
Lambda-Definable Functions

Computation Theory , L 11 139/171

Encoding data in λ-calculus

Computation in λ-calculus is given by β-reduction. To
relate this to register/Turing-machine computation, or to
partial recursive functions, we first have to see how to
encode numbers, pairs, lists, . . . as λ-terms.

We will use the original encoding of numbers due to
Church. . .

Computation Theory , L 11 146/171

Church’s numerals
0 ! λ f x.x
1 ! λ f x. f x
2 ! λ f x. f (f x)

...
n ! λ f x. f (· · · (f

︸ ︷︷ ︸

n times

x) · · ·)

Notation:









M0N ! N

M1N ! M N

Mn+1N ! M(MnN)

so we can write n as λ f x. f nx and we have n M N =β Mn N .

Computation Theory , L 11 147/170

λ-Definable functions
Definition. f ∈ Nn

⇀N is λ-definable if there is a
closed λ-term F that represents it: for all
(x1, . . . , xn) ∈ Nn and y ∈ N

! if f (x1, . . . , xn) = y, then F x1 · · · xn =β y

! if f (x1, . . . , xn)↑, then F x1 · · · xn has no β-nf.

For example, addition is λ-definable because it is represented by
P " λx1 x2.λ f x. x1 f (x2 f x):

P m n =β λ f x. m f (n f x)

=β λ f x. m f (f nx)

=β λ f x. f m(f nx)

= λ f x. f m+nx

= m + n
Computation Theory , L 11 148/171

Computable = λ-definable
Theorem. A partial function is computable if and only if
it is λ-definable.

We already know that

Register Machine computable
= Turing computable
= partial recursive.

Using this, we break the theorem into two parts:

! every partial recursive function is λ-definable
! λ-definable functions are RM computable

Computation Theory , L 11 149/171

λ-Definable functions
Definition. f ∈ Nn

⇀N is λ-definable if there is a
closed λ-term F that represents it: for all
(x1, . . . , xn) ∈ Nn and y ∈ N

! if f (x1, . . . , xn) = y, then F x1 · · · xn =β y

! if f (x1, . . . , xn)↑, then F x1 · · · xn has no β-nf.

This condition can make it quite tricky to find a λ-term
representing a non-total function.

For now, we concentrate on total functions. First, let us
see why the elements of PRIM (primitive recursive
functions) are λ-definable.

Computation Theory , L 11 150/171

Basic functions
! Projection functions, projn

i ∈ Nn
!N:

projn
i (x1, . . . , xn) " xi

! Constant functions with value 0, zeron ∈ Nn
!N:

zeron(x1, . . . , xn) " 0

! Successor function, succ ∈ N!N:

succ(x) " x + 1

Computation Theory , L 11 151/171

Basic functions are representable

! projn
i ∈ Nn

!N is represented by λx1 . . . xn.xi

! zeron ∈ Nn
!N is represented by λx1 . . . xn.0

! succ ∈ N!N is represented by

Succ " λx1 f x. f (x1 f x)

since

Succ n =β λ f x. f (n f x)

=β λ f x. f (f n x)

= λ f x. f n+1 x

= n + 1

Computation Theory , L 11 152/171

Basic functions are representable

! projn
i ∈ Nn

!N is represented by λx1 . . . xn.xi

! zeron ∈ Nn
!N is represented by λx1 . . . xn.0

! succ ∈ N!N is represented by

Succ " λx1 f x. f (x1 f x)

since

Succ n =β λ f x. f (n f x)

=β λ f x. f (f n x)

= λ f x. f n+1 x

= n + 1

Computation Theory , L 11 152/171

Representing composition

If total function f ∈ Nn
!N is represented by F and

total functions g1, . . . , gn ∈ Nm
!N are represented by

G1, . . . , Gn, then their composition
f ◦ (g1, . . . , gn) ∈ Nm

!N is represented simply by

λx1 . . . xm. F (G1 x1 . . . xm) . . . (Gn x1 . . . xm)

because F (G1 a1 . . . am) . . . (Gn a1 . . . am)
=β F g1(a1, . . . , am) . . . gn(a1, . . . , am)
=β f (g1(a1, . . . , am), . . . , gn(a1, . . . , am))
= f ◦ (g1, . . . , gn)(a1, . . . , am)

.

