
Computer Fundamentals

Dr Robert Harle

CST Part IA
NST Part IA (CS option)

PPS (CS option)

Michaelmas 2011

What is Computer Science?

 Surprisingly hard to answer definitively
 Gets confused with IT, which is merely the use of

present day technology

 We're trying to teach theory and practice that
will defined future technology
 CS has strong theoretical underpinnings that

stem from maths

 This short course is introductory material that
touches on the absolute basics
 Examined indirectly – no specific exam question

but the topics surface in later courses throughout
the year

Topics

 Computer Components
 Brief history. Main components: CPU, memory, peripherals (displays,

graphics cards, hard drives, flash drives, simple input devices),
motherboard, buses.

 Data Representation and Operations
 Simple model of memory. Bits and bytes. Binary, hex, octal, decimal

numbers. Character and numeric arrays. Data as instructions: von-
Neumann architecture, fetch-execute cycle, program counter (PC)

 Low- and High- level Computing
 Pointers. The stack and heap? Box and Pointer Diagrams. Levels of

abstraction: machine code, assembly, high-level languages. Compilers

and interpreters. Read-eval-print loop.
 Platforms and Multitasking

 The need for operating systems. Multicore systems, time-slicing. Virtual
machines. The Java bytecode/VM approach to portability. ML as a high-
level language emphasing mathematical expressivity over input-output.

A Brief History of Computers

Analogue Computers
 You've probably been taught various electrical

phenomena by analogy with mechanical systems
 Voltage ↔ water flow

 Electrical resistance ↔ mechanical resistance

 Capacitance ↔ compressed spring

 Works the other way: simulate mechanical systems
using electrical components
 This is then an analogue computer

 Cheaper, easier to build and easier to measure than mechanical
system

 Can be run faster than 'real time'

 BUT each computer has a specialised function

 Very good for solving differential equations. Used
extensively for physics, esp. artillery calculations!

Input: Jacquard's Loom
 Not a computer per-se, but very important in the history

of them. Jacquard wanted to create a textile loom that
could remember how to create specific textiles

 Used many needles and realised he could create a
series of template cards with holes to let through only
some needles. Running a series of templates through in a
specific order produced the garment.

 Basic idea for punch cards

Turing Machines

 Inspired by the typewriter (!), Alan Turing
(King's) created a theoretical model of a
computing machine in the 1930s. He broke the
machine into:
 A tape – infinitely long, broken up into cells,

each with a symbol on them
 A head – that could somehow read and

write the current cell
 An action table – a table of actions to

perform for each machine state and
symbol. E.g. move tape left

 A state register – a piece of memory that
stored the current state

Universal Turing Machines

 Alan argued that a Turing machine could be made
for any computable task (e.g. sqrt etc)

 But he also realised that the action table for a given
turing machine could be written out as a string,
which could then be written to a tape.

 So he came up with a Universal Turing Machine. This
is a special Turing Machine that reads in the action
table from the tape
 A UTM can hence simulate any TM if the tape

provides the same action table
 This was all theoretical – he used the models to

prove various theories. But he had inadvertently set
the scene for what we now think of as a computer!

Note...

 ...A Turing machine made a shift from the analogue
to the discrete domain (we are reading explicit
symbols and not analogue voltages)
 In part this is because Turing needed it to be able to

represent things exactly, even infinite numbers
(hence the infinite tape)

 This is useful practically too. Analogue devices:
 have temperature-dependent behaviour
 produce inexact answers due to component

tolerances
 are unreliable, big and power hungry

The Digital World

 When we have discrete states, the simplest
hardware representation is a switch → digital
world

 Going digital gives us:
 Higher precision (same answer if you repeat)
 Calculable accuracy (the answer is of known quality)
 The possibility of using cheaper, lower-quality components

since we just need to distinguish between two states
(on/off)

 One problem: no switches?

1946-58 Vacuum Tubes
 Vacuum tubes are really just modified lightbulbs that can act

as amplifiers or, crucially, switches.

