
Computer Design

Computer Laboratory

Part Ib in Computer Science

Copyright c© Simon Moore, University of Cambridge, Computer Laboratory, 2011

Contents:

• 17 lectures of the Computer Design course

• Paper on Chuck Thacker’s Tiny Computer 3

• White paper on networks-on-chip for FPGAs

• Exercises for supervisions and personal study

• SystemVerilog “cheat” sheet which briefly coversmuch of what was learnt using the Cam-
bridge SystemVerilog web tutor

Historic note: this course has had many guises. Until last year the course was in two parts:
ECAD and Computer Design. Past paper questions on ECAD are still mostly relevant though
there has been a steady move toward SystemVerilog rather than Verilog 2001. This year the
ECAD+Arch labs have been completely rewritten for the new tPad hardware and making use
of Chuck Thacker’s Tiny Computer 3 (TTC). The TTC is being used instead of our Tiger MIPS
core since it is simple enough to be easily altered/upgraded as a lab. exercise. As a conse-
quence some of the MIPS material has been removed in favour of a broader introduction to
RISC processors; and the Manchester Baby Machine in SystemVerilog has been replaced by
an introduction to the TTC and its SystemVerilog implementation. A new lecture on system’s
design on FPGA using Altera’s Qsys tool has been added.

Lecture 1— Introduction and Motivation 1

Computer Design — Lecture 1

Introduction and Motivation y 1

Overview of the course
How to build a computer:

4 × lectures introducing Electronic Computer Aided Design (ECAD) and
the Verilog/SystemVerilog language

Cambridge SystemVerilog web tutor (home work + 1 lab. session
equivalent to 4 lectures worth of material)

7 × ECAD+Architecture Labs

14 × lectures on computer architecture and implementation

Contents of this lecture
Aims and Objectives

Implementation technologies

Technology trends

The hardware design gap

Recommended books and web material y 2

Recommended book (both ECAD and computer architecture):

D.M. Harris & S.L. Harris. Digital Design and Computer Architecture,
Morgan Kaufmann 2007

General Computer Architecture:

J.L. Hennessey and D.A. Patterson, “Computer Architecture — A
Quantitative Approach”, Morgan Kaufmann, 2002 (1996 edition also
good, 1990 edition is only slightly out of date, 2006 edition good but
compacted down)

D.A. Patterson and J.L. Hennessey, “Computer Organization &
Design — The Hardware/Software Interface”, Morgan Kaufmann,
1998 (1994 version is also good, 2007 version now available)

Web:

http://www.cl.cam.ac.uk/Teaching/current/CompDesign/

Revising State Machines y 3

Start with a state transition graph

i.e. it is a 2-bit counter with enable (go) input

Revising State Machines y 4

Then produce the state transition table
current next

input state state
go n1 n0 n1’ n0’
0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

Revising State Machines y 5

Then do Boolean minimisation, e.g. using K-maps

n0′ = n0⊕ go n1′ = go.n1 + n0.n1 + n0.n1.go
n1′ = go.(n0⊕ n1) + go.n1

Revising State Machines y 6

And the final circuit diagram

now implement...

Revising PLAs y 7

PLA = programmable logic array

advantages — cheap (cost per chip) and simple to use

disadvantages — medium to low density integrated devices (i.e. not many
gates per chip) so cost per gate is high

Field Programmable Gate Arrays y 8

a sea of logic elements made from small SRAM blocks

e.g. a 16×1 block of SRAM to provide any boolean function of 4
variables

often a D-latch per logic element

programmable interconnect

program bits enable/disable tristate buffers and transmission gates

advantages: rapid prototyping, cost effective in low to medium volume

disadvantages: 15× to 25× bigger and slower than full custom CMOS
ASICs

2 Computer Design

CMOS ASICsy 9

CMOS = complementary metal oxide semiconductor

ASIC = application specific integrated circuit

full control over the chip design

some blocks might be full custom

i.e. laid out by hand

other blocks might be standard cell

cells (gates, flip-flops, etc) are designed by hand but with inputs and
outputs in a standard configuration

designs are synthesised to a collection of standard cells...

...then a place & route tool arranges the cells and wires them up

blocks may also be generated by a macro

typically used to produce regular structures which need to be packed
together carefully, e.g. a memory block

this material is covered in far more detail in the Part II VLSI course

Example CMOS chip y 10

very small and simple test chip from mid 1990s

see interactive version at:

http://www.cl.cam.ac.uk/users/swm11/testchip/

Zooming in on CMOS chip (1) y 11

Zooming in on CMOS chip (2) y 12

Trends — Moore’s law & transistor density y 13

In 1965 Gordon Moore (Intel) identified that transistor density was
increasing exponentially, doubling every 18 to 24 months

Predicted > 65,000 transistors by 1975!

Moore’s law more recently y 14

Year

T

r
a
n
 s
 i
s
 t
o
 r
s

4004

8008

8080

8086

80286

Intel386

Intel486

Pentium

Pentium Pro

Pentium II

Pentium III

Pentium 4

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1970
 1975
 1980
 1985
 1990
 1995
 2000

Lecture 1— Introduction and Motivation 3

Moore’s law and clock speed y 15

Year

1

10

100

1,000

10,000

1970
 1975
 1980
 1985
 1990
 1995
 2000
 2005

4004

8008

8080

8086

80286

Intel386

Intel486

Pentium

Pentium Pro/II/III

Pentium 4

C
lock S

peed (M
H

z)

ITRS — gate length y 16

ITRS = International Technology Roadmap for Semiconductors

http://public.itrs.net/

Figure 8 2003 ITRS—Gate Length Trends

2003 ITRS Technology Trends - Gate Length

1

10

100

1000

1995 2000 2005 2010 2015 2020

Year

)
m

n(
ht

g
n

e
L

et
a

G

MPU Hi-Performance
Gate Length - Printed

MPU Hi-Performance
Gate Length - Physical

Nano-technology (<100nm) Era Begins - 1999

2003 ITRS Period: Near-term: 2003-2009; Long-term: 2010-2018

2-year Node

Cycle

3-year Node

Cycle

ITRS — delays y 17

Figure 54 Delay for Metal 1 and Global Wiring versus Feature Size

From ITRS 2003

0.1

1

10

100

Process Technology Node (nm)

y
al

e
D

e
vit

al
e

R

Gate Delay

Metal 1

Global with Repeaters
(Scaled Die Edge)

Global w/o Repeaters
(Scaled Die Edge)

250 180 130 90 65 45

(Fan out 4)

(Scaled)

 32

Moore’s law and transistor cost y 18

Amazing — faster, lower power, and cheaper at an exponential rate!

Moore’s Law in Perspective 1 y 19

Moore’s Law in Perspective 2 y 20

Where is the end point? y 21

what will limit advancement?

fabrication cost (cost per transistor remaining static)?

feature sizes hit atomic levels?

power density/cooling limits?

design and verification challenge?

will silicon be replaced, e.g. by graphine?

4 Computer Design

Danger of Predictions y 22

“I think there’s a world market for about five computers.”, Thomas J
Watson, Chairman of the Board, IBM

“Man will never reach the moon regardless of all future scientific
advances.” Dr. Lee De Forest, inventor of the vacuum tube and father of
television.