Computation Theory , L 11 153/171

Representing composition

If total function f ∈ Nn
!N is represented by F and

total functions g1, . . . , gn ∈ Nm
!N are represented by

G1, . . . , Gn, then their composition
f ◦ (g1, . . . , gn) ∈ Nm

!N is represented simply by

λx1 . . . xm. F (G1 x1 . . . xm) . . . (Gn x1 . . . xm)

This does not necessarily work for partial functions. E.g. totally

undefined function u ∈ N⇀N is represented by U ! λx1.Ω

(why?) and zero1 ∈ N!N is represented by Z ! λx1.0; but

zero1 ◦ u is not represented by λx1. Z(U x1), because

(zero1 ◦ u)(n)↑ whereas (λx1. Z(U x1)) n =β Z Ω =β 0.

(What is zero1 ◦ u represented by?)

Computation Theory , L 11 154/170

Primitive recursion
Theorem. Given f ∈ Nn

⇀N and g ∈ Nn+2
⇀N,

there is a unique h ∈ Nn+1
⇀N satisfying

{

h("x, 0) ≡ f ("x)

h("x, x + 1) ≡ g("x, x, h("x, x))

for all "x ∈ Nn and x ∈ N.

We write ρn(f , g) for h and call it the partial function
defined by primitive recursion from f and g.

Computation Theory , L 12 155/171

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying
{

h(!a, 0) = f (!a)

h(!a, a + 1) = g(!a, a, h(!a, a))

Computation Theory , L 12 156/171

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying

h(!a, a) = if a = 0 then f (!a)
else g(!a, a− 1, h(!a, a− 1))

Computation Theory , L 12 157/171

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (Nn+1
!N)!(Nn+1

!N) is given by

Φ f ,g(h)(!a, a) ! if a = 0 then f (!a)
else g(!a, a− 1, h(!a, a− 1))

Computation Theory , L 12 157/171

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (Nn+1
!N)!(Nn+1

!N) is given by. . .

Strategy:

! show that Φ f ,g is λ-definable;
! show that we can solve fixed point equations

X = M X up to β-conversion in the λ-calculus.

Computation Theory , L 12 158/171

Representing booleans

True ! λx y. x
False ! λx y. y

If ! λ f x y. f x y

satisfy

" If True M N =β True M N =β M
" If False M N =β False M N =β N

Computation Theory , L 12 159/171

Representing test-for-zero

Eq0 ! λx. x(λy. False) True

satisfies

" Eq0 0 =β 0 (λy. False) True
=β True

" Eq0 n + 1 =β n + 1 (λy. False) True
=β (λy. False)n+1 True
=β (λy. False)((λy. False)n True)
=β False

Computation Theory , L 12 160/171

Representing ordered pairs

Pair ! λx y f . f x y
Fst ! λ f . f True

Snd ! λ f . f False

satisfy

" Fst(Pair M N) =β Fst(λ f . f M N)
=β (λ f . f M N) True
=β True M N
=β M

" Snd(Pair M N) =β · · · =β N

Computation Theory , L 12 161/171

Representing predecessor

Want λ-term Pred satisfying

Pred n + 1 =β n
Pred 0 =β 0

Have to show how to reduce the “n + 1-iterator” n + 1 to the
“n-iterator” n.

Idea: given f , iterating the function g f : (x, y) !→ (f (x), x)
n + 1 times starting from (x, x) gives the pair (f n+1(x), f n(x)).
So we can get f n(x) from f n+1(x) parametrically in f and x, by
building g f from f , iterating n + 1 times from (x, x) and then
taking the second component.

Hence. . .

Computation Theory , L 12 162/170

Representing predecessor

Want λ-term Pred satisfying

Pred n + 1 =β n
Pred 0 =β 0

Pred ! λy f x. Snd(y (G f)(Pair x x))
where

G ! λ f p. Pair(f (Fst p))(Fst p)

has the required β-reduction properties. [Exercise]

Computation Theory , L 12 163/171

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (Nn+1
!N)!(Nn+1

!N) is given by

Φ f ,g(h)(!a, a) ! if a = 0 then f (!a)
else g(!a, a− 1, h(!a, a− 1))

Computation Theory , L 12 157/171

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (Nn+1
!N)!(Nn+1

!N) is given by. . .

Strategy:

! show that Φ f ,g is λ-definable;
! show that we can solve fixed point equations

X = M X up to β-conversion in the λ-calculus.

Computation Theory , L 12 158/171