 By the 1940s we had all we needed to develop a useful
computer: vacuum tubes for switches; punch cards for input;
theories of computation; and (sadly) war for innovation

e-

Colussus
 1944, Bletchley park

 Designed to break the
German Lorenz SZ40/42
encryption machine

 Fed in encrypted messages
via paper tape. Colussus
then simulated the positions
of the Lorenz wheels until it
found a match with a high
probability

 No internal program –
programmed by setting
switches and patching leads

 Highly specific use, not a
general purpose computer

 Turing machine, but not
universal

ENIAC

 Electronic Numerical Integrator and Computer
 1946, “Giant brain” to compute artillery tables for US military
 First machine designed to be turing complete in the sense

that it could be adapted to simulate other turing machines
 But still programmed by setting switches manually...

 Next step was to read in
the “action table” (aka
program) from tape as
well as the data

 For this we needed more
general purpose memory
to store the program,
input data and output

Manchester Baby
 1948 a.k.a. mark I computer
 Cunning memory based on cathode ray tube.

Used the electron gun to charge the phosphor on
a screen, writing dots and dashes to the tiny screen

 A light-sensitive collector plate read the screen
 But the charge would leak away within 1s so they

had to develop a cycle of read-refresh
 Gave a huge 2048 bits of memory!

phosphor

collector

Electron
gun

First
Stored-Program

Computer?

EDSAC
 Electronic Delay Storage Automatic Calculator
 First practical stored-program computer,

built here by Maurice Wilkes et al.

 Memory came in the form of a
mercury delay line

 Used immediately for research
here.

 Although they did have to invent
programming....

First
Stored-Program

Computer?

Storage: Stored-Program Machines

 So where do you store your programs and data?

Von-Neumann Harvard

Same memory for programs and
data

Separate memories for programs
and data

+ Don't have to specify a partition
so more efficient memory use

- Have to decide in advance how
much to allocate to each

+ Programs can modify
themselves, giving great flexibility

+ Instruction memory can be
declared read only to prevent viruses
etc writing new instructions

- Programs can modify themselves,
leaving us open to malicious
modification

- Can't get instructions and data
simultaneously (therefore slower)

+ Can fetch instructions and data
simultaneously

1959-64 Transistors

 Vacuum tubes bulky, hot and prone to failure
 Solution came from Bell labs (telecoms research)

C

E

B

N

N

P

1965-70 Integrated Circuits

 Shift from separate transistors to a monolithic
(formed from a single crystal) IC

 Essentially a miniature electronic circuit etched onto
a sliver of semiconductor (usually silicon these days,
but originally germanium)

 Moore's law: the number of transistors that can be
placed on an IC doubles approximately every two
years

1971- Microprocessors

 a.k.a. a Central Processing Unit (CPU)
 A complete computer on an IC

Modern Systems

Main Memory (RAM)
 The alternative to mercury delay lines is essentially a

capacitor. A charged capacitor is a “1” and a discharged
capacitor is a ”0”

 Problem: capacitors leak charge over time, so a “1”
becomes a “0”. Therefore we must refresh the capacitor
regularly

 Cunningly we combine a transistor and a capacitor to store
each bit and arrange them in a grid so we can just jump
around in memory (Random Access Memory – RAM)

Memory cell
(transistor
+capacitor)

Hard Drives (Magnetic Media)

 Lots of tiny magnetic patches on a
series of spinning discs

 Can easily magnetise or
demagnetise a patch, allowing us
to represent bits

 Similar to an old cassette tape only
more advanced

 Read and write heads move
above each disc, reading or
writing data as it goes by

 Remarkable pieces of engineering that can store terabytes (TB,
1,000,000MB) or more.

 Cheap mass storage

 Non-volatile (the data's still there when you next turn it on)

 But much slower than RAM (because it takes time to seek to
the bit of the disc we want)

Flash and SSDs

 Magnetic storage is great but moving parts mean many
limitations, not least speed and size. RAM is volatile – turn
off the power and it is lost

 Toshiba came up with Flash memory in the 1980s
 Non-volatile memory that works essentially by trapping charge in

a non-conducting layer between two transistors (much more
complex than this, but out of scope here)

 Slower than RAM and a limited number of writes, but still
extremely useful
 No moving parts
 Used in USB flash drives, camera memory and now Solid State

Discs.

Modern Memories

Registers Cache RAM SSD HDD

1

10

100

1000

10000

100000

1000000

10000000

T
y
p

ic
a
l
S

iz
e
s

(M
B

 –
 L

O
G

 S
C

A
L
E
!)