“Computers in the future may weigh no more than 1.5 tons”, Popular
Mechanics, 1949

ITRS — Design Cost y 23

Figure 13 Impact of Design Technology on SOC LP-PDA Implementation Cost

$ 1 0 , 0 0 0 , 0 0 0

$ 1 0 0 , 0 0 0 , 0 0 0

$ 1 ,0 0 0 , 0 0 0 , 0 0 0

$ 1 0 ,0 0 0 , 0 0 0 , 0 0 0

$ 1 0 0 ,0 0 0 , 0 0 0 , 0 0 0

1 9 8 5 1 9 9 0 1 9 9 5 2 0 0 0 2 0 0 5 2 0 1 0 2 0 1 5 2 0 2 0

Y e a r

R TL M e t h o d o lo g y O n ly

W it h A l l F u tu re I m p ro v e m e n ts

r
e

e
ni

g
n

E
ni

h
T ll

a
T

es
u

e
R

k
c

ol
B ll

a
m

S

sl
o

ot
n

oit
at

n
e

m
el

p
mI

CI

e
s

u
e

R k
c

ol
B

e
gr

a
L

h
c

n
e

bts
e

T t
n

e
gill

et
nI

y
g

ol
o

d
o

ht
e

M l
e

v
e

L
S

E

e
s

u
e

R k
c

ol
B

e
gr

a
L

yr
e

V

6 2 9 ,7 6 9,2 7 3

20 ,1 52 ,6 17

t
s

o
C

n
gi

s
e

D l
at

o
T

R
&

P
es

u
o

h
nI

From ITRS 2003 - Design

Comments on Design Cost y 24

design complexity

exponential increase in design size

transistors and wires are becoming harder to analyse and becoming
less predictable

engineering efficiency

the number of engineers in the world is not going up exponentially!

but numerous ways to improve matters, e.g. better design reuse

parallels with the “software crisis”

verification and test

verifying functional correctness and identifying manufacturing defects
is getting harder

Improving productivity: Verilog y 25

the Verilog hardware description language (HDL) improves productivity

example — counter with enable from earlier:

if(go) n <= n+1; // do the conditional counting

wrapped up into a module + clock assignment + declarations:

module counter2b(clk, go, n);

input clk, go; // inputs: clock and go (count enable) signal)

output [1:0] n; // output: 2-bit counter value

reg [1:0] n; // n is stored in two D flip-flops

always @(posedge clk) // when the clock ticks, do the following...

if(go) n <= n+1; // do the conditional counting

endmodule

implement via automated synthesis (compilation) and download to FPGA

now digital electronics is about writing parallel algorithms
so Computer Scientists are needed to design hardware

Lecture 2 — Logic modelling, simulation and synthesis 5

Computer Design — Lecture 2

Logic Modeling, Simulation and Synthesis y 1

Lectures so far
the last lecture looked at technology and design challenges

Overview of this lecture
this lecture introduces:

modeling

simulation techniques

synthesis techniques for logic minimisation and finite state machine (FSM)
optimisation

Four valued logic y 2

value meaning
0 false
1 true
x undefined
z high impedance

AND 0 1 x z
0 0 0 0 0
1 0 1 x x
x 0 x x x
z 0 x x x

OR 0 1 x z
0 0 1 x x
1 1 1 1 1
x x 1 x x
z x 1 x x

NOT output
0 1
1 0
x x
z x

BUFT enable
data 0 1 x z

0 z 0 x x
1 z 1 x x
x z x x x
z z x x x

Modeling a tri-state buffer y 3

module BUFT(

output reg out,

input in,

input enable);

// behavioural use of always which activates whenever

// enable or in changes (i.e. both positive and negative edges)

always @(enable or in)

if(enable)

out = in;

else

out = 1’bz; // assign high-impedance

endmodule

Such models are useful for simulation purposes but cannot usually be
synthesised. Rather, such a model would have to be replaced by a
predefined cell/component.

Verilog and logic levels y 4

’z’ can be used to indicate tri-state (see previous example)

’===’ can be used to compare wires to see if they are tri-state

similarly, !== is to === what != is to ==

these operators are only useful for simulation (not supported for synthesis)

during simulation x and z are treated as false for conditional expressions

== 0 1 x z
0 1 0 x x
1 0 1 x x
x x x x x
z x x x x

=== 0 1 x z
0 1 0 0 0
1 0 1 0 0
x 0 0 1 0
z 0 0 0 1

Verilog casex and casez statements y 5

casez — z values are considered to be “don’t care”

casex — z and x values are considered to be “don’t care”

example:

reg [3:0] r;

casex(r)

4’b000x : statement1;

4’b10x1 : statement2;

4’b1x11 : statement3;

endcase

some values of r the outcome
4’b0001 matches statement 1
4’b0000 matches statement 1
4’b000x matches statement 1
4’b000z matches statement 1
4’b1001 matches statement 2
4’b1111 matches statement 3

Problems when modeling a tristate bus y 6

scenario:

start: dataA=dataB=enableB=0 and enableA=1
step 1: enableA-
step 2: enableB+

? what is that state of the bus between steps 1 and 2? 0 or z?

? should the output ever go to x and what might the implications be if it
does?

Further logic levels y 7

to simulate charge holding elements (capacitors) we could introduce two
additional logic levels:

weak low — indicates that the capacitor has been discharged to low
but is not being driven by anything

weak high — indicates that the capacitor has been charged high but
is not being driven by anything

further logic levels can be added to account for larger capacitances, rise
and fall times, etc.

the standard VHDL (another HDL) logic library uses a 46 state logic called
t logic

6 Computer Design

Modeling delays y 8

adding delays to behavioural Verilog (typically for simulation only), e.g. to
delay by 10 simulator time units:

assign #10 delayed_value = none_delayed_value;

pure delay — signals are delayed by some time constant

inertial delay — models capacitive delay

Obtaining delay information y 9

a design can be synthesised to gates and approximations of the gate
delays can be used

gates in the netlist can be placed and wires routed so that wire lengths
and capacitances can be determined

models of gates can vary

e.g. input to output delay depends upon which input is changing
(even on trivial gates like a 2 input NOR) and this variation may be
modeled but often some simplifying assumption is made like taking
the average case

back annotation

delay information can be back annotated, e.g. adding hidden
information to a schematic diagram

delay information and netlist can be converted back into a low level
structural Verilog model

Naı̈ve simulation y 10

simplifying assumptions for our naı̈ve simulation:

each gate has unit delay (1 virtual time unit)

netlist held as a simple list of gates with enumerated wires to indicate
interconnect

an array of wires holds the state

simulation takes the current state (wire information) and evaluates each
gate to in turn to produce a new set of state. This process is then
repeated.

problems:

many parts of the circuit are likely to be inactive at a given instant in
time, so having to reevaluate each gate for every simulation cycle is
expensive

delays have to be implemented as long strings of buffers which is
likely to slow things down

