A-Terms, M

are built up from a given, countable collection of
» variables x,y,z,...
by two operations for forming A-terms:

» A-abstraction: (Ax.M)
(where x is a variable and M is a A-term)

» application: (M M")
(where M and M’ are A-terms).

Some random examples of A-terms:
x (Axx) ((Ay.(xy))x) (Ay.((Ay.(xy))x))

Computation Theory , L 10 125/171

M=, M

is the binary relation inductively generated by the rules:

z#(MN) M{z/x} =, N{zly}
Ax.M =, Ay.N

M=, M N=,N
MN =, M' N’

where M{z/x} is M with all occurrences of x replaced
by z.

y ifyFx
Ay.N[M/x] if y# (Mx)
Ny [M/x] N2[M/x]

N[M/x]: resulk 01[2 rep|o\an9
all free occurrenws of x in N
A M a\/o\d;vxg/ C@_/EWPC dig
ijQQ, vanadds o M 106\ binders
w N

N|[M/x]

M
y ify#x
Ay.N[M/x] if y# (M x)

Side-condition y # (M x) (y does not occur in M and
Yy # x) makes substitution “capture-avoiding”.

Eg ifx #y
(Ay-x)[y/x] # Ay.y

N|[M/x]

M
y ify#x
Ay.N[M/x] if y # (M x)

Side-condition y # (M x) (y does not occur in M and
Yy # x) makes substitution “capture-avoiding”.

Eg ifx#y#z#«x
(Ay.x) [y/x] =4 (Az.x)[y/x] = Azy

N +— N[M/x] induces a total operation on
x-equivalence classes.

A, (Nﬂﬂ)\éwc

:,)%‘?/%Lil

|

AL, (7\\(“7)\%90

L >\"Z’Z}/%Lﬁ_l

No possible

P (7\‘3'5])\@90])Z‘ZL/%]

= M. (_?\\33)(7\%3) X

A

NK. O\\d\\ﬂ Xy ‘

]

l?‘x/%]

P (7\‘3'3)\@%])“‘?/%Lil
= Ax. (_?\\33)(7\1:/]>36

. Ogyday [92 /y

]

Hoss1ble,

H0oss1ble,

. R~ converk

L o Y

.]
N | (7\33)\%30 5 ?/‘3,
= Ax. (_?\\33)(7\1:/])36

A DC/ poss(bhbm

NK. D\\(J\\ﬂ) | ! ;7) /13, 1 gﬂx(:\;%
= >\% . (>\\.J,U>%<>\\9_I>
=, A\Z. b\\a\&)% kkg’.:c)

pB-Reduction

Recall that Ax.M is intended to represent the function f
such that f(x) = M for all x. We can regard Ax.M as

a function on A-terms via substitution: map each N to
M|[N/x].

So the natural notion of computation for A-terms is
given by stepping from a

B-redex (Ax.M)N
to the corresponding
B-reduct M|[N/x]

Computation Theory , L 10 135/171

One-step B-reduction, M — M’:

M— M
(Ax.M)N — M|[N/x] Ax.M — Ax.M'

M — M’ M — M’
MN — M'N NM— NM

N=M M-—-M M= N
N — N’

B-Reduction

Eg.
- ((AyAz.z)u)y
(Axxy)((Ay.Az.z)u) j (Az.z)y—VY
- (Axxy)(Az.2)

Computation Theory , L 10 137/171

B-Reduction

Eg.
- ((AyAz.z)u)y
(Axxy)((Ay.Az.z)u) j (Az.z)y—VY
- (Axxy)(Az.2)

Computation Theory , L 10 137/171

B-Reduction

Eg.
- ((AyAz.z)u)y
(Axxy)((Ay.Az.z)u) j (Az.z)y—VY
- (Axxy)(Az.2)

Computation Theory , L 10 137/171

B-Reduction

Eg.
- ((AyAz.z)u)y
(Axxy)((Ay.Az.z)u) j (Az.z)y—VY
- (Axxy)(Az.2)

Computation Theory , L 10 137/171

B-Reduction

Eg.
- ((AyAz.z)u)y
(Axxy)((Ay.Az.z)u) j (Az.z)y—VY
- (Axxy)(Az.2)

Computation Theory , L 10 137/171

B-Reduction

Eg.
- ((AyAz.z)u)y
(Axxy)((Ay.Az.z)u) j (Az.z)y—VY
- (Axxy)(Az.2)

E.g. of “up to a-equivalence” aspect of reduction:

(AxAyx)y =, (AxAzx)y — Azy

Computation Theory , L 10 137/171

Many-step B-reduction, M — M’:

M=, M M — M’ M —» M’ M — M"

M — M’ M — M’ M — M"”
(no steps) (1 step) (1 more step)

Eg.