Graphics Cards

 Started life as Digital to Analogue Convertors (DACs)
that took in a digital signal and spat out a voltage that
could be used for a cathode ray screen

 Have become powerful computing devices of their own,
transforming the input signal to provide fast, rich
graphics.
 Driven primarily by games and a need for 3D,

graphics cards now contain Graphical Processing
Units which you can think of as containing many
(hundreds) of CPUs working in parallel.

 Current trend is to exploit the powerful parallel
processing capabilities of GPUs to do scientific
simulations.

Peripherals

 Modern computers have a range of peripherals
that they support:
 Input (mouse, keyboard, etc)
 Output (printer, display)
 Network adapters
 Graphics cards

 It's not particularly efficient to have dedicated
cables/connects for each peripheral
 How would we cope with future

developments?
 Instead we have general purpose buses that

provide communications pathways that can be
shared amongst peripherals...

Buses

 Think of a bus as a data highway

 To prevent conflicts, buses have control lines (wires) that govern
access to the bus

Mouse

Printer

Keyboard

Flash
drive

CPU

Northbridge

Southbridge

PCI Bus

Memory BusAGP BusGraphics
Card RAM

USB

Ethernet (LAN)

LPC Bus

Expansion
cards

External
peripherals

Network

Serial I/O
etc

Internal bus

The Motherboard

 An evolution of the circuitry between the CPU and
memory to include general purpose buses (and later to
integrate some peripherals directly!)

 Internal Buses
 ISA, PCI, PCIe, SATA, AGP

 External buses
 USB,Firewire,

eSATA, PC card

Computer Architectures
(What the CPU really does)

Programs, Instructions and Data

 Recall: Turing's universal machine reads in a
table (=program) of instructions, which it then
applies to a tape (=data) We will assume a
Von-Neumann architecture since this is most
common in CPUs today.

Memory

Program Data

CPU

Simple Model of Memory

 We think of memory abstractly, as
being split into discrete chunks, each
given a unique address

 We can read or write in whole chunks
 Modern memory is big

Memory

0 1 2 3 4 5 6 7 8

Simple Model of a CPU

Registers

P

X

Y

Z

ALU

CPU

MAU

IB

Fetch-Execute Cycle I

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

P

X

Y

Z

ALU

CPU

MAU

1

IB

Fetch-Execute Cycle II

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

63

P

X

Y

Z

ALU

CPU

MAU

2

IB

Fetch-Execute Cycle III

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

12

63

P

X

Y

Z

ALU

CPU

MAU

3

IB

Fetch-Execute Cycle IV

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

75

12

63

P

X

Y

Z

ALU

CPU

MAU

4

IB

CPU Processing Units

 Other common units
 MAU – Memory Access Unit
 ALU – Arithmetic Logic Unit
 FPU – Floating Point Unit
 BU – Branching Unit

CPU Architecture Sizes

 The registers are fixed sized, super-fast on-chip memory.
 When we build them we have to decide how big to

make them
 Bigger registers

 Allow the CPU to do more per cycle
 Mean we can have more memory
 Too big and we might waste the electronics

 Smaller registers
 Less electronics (smaller, cooler CPUs)
 Too small and it takes multiple cycles for simple

operations

Aside: bits, bytes, words

 A bit is either 0 or 1, represented by a 'b'

 A byte is (usually) eight bits, represented by a 'B'

 A word is the natural unit of data for a given architecture (i.e.
register size)

 Larger collections
 SI units are based on powers of ten, but computers use

powers of two, which causes confusion
 1 kilobyte (kB) might be 1,000B or 1024B (nearest power of

two)
 Technically, there is now 1 kibibyte = 1 kiB = 1024B etc but

no-one really uses these..!

Instruction Sets

 At first, every CPU that came out had its own,
special instruction set. This meant that any program
for machine X would be useless on machine Y

 We needed a standardised set of instructions
 Intel drew up the 8086 specification in 1978
 Manufacturers produced CPUs that understood

8086 instructions and the so-called PC was born
 Modern PCs still support this instruction set, albeit

manufacturers add their own special commands to
take advantage of special features (MMX, etc).

 Each set of instructions is referred to as an
architecture

Representing Data
(How a computer sees the world)

Decimal

 We're all happy with decimal (“base-
10”) numbers.