Introduction to discrete event simulation y 11

sometimes called Delta simulation

only changes in state cause gates to be reevaluated

data structures:

gates are modeled as objects (including current state information)

state changes passed as (virtual) timed events or messages

pending events are inserted into a time ordered event queue

simulation loops around:

pick event with least virtual time off the event queue

pass event to appropriate gate

gate evaluates and produces an event if its output has changed

issues:

cancelling runt pulses (event removal)

modeling wire delays (add wires as simple gates)

SPICEy 12

SPICE = Simulation Program with Integrated Circuit Emphasis

used for detailed analog transistor level simulation

models nonlinear components as a set of differential equations
representing the circuit voltages, currents and resistances

simulation is highly accurate (accuracy dependent upon models provided)

but simulation is computationally expensive and only practical for small
circuits

sometimes SPICE is used to analyse standard cells in order to determine
typical delays, etc, to enable reasonably accurate digital simulation to be
undertaken

there are various versions of commercial and free SPICE which vary in
performance and accuracy depending on implementation details

Synthesis — Design metrics y 13

many digital logic circuits achieve the same function, but vary in the:

number of gates

total wiring length

timing properties through various paths

power consumption

Karnaugh maps and Boolean n-cubes y 14

implicants are sub n-cubes

Lecture 2 — Logic modelling, simulation and synthesis 7

Quine-McCluskey minimisation — step 1 y 15

find all prime implicants using x.y + x.ȳ = x repeatedly

first produce a truth table for the function and extract the minterms
required (i.e. rows in the truth table where the output is 1)

exhaustively compare pairs of terms which differ by 1 bit to produce a
new term where the 1 bit difference is marked by a don’t care X

tick those terms which have been selected since they are covered by
the new term

repeat with new set of terms (X must match X) until no more terms
can be produced

terms which are unticked are the prime implicants

Quine-McCluskey minimisation — step 2 y 16

select smallest set of prime implicants to cover function:

prepare prime-implicants chart

select essential prime implicants for which one or more of its
minterms are unique (only once in the column)

obtain a new reduced PI chart for remaining prime-implicants and the
remaining minterms

select one or more of remaining prime implicants which will cover all
the remaining minterms

computationally very expensive for large equations

tools like Espresso use heuristics to improve performance but at the
expense of not being exact

there are better but far more complex algorithms for exact Boolean
minimisation

QM example y 17

An example truth table
Code ABCD Term Output

0 0000 ABCD 0
1 0001 ABCD 0
2 0010 ABCD 0
3 0011 ABCD 0
4 0100 ABCD 0
5 0101 ABCD 1
6 0110 ABCD 0
7 0111 ABCD 0
8 1000 ABCD 0
9 1001 ABCD 0
10 1010 ABCD 1
11 1011 ABCD 1
12 1100 ABCD 0
13 1101 ABCD 1
14 1110 ABCD 1
15 1111 ABCD 1

QM example cont... y 18

The active minterms
Code ABCD

5 0101
10 1010
11 1011
13 1101
14 1110
15 1111

QM example cont... y 19

Find terms which differ by one bit
Code ABCD Notes

5 0101 X

10 1010 X

11 1011 X

13 1101 X

14 1110 X

15 1111 X

New terms:
A X101 combining 5,13
B 101X combining 10,11
C 1X10 combining 10,14
D 1X11 combining 11,15
E 11X1 combining 13,15
F 111X combining 14,15

where X indicates that a term is covered

QM example cont... y 20

Find terms which differ by one bit and have X’s in the same
place
Code ABCD Notes

A X101
B 101X X

C 1X10 X

D 1X11 X

E 11X1
F 111X X

New terms:
G 1X1X combining B,F
H 1X1X combining C,D — duplicate so remove

QM example cont... y 21

The prime implicant chart
active minterms terms

Code ABCD A: X101 E: 11X1 G: 1X1X
5 0101 X

10 1010 X

11 1011 X

13 1101 X X

14 1110 X

15 1111 X X

where X indicates that a term covers a minterm

so terms A and G cover all minterms (i.e. they are essential terms) and
term E is not required

therefore the minimised equation is B.C.D + A.C

Further comments on logic minimisation y 22

if optimising over multiple equations (i.e. multiple outputs) with shared
terms then the Putnam and Davis algorithm can be used (but not much
more sophisticated than QM)

sum of products form may not be simplest logic structure: multi-level logic
structures are often more compact (ongoing research in this area)

sometimes simplification in terms of XOR gates (rather than AND and OR
gates) is more appropriate — called Read-Muller logic

e.g. see “Hug an XOR gate today: an introduction to Read-Muller logic”:

http://www.reed-electronics.com/ednmag/archives/1996/030196/05df4.htm

don’t-cares are very important for efficient logic minimisation so when
writing Verilog it is important to indicate undefined values, e.g.:

wire [31:0] my_alu = (opcode==’add) ? a + b :

(opcode==’not) ? ~a :

(opcode==’sub) ? a - b : 32’bx;

8 Computer Design

Adding redundant logic y 23

adding redundant logic can reduce the amount of wiring required

Wire minimisation y 24

wire minimisation is largely the job of the place & route tool and not the
synthesis tool

the synthesis tools may include:

redundant logic

placement hints to guide place & route

manual floor planning may also be performed to force the hand of the
place & route tools

increasingly important as chips get larger

Finite state machine minimisation y 25

state minimisation

remove duplicate states

remove redundant/unreachable states

state assignment

assign a unique binary code to each state

the logic structure depends on the assignment, thus this needs to be
done optimally (e.g. algorithms: NOVA, JEDI)

BUT much Verilog code is explicit about register usage so little
optimisation possible

higher level behavioral Verilog introduces implicit state machines
which the synthesis tool is in a better position to optimise

Retiming and D-latch migration y 26

if a path through some logic is too long then it is sometimes possible to
move the flip-flops to compensate without altering the functional behaviour

similarly, it is sometimes possible to add extra D-latches to make a
pipeline longer

Lecture 3 — Chip, board and system testing 9

Computer Design — Lecture 3

Testing y 1

Overview of this lecture
Introduce:

production test (fault models, test metrics, test pattern generation, scan
path testing)

functional test (in simulation and on FPGA)

introduction to ECAD lab sessions

Objectives of production testing y 2

check that there are no manufacturing defects

NOT to check whether you have designed the device correctly

economics: cost of detecting a faulty component is lowest before it is
packaged and embedded in a system

for consumer products:

faulty goods cost a lot to replace so require low defect rate (e.g. less
that 0.1%)

but testing costs money so don’t exhaustively test — 98% fault
coverage probably acceptable

for medical, aerospace and military (i.e. safety-critical) products:

must have 100% coverage

in some instances a design will contain redundant units (e.g. on DRAM)
which can be selected, thereby improving yield

Fault models y 3

logical faults

stuck-at (most common)