(Axxy)((Ayz.2)u) -y
(Ax.Ayx)y — Azy

p-Conversion M =g N

Informally: M =g N holds if N can be obtained from
M by performing zero or more steps of a-equivalence,
B-reduction, or B-expansion (= inverse of a reduction).

Eg u((Axy.vx)y) =g (Ax.ux)(Ax.vy)
because (Ax.ux)(Ax.vy) — u(Ax.vy)

and so we have

u((Axy.vx)y) =o u((Axy’.vx)y)
— u(Ay'.vy) reduction
=, u(Ax.vy)
«— (Ax.ux)(Ax.vy) expansion

Computation Theory , L 11 140/171

M=z N

is the binary relation inductively generated by the rules:

Theorem. — is confluent, that is, if My «— M — M,,

then there exists M’ such that M; — M’ « M,.

[Proof omitted.]

Theorem. — is confluent, that is, if My «— M — M,,

then there exists M’ such that M; — M’ « M,.

Corollary. Two show that two terms are B-convertible, it
suffices to show that they both reduce to the same term.
More precisely: My =g M, iff IM (My — M « M,).

Computation Theory , L 11 142/171

Theorem. — is confluent, that is, if M; «~ M — M,,

then there exists M’ such that M; — M’ « M,.

Corollary. M; =g M, iff IM (M; - M « M>).

Proof. =g satisfies the rules generating —; so M — M’ implies
M =g M’. Thus if My — M « M,, then My =g M =g M and
SO M1 :ﬁ Mz.

Conversely, the relation {(My, M) | M (M7 - M « M3)}
satisfies the rules generating =pg: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem: My M M, M’ M3

Computation Theory , L 11 142/171

Theorem. — is confluent, that is, if M; «~ M — M,,

then there exists M’ such that M; — M’ « M,.

Corollary. M; =g M, iff IM (M; - M « M>).

Proof. =g satisfies the rules generating —; so M — M’ implies
M =g M’. Thus if My — M « M,, then My =g M =g M and
SO M1 :ﬁ Mz.

Conversely, the relation {(My, M) | M (M7 - M « M3)}
satisfies the rules generating =pg: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser

theorem: My M M, M’ M3
\C-R /
M,

Computation Theory , L 11 142/171

Theorem. — is confluent, that is, if M; «~ M — M,,

then there exists M’ such that M; — M’ « M,.

Corollary. M; =g M, iff IM (M; - M « M>).

Proof. =g satisfies the rules generating —; so M — M’ implies
M =g M’. Thus if My — M « M,, then My =g M =g M and
SO M1 :ﬁ Mz.

Conversely, the relation {(My, M) | M (M7 - M « M3)}
satisfies the rules generating =pg: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem. Hence M =g M, implies IM (M7 — M’ « M,).

Computation Theory , L 11 142/171

Definition. A A-term N is in B-normal form (nf) if it

contains no B-redexes (no sub-terms of the form
(Ax.M)M"). M has B-nf N if M =g N with N a B-nf.

Definition. A A-term N is in B-normal form (nf) if it

contains no B-redexes (no sub-terms of the form
(Ax.M)M"). M has B-nf N if M =g N with N a B-nf.

Note that if N is a B-nf and N — N’, then it must be that

N =, N’ (why?).

Hence if N7 =p N2 with N1 and N both B-nfs, then N3 =, N».
(For if Ny =g N2, then dippf—lorsormeniimmrenes by
Church-Rosser, Ny — M’ « N, for some M’, so

So the B-nf of M is unique up to a-equivalence if
it exists.

Computation Theory , L 11 143/171

Non-termination

Some A terms have no B-nf.
Eg Q= (Ax.xx)(Ax.xx) satisfies

» O — (xx)[(Axxx)/x] = Q,

») —» M implies) =, M.
So there is no B-nf N such that) =g N.

Computation Theory , L 11 144/171

Non-termination

Some A terms have no B-nf.
Eg Q= (Ax.xx)(Ax.xx) satisfies

» O — (xx)[(Axxx)/x] = Q,

») —» M implies) =, M.
So there is no B-nf N such that) =g N.

A term can possess both a B-nf and infinite chains

of reduction from it.

Eg. (Axy)Q2 — y, but also (Ax.y)Q — (Axy)QQ — - --

Computation Theory , L 11 144/171

Non-termination

Normal-order reduction is a deterministic strategy for
reducing A-terms: reduce the “left-most, outer-most”
redex first.

» left-most: reduce M before N in M N, and then

> outer-most: reduce (Ax.M)N rather than either of
M or N.

(cf. call-by-name evaluation).

Fact: normal-order reduction of M always reaches the
B-nf of M if it possesses one.

Computation Theory , L 11 145/171