 To represent a number we use a series
of digits, each of which can adopt
one of ten states, 0-9.

512
10

 = 5x102+1x101+2x100

Binary

 As we know, most computers store data using a
huge bank of switches; the natural counting
unit is hence two (on or off)

 Therefore we use base-2 numbers, formed from
binary digits (“bits” – 0s or 1s)

1101
2
 = 1x23+1x22+0x21+1x20

 = 13
10

Binary Integers

 n decimal digits can label 10n things
 n bits allow us to label 2n things
 This allows us to represent the number range 0,1,...,2n-1

 Note that we often count from zero and not one. Out-by-one errors are
very common programming mistakes when the programmer counts from
one

Note!

Hexadecimal

 Decimal is nice for humans because you can represent
big numbers using relatively few digits
 E.g. “123456” vs “11110001001000000”

 Programmers usually consider small groups of bits:
 E.g. 0001-1110-0010-0100-0000
 There are 4 bits per group, so 16 possibilities. We label

them using decimal digits until we run out:

 Making the example 1-E-2-4-0 or 0x1E240
 This is just base-16 numbering or hexadecimal

0 1 2 3 4 5 6 7 8 9 A B C D E F

Octal

 Another (less common) alternative is octal, which is
groupings of 3 bits, or base-8
 000-011-110-001-001-000-000 becomes 0-3-6-1-1-0-0

 Note that there isn't a convenient grouping for our
beloved base-10 decimal. Three bits isn't enough and
four bits is too much.
 We can see this using the log function. We want to

solve 2b-1=9, where b is the number of bits:
 2b=10

 b=log
2
10=3.322 bits

 So 3.3 bits map to a decimal digit – yuk! It's much
easier if the bases are a power-of-two.

Binary Addition and Subtraction

 Really easy. A simplified version of what you do in
decimal, with carries and borrows etc

 Except: this all has to be done from the registers, which
have a set size. What happens if the number gets too
big (overflow) or too small (underflow)?

0101
+ 0011

0101
- 0011

1111
+ 0001

0000
- 0001

Modulo Arithmetic

 Overflow takes us across the dotted
boundary
 So 3+6=1 (overflow)
 We say this is (3+6) mod 8

0

6

7 1

2

34
5

... 2 3 4 5 6 7 8 9...

+

-

Negative Numbers

 All of this skipped over the need to represent
negatives.

 The naïve choice is to use the MSB to indicate +/-
 A 1 in the MSB is negative
 A 0 in the MSB is positive

 This is the sign-magnitude technique

-7 = 1111

Negative
Normal positive
representation of 7

Difficulties with Sign-Magnitude

 Has a representation of minus zero (1000
2
=-0)

so wastes one of our 2n labels
 Addition/subtraction circuitry is not pretty

1101
0001
1110

-5
+1
-6

+13
+1

+14

1101
0001
1100

-5
+1
-4

+13
+1

+12

Sign-mag Unsigned

“normal” addition “sign-mag” addition

Alternatively...

 Gives us two discontinuities and a
reversal of direction using normal
addition circuitry!!

0

-2

-3 1

2

3-0
-1

Two's complement

0

-2

-1 1

2

3-4
-3

 How about this?
 One discontinuity again
 Efficient (no minus zero!)
 Crucially we can use normal

addition/subtraction circuits!!
 “Two's complement”

 Positive to negative: Invert all the bits and add 1

 Negative to positive: Same procedure!!

1011 (-5) → 0100 → 0101 (+5)

0101 (+5) → 1010 → 1011 (-5)

Fractional Numbers

 Scientific apps rarely survive on integers alone, but
representing fractional parts efficiently is
complicated.

 Option one: fixed point
 Set the point at a known location. Anything to

the left represents the integer part; anything to
the right the fractional part

 But where do we set it??
 Option two: floating point

 Let the point 'float' to give more capacity on its
left or right as needed

 Much more efficient, but harder to work with
 Very important: dedicated course on it later this

year.

Character Arrays

 To represent text, we simply have an encoding
from an integer to a letter or character

 The classic choice is ASCII
 Takes one byte per character but actually only

uses 7 bits of it so can represent 27=128
characters

Other encodings

 128 letters is fine for English alphabet
 Turns out there are other alphabets (who

knew?!)
 So we have unicode and other

representations that typically take two bytes
to represent each character

 Remember this when we come to look at
Java next term, which uses 2-byte unicode as
standard...