CMOS stuck-open

CMOS stuck-on

bridging faults

parametric faults

low/high voltage/current levels

gate or path delay-faults

testing methods:

parametric (electrical) tests also detect stuck-on faults

logical tests detect stuck-at faults

transition tests detect stuck-open faults

timed transition tests detect delay faults

Testability y 4

controllability

the ability to set and clear internal signals

it is particularly useful to be able to change the state in registers
inside a circuit

observability

the ability to detect internal signals

Fault reductions y 5

checkpoints

points where faults could occur

fault equivalence

remove test for least significant fault

fault dominance

if every test for fault f1 detects f2 then f1 dominates f2

⇒ only have to generate test for f1

Test patterns and path sensitisation y 6

test patterns are sequences of (input values, expected result) pairs

path sensitisation

inputs required in order to make a fault visible on the outputs

Test effectiveness y 7

undetectable fault — no test exists for fault

redundant fault — undetectable fault whose occurrence does not affect
circuit operation

testability = number of detectable faults
number of faults

effective faults = number of faults − redundant faults

fault coverage = number of detectable faults
number of effective faults

test set size = number of test patterns

goal is 100% fault coverage (not 100% testability) with a minimum sized
test set

10 Computer Design

Automatic Test Pattern Generation (ATPG) y 8

Many algorithms developed to do ATPG, e.g. D-Algorithm, PODEM,
PODEM-X, etc.
General idea:

generate a sequence of test vectors to identify faults

test vector = 〈input vector, correct output vector〉

input and output vectors are typically 3 valued: (0, 1, X)

simple combinatoric circuits (no feedback) can be supplied with test
vectors in any order

circuits with memory (latches/combinatoric feedback) require sequences
of test vectors in order to modify internal state, e.g. consider having to test:

Scan path testing y 9

make all the D flip-flops (DFFs) in a circuit “scannable”

i.e. add functionality to every DFF to enable data to be shifted in and out of
the circuit

simple scan flip-flop

this is a significant aid to ATPG since testing latches is now easy and the
flip-flops have sliced the circuit into small combinatoric blocks which are
usually nice and simple to test

boundary scan — just have a scan path around I/O pads of chip or
macrocell

JTAG standard y 10

the IEEE 1149 (JTAG) international standard defines 4 wires for boundary
scan:

tms = test mode select (high for boundary scan)

tdi = test data input (serial data in)

tck = test clock (clock serial data)

tdo = test data output (read back old data whilst new is shifted in)

also used for other things, e.g.:

in-circuit programming of FPGAs (e.g. Altera)

single step debugging of embedded microprocessors

Functional testing y 11

objective: ensure that the design is functionally correct

simulation provides great visibility and testability

implementation on FPGA allows rapid prototyping and testing of I/O

Functional testing in simulation y 12

advantages:

allows test benches to be written to check many cases

gives good visibility of state

is quick to do some tests since no place & route required (unless you
are simulating a post-layout design to check timing)

disadvantages:

slow if simulations need to be for billions of clock cycles (e.g. 10s or
more of real-time)

difficult to test if complex input/output behaviour is required (e.g. if
your test bench had to look like a VGA monitor, mouse or Ethernet
link)

Verilog test benches y 13

Test benches can be written in Verilog (models in other languages, e.g. C, are
also possible).
Example showing Verilog test bench constructs:
module t es ts im (output reg reg c lk , r s t ; / / c lock and rese t s i gna l s

output reg [3 : 0] counter) ; / / counter

i n i t i a l begin / / s t a r t o f sequence of i n i t i a l i s a t i o n steps
c l k = 0 ; / / i n i t i a l i s e r e g i s t e r s i n sequence using b lock ing assigment
r s t = 1 ;
#100 / / wa i t 100 s imu la t i on cycles , then . . .
r s t = 0 ; / / re lease the rese t s i g n a l
#1000 / / wa i t 1000 s imu la t i on cycles , then . . .
$stop () ; / / . . . s top s imu la t i on

end

always #5 c l k = ! c l k ; / / make c lock o s c i l l a t e a t 10 s imu la t i on step ra te

/ / Now i l l u s t r a t e two approaches to mon i to r ing s igna l s

always @(counter) / / when ever counter changes
$display (” a t t ime %d : counter changed to = %d ” , $time , counter) ;

always @(negedge c l k) / / a f t e r c lock edge
$display (” a t t ime %d : counter updated to %d ” , $time , counter) ;

/ / design under t e s t (usua l l y i n s t a t i t a t e d module)
always f f @(posedge c l k or posedge r s t)

i f (r s t) counter <= 0;
else counter <= counter +1;

endmodule

Functional testing on FPGA y 14

advantages:

fast implementation

connected to real I/O

disadvantages:

lack of visibility on signals

partly solved with SignalTap — see later

difficlut to test side cases

have to wait for complete place & route between changes

Lecture 3 — Chip, board and system testing 11

Key debouncer example y 15

module debounce (input c lk , / / c lock a t 50MHz
input r s t , / / r ese t
input bouncy , / / bouncy s i g n a l
output reg clean , / / c lean s i g n a l
output reg [1 5 : 0] numbounces) ;

reg prev syncbouncy ;
reg [2 0 : 0] counter ;
wire counterAtMax = &counter ; / / N.B . vec to r AND of the b i t s
wire syncbouncy ;
synchron iser dosync (. c l k (c l k) , . async (bouncy) , . sync (syncbouncy)) ;
always f f @(posedge c l k or posedge r s t)

i f (r s t) begin
counter <= 0;
numbounces <= 0;
prev syncbouncy <= 0;
clean <= 0;

end else begin
prev syncbouncy <= syncbouncy ;
i f (syncbouncy != prev syncbouncy) begin / / de tec t change

counter <= 0;
numbounces <= numbounces+1;

end else i f (! counterAtMax) / / no bouncing , so keep count ing
counter <= counter +1;

else / / ou tput c lean s i g n a l s ince inpu t s tab le f o r
/ / 2ˆ21 c lock cyc les (approx . 42ms)

clean <= syncbouncy ;
end

endmodule

Synchroniser y 16

module synchron iser (
input c lk ,
input async ,
output reg sync) ;

reg metastable ;
always @(posedge c l k) begin

metastable <= async ;
sync <= metastable ;

end
endmodule

Test bench for key debouncer y 17

module testbench (
output reg c lk ,
output reg r s t ,
output reg bouncy ,
output clean) ;

wire [1 5 : 0] numbounces ;

debounce DUT(. c l k (c l k) , . r s t (r s t) , . bouncy (bouncy) , . c lean (clean) ,
. numbounces (numbounces)) ;

i n i t i a l begin
c l k =0;
r s t =1;
bouncy =0;

#100 r s t =0;
#10000 bouncy =1; / / 1e3 t i c k s
#10000 bouncy =0;
#100000 bouncy =1; / / 1e4 t i c k s
#100000 bouncy =0;
#1000000 bouncy =1; / / 1e5 t i c k s
#1000000 bouncy =0;
#10000000 bouncy =1; / / 1e6 t i c k s
#30000000 bouncy =0; / / 3e6 t i c k s (should have gone high)
#30000000 $stop ;

end

always #5 c l k = ! c l k ;

always @(r s t)
$display (”%09d : r s t = %d ” , $time , r s t) ;

always @(bouncy or clean or numbounces [1 5 : 0])
$display (”%09d : bouncy = %d clean = %d numbounces = %d ” ,

