$$ ## An uncomputable function Let $$f \in \mathbb{N} o \mathbb{N}$$ be the partial function with graph $\{(x,0) \mid \varphi_x(x) \uparrow \}.$ Thus $f(x) = \begin{cases} 0 & \varphi_x(x) \uparrow \\ \textit{undefined} & \varphi_x(x) \downarrow \end{cases}$ f is not computable, because if it were, then $f=\varphi_e$ for some $e\in\mathbb{N}$ and hence - ▶ if $\varphi_e(e)\uparrow$, then f(e)=0 (by def. of f); so $\varphi_e(e)=0$ (by def. of e), i.e. $\varphi_e(e)\downarrow$ - if $\varphi_e(e)\downarrow$, then $f(e)\uparrow$ (by def. of e); so $\varphi_e(e)\uparrow$ (by def. of f) —contradiction! So f cannot be computable. f(e) ↓ ### (Un)decidable sets of numbers Given a subset $S \subseteq \mathbb{N}$, its characteristic function $$\chi_S \in \mathbb{N} \rightarrow \mathbb{N}$$ is given by: $\chi_S(x) \triangleq \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S. \end{cases}$ ## (Un)decidable sets of numbers **Definition.** $S \subseteq \mathbb{N}$ is called (register machine) decidable if its characteristic function $\chi_S \in \mathbb{N} \to \mathbb{N}$ is a register machine computable function. Otherwise it is called undecidable. So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$. ## (Un)decidable sets of numbers **Definition.** $S \subseteq \mathbb{N}$ is called (register machine) decidable if its characteristic function $\chi_S \in \mathbb{N} \to \mathbb{N}$ is a register machine computable function. Otherwise it is called undecidable. So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with R_0 containing $\mathbf{1}$ or $\mathbf{0}$; and $R_0 = \mathbf{1}$ on halting iff $x \in S$. Basic strategy: to prove $S \subseteq \mathbb{N}$ undecidable, try to show that decidability of S would imply decidability of the Halting Problem. For example. . . Claim: $S_0 \triangleq \{e \mid \varphi_e(0) \downarrow \}$ is undecidable. #### **Claim:** $S_0 \triangleq \{e \mid \varphi_e(0) \downarrow \}$ is undecidable. **Proof (sketch):** Suppose M_0 is a RM computing χ_{S_0} . From M_0 's program (using the same techniques as for constructing a universal RM) we can construct a RM H to carry out: ``` let e = R_1 and \lceil [a_1, \ldots, a_n] \rceil = R_2 in R_1 := \lceil (R_1 := a_1); \cdots; (R_n := a_n); prog(e) \rceil; R_2 := 0; run M_0 ``` Then by assumption on M_0 , H decides the Halting Problem—contradiction. So no such M_0 exists, i.e. χ_{S_0} is uncomputable, i.e. S_0 is undecidable. **Claim:** $S_1 \triangleq \{e \mid \varphi_e \text{ a total function}\}$ is undecidable. #### **Claim:** $S_1 \triangleq \{e \mid \varphi_e \text{ a total function}\}$ is undecidable. **Proof (sketch):** Suppose M_1 is a RM computing χ_{S_1} . From M_1 's program we can construct a RM M_0 to carry out: let $$e = R_1$$ in $R_1 := \lceil R_1 := 0$; $prog(e) \rceil$; run M_1 Then by assumption on M_1 , M_0 decides membership of S_0 from previous example (i.e. computes χ_{S_0})—contradiction. So no such M_1 exists, i.e. χ_{S_1} is uncomputable, i.e. S_1 is undecidable.