Levels of Abstraction
(How humans can program computers)

Levels of Abstraction for Programming

High Level Languages

Procedural Languages

Assembly

Machine Code

Human friendly

Geek friendly

Computer friendly

 Compile

Machine Code

 What the CPU 'understands': a series of instructions that it
processes using the the fetch-execute technique

 E.g. to add registers 1 and 2, putting the result in register
3 using the MIPS architecture:

00000000001000100001100000100000

Register 1 Register 3 Addition

Register 2 Shift amount (N/A)OP type

Assembly
 Essentially machine code, except we replace binary

sequences with text that is easier for humans
 E.g. add registers 1 and 2, storing in 3:

 Produces small, efficient machine code when
assembled

 Almost as tedious to write as machine code
 Becoming a specialised skill...
 Ends up being architecture-specific if you want the most

efficient results :-(

add $s3, $s1, $s2

Compilers

 A compiler effectively acts as a translator, from
source to machine code (or some intermediary)

 Writing one is tricky and we require strict rules on the
input (i.e. on the programming language). Unlike
English, ambiguities cannot be tolerated!

Write Compile

Machine
code

(binary)
Errors to fix

Compile succeeds
(eventually!)

Avoiding Architecture Lock-In

 Different CPUs have different instruction sets
 We write high level code
 We compile the code to a specific architecture

(i.e. machine code for that processor)

Source Code (e.g. C++)

Binary executable
for PC (x86)

Binary executable
for ARM

C++ Compiler
for ARM

C++ Compiler
for x86

Interpreters

 The end result is a compiled program that can
be run on one CPU architecture.

 As computers got faster, it became apparent
that we could potentially compile 'on-the-fly'.
i.e. translate high-level code to machine code
as we go

 Call programs that do this interpreters

Architecture agnostic –
distribute the code and have
a dedicated interpreter on
each machine

Have to distribute the code

Easier development loop Errors only appear at runtime

Performance hit – always
compiling

Procedural Languages

 The next logical step up from assembly is a procedural
language, which relies on procedures (aka methods,
subroutines, functions*) and provides an architecture-
agnostic specification that is closer to natural language

 Represent state by declaring variables. E.g.

* see OOP course in Lent for more careful definitions of these

int x = 7;

float y = 3.2;

Name

Value

Type

Procedures

int myprocedure(int a, float y) {
return a*y;

}
Body

Return type
Name

Arguments

 In procedural programming you call a series of
procedures in a specific order to alter the state

Memory and Pointers

 In reality the compiler stores a mapping from
variable name to a specific memory address, along
with the type so it knows how to interpret the
memory (e.g. “x is an int so it spans 4 bytes starting
at memory address 43526”).

 Lower level languages often let us work with
memory addresses directly. Variables that store
memory addresses are called pointers or sometimes
references

 Manipulating memory directly allows us to write fast,
efficient code, but also exposes us to bigger risks
 Get it wrong and the program 'crashes' .

Pointers: Box and Arrow Model

 A pointer is just the memory address of the first
memory slot used by the variable

 The pointer type tells the compiler how many
slots the whole object uses

xptr2

xxptr1int x = 72;
int *xptr1 = &x;
int *xptr2 = xptr1;

Example: Representing Strings I

 A single character is fine, but a text string is of variable length –
how can we cope with that?

 We simply store the start of the string in memory and require it
to finish with a special character (the NULL or terminating
character, aka '\0')

 So now we need to be able to store memory addresses → use
pointers

 We think of there being an array of characters (single letters)
in memory, with the string pointer pointing to the first element
of that array

C S R U L E S

11

\0

11 12 13 14 15 16 177 8 9 10 18

Example: Representing Strings II

stringPointer

h e l l o char letterArray[] = {'h','e','l','l','o','\0'};

 char *stringPointer = &(letterArray[0]);

 printf(“%s\n”,stringPointer);

 letterArray[3]='\0';

 printf(“%s\n”,stringPointer);

\0

Imperative and
Functional Programming

Imperative Programming

 Procedural languages
belong to a larger class of
imperative languages

 This class of language
describes a program in terms
of state (variables etc)

 Each instruction manipulates
explicit state

 E.g. Java, C, C++, python,
Basic, etc.