$time , bouncy , clean , numbounces) ;

endmodule

Modelsim simulation output y 18

0: bouncy = 0 clean = x numbounces = x

0: rst = 1

0: bouncy = 0 clean = 0 numbounces = 0

100: rst = 0

10100: bouncy = 1 clean = 0 numbounces = 0

10125: bouncy = 1 clean = 0 numbounces = 1

20100: bouncy = 0 clean = 0 numbounces = 1

20125: bouncy = 0 clean = 0 numbounces = 2

120100: bouncy = 1 clean = 0 numbounces = 2

120125: bouncy = 1 clean = 0 numbounces = 3

220100: bouncy = 0 clean = 0 numbounces = 3

220125: bouncy = 0 clean = 0 numbounces = 4

1220100: bouncy = 1 clean = 0 numbounces = 4

1220125: bouncy = 1 clean = 0 numbounces = 5

2220100: bouncy = 0 clean = 0 numbounces = 5

2220125: bouncy = 0 clean = 0 numbounces = 6

12220100: bouncy = 1 clean = 0 numbounces = 6

12220125: bouncy = 1 clean = 0 numbounces = 7

33191645: bouncy = 1 clean = 1 numbounces = 7

42220100: bouncy = 0 clean = 1 numbounces = 7

42220125: bouncy = 0 clean = 1 numbounces = 8

63191645: bouncy = 0 clean = 0 numbounces = 8

Break in Module testbench at ...

On FPGA test y 19

module keybounce (
input CLOCK 50 ,
input [1 7 : 0] SW,
input [3 : 0] KEY,
output [1 7 : 0] LEDR,
output [7 : 0] LEDG) ;

(∗ preserve , noprune ∗) reg [3 1 : 0] t imer ;
(∗ preserve , noprune ∗) reg [2 : 0] d e l a y e d t r i g g e r c o n d i t i o n ;
(∗ preserve , noprune ∗) reg bouncy ;
(∗ keep , noprune ∗) wire r s t , c lean ;
(∗ keep , noprune ∗) wire t r i g g e r c o n d i t i o n = SW[0] ˆ c lean ;
(∗ keep , noprune ∗) wire [1 5 : 0] numbounces ;
always @(posedge CLOCK 50) begin

bouncy <= SW[0] ;
d e l a y e d t r i g g e r c o n d i t i o n <= { d e l a y e d t r i g g e r c o n d i t i o n [1 : 0] , t r i g g e r c o n d i t i o n } ;

end
always @(posedge CLOCK 50 or posedge r s t)

i f (r s t) t imer <=0; else t imer<=t imer +1;
synchron iser sync rs t (. c l k (CLOCK 50) , . async (! KEY [0]) , . sync (r s t)) ;
debounce DUT(. c l k (CLOCK 50) , . r s t (r s t) , . bouncy (bouncy) , . c lean (clean) ,

. numbounces (numbounces)) ;
assign LEDG[1 : 0] = clean ? 2 ’ b11 : 2 ’ b00 ;
assign LEDG[3 : 2] = SW[0] ? 2 ’ b11 : 2 ’ b00 ;
assign LEDG[7 : 4] = { d e l a y e d t r i g g e r c o n d i t i o n [2] , bouncy , t r i g g e r c o n d i t i o n , t imer [3 1] } ;
assign LEDR[1 7 : 0] = {2 ’b00 , numbounces [1 5 : 0] } ;

endmodule

SignalTap y 20

motivation: provide analysis of state of running system

approach: automatically add extra hardware to capture signals of interest

SignalTap: Altera’s tool to make this easier

for further details see the Lab. web pages

SignalTap example y 21

probe the debouncer degin

difficulty: bounce events happen infrequently and there is not enough
memory on the FPGA to store a long trace of events every clock cycle

solution: start and stop signal capture to observe the interesting bits
(trigger signals added to the design to achieve this)

12 Computer Design

SignalTap example setup y 22

SignalTap example trace y 23

Lecture 4 — Verilog systems design 13

Computer Design — Lecture 4

Design for FPGAs y 1

Overview of this lecture
this lecture:

introduces the tPad FPGA board

gives some more SystemVerilog design examples

presents some design techniques

explains some design pitfalls

ECAD+Architecture lab. teaching boards (tPads) y 2

Front of the tPad y 3

FPGA design flow y 4

Lab 1 shows you how to use the following key components of Quartus:

Text editor

Simulator

Compiler

Timing analyser

Programmer

The web pages guide you through some quite complex commercial-grade
tools

Specifying pin assignments y 5

Import a qsf file (tPad_pin_assignments.qsf) which tells the Quartus
tools an assignment of useful names to physical pins.

set_location_assignment PIN_Y2 -to CLOCK_50

set_location_assignment PIN_H22 -to HEX0[6]

set_location_assignment PIN_J22 -to HEX0[5]

...

set_location_assignment PIN_AC27 -to SW[2]

set_location_assignment PIN_AC28 -to SW[1]

set_location_assignment PIN_AB28 -to SW[0]

...

set_location_assignment PIN_E19 -to LEDR[2]

set_location_assignment PIN_F19 -to LEDR[1]

set_location_assignment PIN_G19 -to LEDR[0]

...

set_location_assignment PIN_R6 -to DRAM_ADDR[0]

set_location_assignment PIN_V8 -to DRAM_ADDR[1]

set_location_assignment PIN_U8 -to DRAM_ADDR[2]

...

Example top level module: lights y 6

module lights(

input CLOCK_50,

output [17:0] LEDR,

input [17:0] SW);

logic [17:0] lights;

assign LEDR = lights;

// do things on the rising edge of the clock

always_ff @(posedge CLOCK_50) begin

lights <= SW[17:0];

end

endmodule

Advantages of simulation y 7

simulation is main stay of debugging on FPGA and even more so for ASIC

new ECAD labs emphasise simulation

better design practise — test driven development

better for you — avoid lots of long synthesis runs

old ECAD labs relied on generating video which is difficult to get helpful
results from in simulation

Problems with simulation y 8

simulation is of an abstracted world which may hide horrible side cases!

emulation of external input/output devices can be tricky and time
consuming

e.g. video devices or an Ethernet controller

semantics of SystemVerilog are not well defined

results in discrepancies between simulation and synthesis

simulation and synthesis tools typically implement different a subset
of the language

but even with these weaknesses, simulation is still very powerful

simulation can even model things that the real hardware will not
model, e.g. D flip-flops that are not reset properly will start in ’x’ state
in simulation so can easily be found vs. real-world where some
“random” state will appear

14 Computer Design

The danger of asynchronous inputs and bouncing
buttons y 9

asynchronous inputs cause problems if they change state near a clock
edge

metastability can arise

sampling multiple inputs particularly hazardous

where possible, sample inputs at least twice to allow metastability to
resolve (resynchronisation)

never use an asynchronous input as part of a conditional without
resynchronising it first

Two flop synchroniser y 10

mean time between failure (MTBF) can be calculated:

MTBF =

e
t

τ

fdfcTw

where:

t is the time allowed for first DFF to resolve, so allowing just a small
amount of extra time to resolve makes a big difference since it is an
exponential term