 This is probably what you're
familiar with, if you've done
any programming before

Imperative

Structured Non-Structured

Procedural Object-Oriented

Imperative Example

float delivery = 1.50;
float vatrate = 1.20;

float getFullPrice(float price) {
return (price + delivery)*vatrate;

}

float labelprice =7.50;
Float salesprice = getFullPrice(labelprice)

 How would we represent this algebraically?
 Problem: the getFullPrice() function depends on

state outside the arguments (i.e. delivery,
vatrate)

 This is like having a function f(x) that can give
different values for the same input!!

Imperative Example

 Could instead have made a 'proper'
function:

 Now we have a function that always returns
the same answer for a set of inputs

 Maps to the maths directly

float getFullPrice(float price,float delivery, float vatrate) {
return (price + delivery)*vatrate;

}

float delivery = 1.50;
float vatrate = 1.20;
float labelprice =7.50;
float salesprice = getFullPrice(labelprice, delivery, vatrate)

Functional Programming

 This is an extreme of what we just did, forcing
you not to use state but to use lots of well-
defined proper functions
 You can never change the value of any

piece of state
 Functions can only depend on their

arguments
 There are no for loops, while loops – basically

nothing that isn't done in the algebra you
know so well

 This type of programming was a natural way to
go in the Turing era, when actual computers
didn't exist

Example: ML

 In a week or so you will be introduced to ML, a functional
language. We start with this because:
 It is closer to maths in form
 almost no-one in the room knows it
 It allows you to focus quickly on the interesting parts

of computer science rather than first learning the
minutiae of a programming language

 E.g. computing ab

p(a,b) = a x p(a,b-1) fun p(a,b) = a*p(a,b-1)

Maths ML

Declarative Programming

 Functional Programming is a subset of
declarative programming

 Turns out to be very powerful
 Essentially the programming language is

a mathematical description of what to
do and not a low level description of how
to do it
 A compiler can completely rewrite a

function so long as the overall effect is
unchanged.

 Because the compiler does the low
level stuff, silly programmer errors
relating to state can be avoided

Declarative

Functional Logic

Platforms and Operating Systems
(Software to control your hardware)

The Origins of the OS

 A lot of the initial computer programs covered the same
ground – they all needed routines to handle, say,
floating point numbers, differential equations, etc.
 Therefore systems soon shipped with libraries: built-in

chunks of programs that could be used by other
programs rather than re-invented.

 Then we started to add new peripherals (screens,
keyboards, etc).
 To avoid having to write the control code (“drivers”)

for each peripheral in each program the libraries
expanded to include this functionality

 Then we needed multiple simultaneous users
 Need something to control access to resources...

Operating System

 Now sits between the application
and the hardware

 Today's examples include MS
Windows, GNU Linux, Apple OSX and
iOS, Google Android, etc.

 Today's applications depend on
huge pieces of code that are in the
OS and not the actual program code

 The OS provides a common interface
to applications
 Provides common things such as

memory access, USB access,
networking, etc, etc.Hardware

Operating System

Application

User

Timeslicing

 Modern OSes allow us to run many programs at
once. Or so it seems. In reality a CPU time-
slices:
 Each running program (or “process”) gets a

certain slot of time on the CPU
 We rotate between the running processes with

each timeslot
 This is all handled by the OS, which schedules the

processes. It is invisible to the running program.

A B C

time

A B C A B CD D

Process D
started

Processes
A,B,C running

Context Switching

 Every time the OS decides to switch the running
task, it has to perform a context switch

 It saves all the program's context (the program
counter, register values, etc) to main memory

 It loads in the context for the next program
 Obviously there is a time cost associated with

doing this...

What Time Slice is Best?

 Longer
 The computer is more efficient: it spends more

time doing useful stuff and less time context
switching

 The illusion of running multiple programs
simultaneously is broken

 Shorter
 Appears more responsive
 More time context switching means the overall

efficiency drops
 Sensible to adapt to the machine's intended usage.

Desktops have shorter slices (responsiveness
important); servers have longer slices (efficiency
important)

The Kernel

 The kernel is the part of the OS that
runs the system
 Just software
 Handles process scheduling (what gets

what timeslice and when)
 Access to hardware
 Memory management

 Very complex software – when it
breaks... game over.