τ=gain of DFF

fd and fc are the frequencies of the data and clock respectively

Tw is the metastability time window

Example: Two DFF Synchroniser y 11

module synchroniser(

input clk,

input asyncIn,

output reg syncOut);

reg metastableFF;

always @(posedge clk) begin

metastableFF <= asyncIn;

syncOut <= metastableFF;

end

endmodule

Quartus understands this construct and can optimise placement of the
DFFs — see Chapter 11 of the Quartus manual

Resetting your circuits y 12

the Altera PLDs default to all registers being zero after programming

but in other designs you may need to add a reset signal and it is often
handy to have your FPGA design resettable from a button

most Verilog synthesis tools support the following to perform an
asynchronous reset:

always @(posedge clk or posedge reset)

if(reset)

begin

// registers which need to be assigned a reset value go here

end

else

begin

// usual clocked behaviour goes here

end

note that distribution of reset is an issue handled by the tools like clock
distribution

Signalling protocols y 13

often need a go or done or new data signal

pulse

pulse high for one clock cycle to send an event

problem: the receiving circuit might be a multicycle state machine
and may miss the event (e.g. traffic light controller which stops only at
red if sent a “stop” event)

2-phase

every edge indicates an event

can send an event every clock cycle

4-phase

level sensitive — rising and falling edges may have a different
meaning

or falling edges might be ignored

can’t send an event every clock cycle

Example: 2-phase signalling y 14

module delay(req, ack, clk);

input req; // input request

output ack; // output acknowledge

input clk; // clock

reg [15:0] dly;

reg prev_req;

reg ack;

always @(posedge clk) begin

prev_req <= req;

if(prev_req != req)

dly <= -1; // set delay to maximum value

else if(dly != 0)

dly <= dly-1; // dly>0 so count down

if(dly == 1)

ack <= !ack;

end

endmodule

Lecture 4 — Verilog systems design 15

Example: 4-phase signalling y 15

module loadable_timer(count_from, load_count, busy, clk);

input [15:0] count_from;

input load_count;

output busy;

input clk;

reg busy;

reg [15:0] counter;

always @(posedge clk)

if(counter!=0)

counter <= counter - 1;

else

begin

busy <= load_count; // N.B. wait for both edges of load_count

if(load_count && !busy)

counter <= count_from;

end

endmodule

Combination control paths y 16

typically data-paths have banks of DFFs inserted to pipeline the design

sometimes it can be slow to add DFFs in the control path, especially
flow-control signals

examples: fifo one A which latches all control signals and fifo one B which
has a combinational backward flow-control path

design B is faster except when lots of FIFO elements are joined together
and the combinational path becomes long

Example: FIFO with latched control signals y 17

module f i f o o n e A (
/ / c lock & rese t
input c lk ,
input r s t ,
/ / i npu t s ide
input log ic [7 : 0] din ,
input log ic d i n v a l i d ,
output log ic din ready ,
/ / ou tput s ide
output log ic [7 : 0] dout ,
output log ic dou t va l i d ,
input log ic dout ready) ;

log ic f u l l ;
always comb begin

f u l l = d o u t v a l i d ;
d in ready = ! f u l l ;

end

always f f @(posedge c l k or posedge r s t)
i f (r s t) begin

d o u t v a l i d <= 1 ’b0 ;
dout <= 8 ’ hxx ;

end else i f (f u l l && dout ready)
d o u t v a l i d <= 1 ’b0 ;

else i f (d in ready & d i n v a l i d) begin
dout <= din ;
d o u t v a l i d <= 1 ’b1 ;

end
endmodule

Example: FIFO with combination reverse control
path y 18

module f i f o o n e B (
/ / c lock & rese t
input c lk ,
input r s t ,
/ / i npu t s ide
input log ic [7 : 0] din ,
input log ic d i n v a l i d ,
output log ic din ready ,
/ / ou tput s ide
output log ic [7 : 0] dout ,
output log ic dou t va l i d ,
input log ic dout ready) ;

log ic f u l l ;
always comb begin

f u l l = d o u t v a l i d ;
d in ready = ! f u l l | | dout ready ;

end

always f f @(posedge c l k or posedge r s t)
i f (r s t) begin

d o u t v a l i d <= 1 ’b0 ;
dout <= 8 ’ hxx ;

end else i f (f u l l && dout ready && ! d i n v a l i d)
d o u t v a l i d <= 1 ’b0 ;

else i f (d in ready && d i n v a l i d) begin
dout <= din ;
d o u t v a l i d <= 1 ’b1 ;

end
endmodule

Example: FIFO test bench y 19

module t e s t f i f o o n e A () ;
log ic c lk , r s t ;
i n i t i a l begin

c l k = 1 ;
r s t = 1 ;
#15 r s t = 0 ;

end
always #5 c l k = ! c l k ;

log ic [7 : 0] din , dmiddle , dout ;
log ic d i n v a l i d , d in ready ;
log ic dmidd le va l id , dmiddle ready ;
log ic dou t va l i d , dout ready ;
f i f o o n e A stage0 (. c lk , . r s t , . din , . d i n v a l i d , . d in ready ,

. dout (dmiddle) , . d o u t v a l i d (dm idd le va l i d) ,

. dout ready (dmiddle ready)) ;
f i f o o n e A stage1 (. c lk , . r s t ,

. d in (dmiddle) , . d i n v a l i d (dm idd le va l i d) ,

. d in ready (dmiddle ready) ,

. dout , . dou t va l i d , . dout ready) ;

log ic [7 : 0] s t a t e ;
always f f @(posedge c l k or posedge r s t)

i f (r s t) begin
s ta te <= 8 ’d0 ;
d i n v a l i d <= 1 ’b0 ;
dout ready <= 1 ’b1 ;

end else begin
i f (d o u t v a l i d && dout ready)

$display (”%05t : f i f o output = %1d ” , $time , dout) ;
i f (d in ready) begin

din <= (s ta te +1)∗3;
d i n v a l i d <= 1 ’b1 ;
s t a te <= s ta te +1;
i f (s ta te >8) $stop ;

end else
d i n v a l i d <= 1 ’b0 ;

end / / e lse : ! i f (r s t)
endmodule

16 Computer Design

Example: one hot state encoding y 20

states can just have an integer encoding (see last lecture)

but this can result in quite complex if expressions, e.g.:

if(current_state==‘red)

//...stuff to do when in state ‘red

if(current_state==‘amber)

//...stuff to do when in state ‘amber

an alternative is to use one register per state vis:

reg [3:0] four_states;

wire red = four_states[0] || four_states[1];

wire amber = four_states[1] || four_states[3];

wire green = four_states[2];

always @(posedge clk or posedge reset)

if(reset)

four_states <= 4’b0001;

else

four_states <= {four_states[2:0],four_states[3]}; // rotate bits

SystemVerilog pitfalls 1: passing buses around y 21

automatic bus resizing

buses of wrong width get truncated or padded with 0’s

wire [14:0] addr; // oops got width wrong, but no error generated

wire [15:0] data;

CPU the_cpu(addr,data,rw,ce,clk);

MEM the_memory(addr,data,rw,ce,clk);

wires that get defined by default

if you don’t declare a wire in a module instance then it will be a single
bit wire, e.g.:

wire [15:0] addr;

// oops, no data bus declared so just 1 bit wide

CPU the_cpu(addr,data,rw,ce,clk);

MEM the_memory(addr,data,rw,ce,clk);

you pass too few parameters to a module but no error occurs!

SystemVerilog pitfalls 2: naming and parameter or-
dering y 22

modules have a flat name space

can be difficult to combine modules from different projects because
they may share some identical module names with different functions

parameter ordering is easy to get wrong

but you can specify parameter mapping vis:

loadable_timer lt1(.clk(clk), .count_from(timerval),

.load_count(start), .busy(busy));

which is identical to:

loadable_timer lt2(timerval, start, busy, clk);

provided nobody has changed loadable_counter since you last
looked!

in SystemVerilog there is a short hand for variables passing with identical
names, e.g. .clk(clk) = .clk

FPGA architecture y 23

FPGAs are made up of several different reconfigurable components:

LUTs — look-up tables (typically 4 inputs, one output) — can
implement any 4-input logic function

LABs — LUT + DFF + muxes

programmable wiring (N.B. significant delay in interconnect)

memory blocks (e.g. 9-kbits supporting different data widths, one or
two ports, etc.)

DSP — digital signal processing blocks, e.g. hard (i.e. very fast)
multipliers

I/O — input/output blocks for normal signals, high speed serial (e.g.
Ethernet, SATA, PCIe, ...), etc.

FPGA blocks — LABs y 24

Row, Column,

And Direct Link

Routing

data 1

data 2

data 3

data 4

labclr1

labclr2

Chip-Wide

Reset

(DEV_CLRn)

labclk1

labclk2

labclkena1

labclkena2

LE Carry-In

LAB-Wide

Synchronous

Load

LAB-Wide

Synchronous

Clear

Row, Column,

And Direct Link

Routing

Local

Routing

Register Chain

Output

Register Bypass

Programmable

Register

Register Chain

Routing from

previous LE

LE Carry-Out

Register Feedback

Synchronous

Load and

Clear Logic

Carry

Chain
Look-Up Table

(LUT)

Asynchronous

Clear Logic

Clock &

Clock Enable

Select

D Q

ENA
CLRN

FPGA blocks — interconnect y 25

Direct link

interconnect

from adjacent

block

Direct link

interconnect

to adjacent

block

��������	����	�

A�BCD�

�����	����	�

E�	FB �����	����	�E��

Direct link

interconnect

from adjacent

block

Direct link

interconnect

to adjacent

block

Lecture 4 — Verilog systems design 17

FPGA blocks — multipliers y 26

CLRN

D Q

ENA

Data A

Data B

aclr

clock

ena

signa

signb

CLRN

D Q

ENA

CLRN

D Q

ENA
Data Out

Embedded Multiplier Block

������
����	��ABC���

����	��A

FPGA blocks — simplified single-port memory y 27

CLRN

D Q

ENA

D Q

EN

Data Out

������
����	��A

�������
����

	AB

memory blocks called “Block RAM” — BRAM

dual-port mode supported, etc. + different data/address widths

Inferring memory blocks y 28

SystemVerilog sometimes has to be written in a particular style in order
that the synthesis tool can easily identify BRAM

e.g. on Thacker’s Tiny Computer used in the labs, the register file is
defined as:

Word r f b l o c k [0:(1<< $ b i t s (RegAddr)) −1] ;
RegAddr RFA read addr , RFB read addr ;
always f f @(posedge c s i c l k c l k)

begin / / r e g i s t e r f i l e po r t A
i f (d i v)

r f b l o c k [IM pos . rw] <= WD;
else

RFA read addr <= IM . payload . ra ;
end

assign RFAout = r f b l o c k [RFA read addr] ;

always f f @(posedge c s i c l k c l k)
RFB read addr <= IM . payload . rb ;

assign RFBout = r f b l o c k [RFB read addr] ;

Static timing analysis y 29

place & route — lays out logic onto FPGA

static timing analysis determines timing closure, i.e. that we’ve met timing

TimeQuest does this in Quartus

looks at all paths from outputs of DFFs to inputs of DFFs

max clock period = the worst case delay + DFF hold time + clock jitter
margin

Fmax determined — critical that the circuit is clocked at a frequency
below its Fmax

much effort is made by Altera to ensure static timing analysis is
accurate

Final words on ECAD y 30

Programmable hardware is here to stay, and it likely to become even more
widespread in products (i.e. not just for prototyping)

SystemVerilog is an improvement over Verilog, but a long way to go

active research being undertaken into higher level HDLs

e.g. more recent languages like Bluespec add channel
communication mechanisms

Hope you enjoy the Lab’s and learning about hardware/software codesign

18 Computer Design

Lecture 5 — Histroical Computer Architecture 19

Computer Design — Lecture 5

Historical Computer Architecture y 1

Overview of this lecture
Review early computer design since they provide a good background and are
relatively simple.

What is a “Computer”? y 2

In the “iron age” y 3

Early calculating machines were driven by human operators (this one’s a
Marchant).

Form factor? y 4

Analogue Computers y 5

input variables are continuous and vary with respect to time

output respond almost simultaneously to changes in input

support continuous mathematical operators

e.g. additions, subtraction, multiplication, division, integration, etc.

BUT unable to store an manipulate large quantities of data, unlike digital
computers

electrical noise affects precision

programs are hardwired

Hardwired Programming Digital Computers y 6

Programs (lists of orders/instructions) were hardwired into the machine.

Colossus
Started/completed: 1943/1943

Project leader: Dr Tommy Flowers
Programmed: pluggable logic & paper tape

Speed: 5000 operations per second
Power consumption: 4.5 KW

Footprint: 360 feet2 (approx) + room for cooling, operators
Notes: broke German codes, info. vital to success of D-day in

1944

ENIAC
Started/completed: 1943/1945

Project leaders: John Mauchly and J. Presper Eckert.
Programmed: plug board & switches

Speed: 5000 operations per second
Footprint: 1000 feet2

Birth of the Stored Program Computer y 7

In 1945 John von Neumann wrote “First Draft of a Report on the EDVAC”
in which the architecture of the stored-program computer was outlined.

Electronic storage of programming information and data would eliminate
the need for the more clumsy methods of programming, such as punched
paper tape.

This is the basis for the now ubiquitous control-flow model.

Control-flow model is often called the von Neumann architecture

However, it is apparent that Eckert and Mauchly also deserve a great
deal of credit.

The Control-flow Model y 8

The processor executes a list of instructions (order codes) using a program
counter (PC) as a pointer into the list, e.g. to execute a=b+c:

20 Computer Design

What is a Processor? y 9

the processor is the primary means of processing information within a
computer

the “engine” of the computer if you like

the processor is controlled by a program

often a list of simple orders or instructions

instructions (and other hardware mechanisms...) form the atomic
building blocks from which programs are constructed

executing many millions of instructions per second makes the
computer look “clever”

A Quick Note on Programming y 10

programs are presented to the processor as machine code

programs written in high level languages have to be compiled into
machine code

Summer School of 1946 y 11

the summer school on Computing at the University of Pennsylvania’s
Moore School of Electrical Engineering stimulated post-war construction
of stored-program computers

prompted work on EDSAC (Cambridge), EDVAC and ENIAC (USA)

Manchester team had visited the Moore School but did not attend the
summer school.