The Importance of APIs

 API = Application Programming Interface

 Software vendors ship their libraries with APIs, which
describes only what is need for a programmer to use the
library in their own program.
 The library itself is a black box – shipped in binary

form.
 Operating systems are packed with APIs for e.g. window

drawing, memory access, USB, sound, video, etc.
 By ensuring new versions of the software support the

same API (even if the result is different), legacy
software can run on it.

Platforms

 A typical program today will be compiled for a
specific architecture, a specific operating system
and possibly some extra third party libraries.
 So PC software compiled for linux does not work

under Windows for example.
 We call the {architecture, OS} combination a

platform
 The platforms you are likely to encounter here:

 Intel/Linux
 Intel/Windows
 Intel/OSX
 ARM/iOS
 ARM/Android

Multicore Systems

 Ten years ago, each generation of CPUs packed
more in and ran faster. But:
 The more you pack stuff in, the hotter it gets
 The faster you run it, the hotter it gets
 And we got down to physical limits anyway!!

 We have seen a shift to multi-core CPUs
 Multiple CPU cores on a single CPU package

(each runs a separate fetch-execute cycle)
 All share the same memory and resources!

The New Challenge

 Two cores run completely independently, so a
single machine really can run two or more
applications simultaneously

 BUT the real interest is how we write programs
that use more than one core
 This is hard because they use the same

resources, and they can then interfere with
each other

 Those sticking around for IB CST will start to
look at such 'concurrency' issues in far more
detail

Virtual Machines

 Go back 20 years and emulators were all the rage:
programs on architecture X that simulated architecture
Y so that programs for Y could run on X

 Essentially interpreters, except they had to recreate the
entire system. So, for example, they had to run the
operating system on which to run the program.

PC operating system

Sega O/S

Game

 Now computers are so fast
we can run multiple virtual
machines on them

 Allows us to run multiple
operating systems
simultaneously!

Virtualisation

 Virtualisation is the new big thing in business. Essentially the
same idea: emulate entire systems on some host server

 But because they are virtual, you can swap them between
servers by copying state

 And can dynamically load your server room!

Windows 7

Windows 7

Windows xp

Windows 7

Ubuntu

Windows 7

Windows 7

Ubuntu

Android

Heavy load Light load

The Java Approach

 Java was born in an era of internet connectivity. SUN
wanted to distribute programs to internet machines
 But many architectures were attached to the internet

– how do you write one program for them all?
 And how do you keep the size of the program small

(for quick download)?

 Could use an interpreter (→ Javascript). But:
 High level languages not very space-efficient
 The source code would implicitly be there for anyone

to see, which hinders commercial viability.

 Went for a clever hybrid interpreter/compiler

Java Bytecode I

Java source

Bytecode Bytecode

JVM

Java compiler

Send

User

Developer

Java Bytecode I

 SUN envisaged a hypothetical Java Virtual Machine
(JVM). Java is compiled into machine code (called
bytecode) for that (imaginary) machine. The bytecode
is then distributed.

 To use the bytecode, the user must have a JVM that has
been specially compiled for their architecture.

 The JVM takes in bytecode and spits out the correct
machine code for the machine. i.e. is a bytecode
interpreter

Java Bytecode II

+ Bytecode is compiled so not easy to reverse
engineer

+ The JVM ships with tons of libraries which
makes the bytecode small

+ The toughest part of the compile (from
human-readable to computer readable) is
done by the compiler, leaving the computer-
readable bytecode to be translated by the
JVM (→ easier job → faster job)

- Still a performance hit compared to fully
compiled (“native”) code

Where Do You Go From Here?

 Paper 1
 FoCS: look at the fundamentals of CS whilst learning ML

 Discrete Maths: build up your knowledge of the maths needed for
good CS

 OOP/Java: look at imperative programming as it is used in the
'real world'

 Floating Point: learn how to use computers for floating point
computations (and when not to trust them..!)

 Algorithms: The core of CS: learn how to do things
efficiently/optimally

 Paper 2
 Digital Electronics: hardware in detail

 Operating Systems: an in-depth look at their workings

 Probability: learn how to model systems

 Software Design: good practice for large projects

 RLFA: an intro to describing computer systems mathematically

	Object Oriented Programming Dr Robert Harle
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	High Level Languages
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Pointers
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93