Manchester Mark I
(The Baby) y 12

Demonstrated: June 1948
Project leaders: Tom Kilburn and F C (Freddie) Williams

Input/Output: buttons + memory is visible on Williams tube
Memory: William Tube

32 × 32 bit words
Logic Technology: valves (vacuum tubes)

Add time: 1.8 ms
Footprint: medium room

just 7 instructions to subtract, store and conditional jump (see next lecture)

Williams Tube y 13

used phosphor persistence on a CRT to store information

picture from later machine

EDSACy 14

Start/End: 1947/1949
Project leader: Maurice Wilkes

Input/Output: paper tape, teleprinter, switches
Memory: mercury delay lines

1024 × 17 bits
Logic Technology: valves (vacuum tubes)

Speed: 714 operations/second
Footprint: medium room

18 instructions including add, subtract, multiply, store and conditional jump
(see next lecture)

Driving Forces Since 1940s y 15

still using control-flow but...

technology — faster, smaller, lower power, more reliable

architecture — more parallelism, etc.

— the rest of the course is about architecture

Technologies for Logic y 16

valves (vacuum tubes)

transistors

1947 point contact transistor assembled at Bell Labs. by William
Shockley, Walter Brattain, and John Bardeen

1954 silicon junction perfected by Gordon Teal of Texas Instruments
($2.50)

1958 first integrated circuit (IC) developed by Jack Kilby at TI

1961 Fairchild Camera and Instrument Corp. introduced resistor
transistor logic (RTL) — first monolithic chip

1967 Fairchild demonstrated the first CMOS (Complementary Metal
Oxide Semiconductor) circuits

Lecture 5 — Histroical Computer Architecture 21

Early Intel Processors y 17

Intel 4004 Microprocessor
Demonstrated: 1971

Project team: Federico Faggin, Ted Hoff, et al.
Logic Technology: MOS

Data width: 4 bits
Speed: 60k operations/second

Intel 8008 Microprocessor
Demonstrated: 1972

Logic Technology: MOS
Data width: 8 bits

Speed: 0.64 MIPS

Xerox PARC y 18

PARC = Palo Alto Research Center

Alto (1974)

chief designer: Chuck Thacker (was in Cambridge working for
Microsoft until recently)

first personal computer (built in any volume) to use a bit-mapped
graphics and mouse to provide a windowed user interface

Ethernet (proposed 1973)

Bob Metcalf (was here for a sabatical) and Dave Boggs

Laser printers...

Xerox failed to capture computer markets — read “Fumbling the Future:
how Xerox invented, then ignored, the first personal computer”, D Smith
and R Alexander, New York, 1988

Technologies for Primary Memory y 19

mercury delay lines

William’s tube

magnetic drum

core memory

solid state memories (DRAM, SRAM)

Technologies for Secondary Memory y 20

punched paper tape and cards

magnetic drums, disks, tape

optical (CD, etc)

Flash memory

Computing Markets y 21

Servers

availablility (fault tolerance)

throughput is very important (databases, etc)

power (and heat output) is becoming more important

Desktop Computing

market driven by price and performance

benchmarks are office/media/web applications

Embedded Computing

power efficiency is very important

real-time performance requirements

huge growth in 90’s and early 21st centry (mobile phones,
automotive, PDAs, set top boxes)

Resources y 22

Colossus:
http://www.cranfield.ac.uk/ccc/bpark/colossus

Boston Computer Museum time line:
http://www.tcm.org/history/timeline/

Virtual Museum of Computing:
http://www.comlab.ox.ac.uk/archive/other/museums/computing.html

Free Online Dictionary of Computing:
http://wombat.doc.ic.ac.uk/foldoc/

22 Computer Design

Lecture 6 — Early instruction set architecture 23

Computer Design — Lecture 6

Historical Instruction Set Architecture y 1

Review of Last Lecture
The last lecture covered a little history.

Overview of this Lecture
This lecture introduces the programmer’s model of two early computers: the
Manchester Mark I (the baby), and the EDSAC, Cambridge.

Manchester Mark I (The Baby) y 2

Not to be confused with the Farantti Mark 1 which came later.

vital statistics:

32 × 32 bits memory (William’s tube)

two registers: CR = program counter, ACC=accumulator

no real I/O

7 instructions

Manchester Mark I — Instruction Encoding y 3

Manchester Mark I — Instruction Set y 4

function code name description
000 JMP sets CR to the contents of LINE
100 JRP adds the contents of LINE to CR
010 LDN gets the contents of LINE, negated, into ACC
110 STO stores the contents of ACC into LINE
001 or 101 SUB subtracts the contents of LINE from ACC,

putting the result in ACC
011 TEST if the contents of ACC are less than zero,

add 1 to CR (skip next instruction)
111 STOP halt the machine

Manchester Mark I — Iterative Fibonacci y 5

Fibonacci Sequence
The infinite sequence: 1, 1, 2, 3, 5, 8, 13, ...
in which each term is the sum of the two preceding terms.

Pseudo Code

Manchester Mark I — iterative Fibonacci y 6

EDSAC (Electronic Delay Storage Automatic Com-
puter) y 7

serial computer

ultrasonic mercury tanks for storage

main memory: 32 tanks each holding 32 × 17 bits

short numbers = 17 bits (one sign bit)

long number = 35 bits = 2 × short numbers stored in adjacent locations

registers — shorter tanks to store:

accumulator (acc)

order (i.e. instruction register)

sequence control register

multiplier (mr) and multiplicand

EDSAC — Instruction Encoding y 8

EDSAC — Number Format y 9

if the number (r) is fixed point then
r = −n16 +

∑
15

i=0
2i−16.ni

else the number (i) is an integer or address so
i = −216.n16 +

∑
15

i=0
2i.ni

thus, 0.101000000000000 represents 5

8
or 40960

and 1.101000000000000 represents −3

8
or −24576

24 Computer Design

EDSAC — Instruction Format y 10

Instruction Description
P n pseudo code (for constants) instruction is n
A n add acc:=acc+(n)
S n subtract acc:=acc-(n)
H n init. multiplier mr:=(n)
V n multiply and add acc:=acc+mr×(n)
N n multiply and subtract acc:=acc-mr×(n)
T n store and clear acc (n):=acc, acc:=0
U n store (n):=acc
C n bitwise AND acc:=mr AND (n) + acc
R 2n−2 shift right acc:=acc×2−n

L 2n−2 shift left acc:=acc×2n

E n conditional branch acc>= 0 if(acc>=0) pc:=n
G n conditional branch acc< 0 if(acc<0) pc:=n
I n input 5 bit from punched tape (n):=punch tape input
O n output top 5 bits to teleprinter output:=(n)
F n read character next output char. (n):=output
X round accumulator to 16 bits
Y round accumulator to 34 bits
Z stop the machine and ring warning bell

Each instruction is postfixed with S or L to indicate whether it refers to Short
words or Long words (S = 0, L = 1).

EDSAC — Iterative Fibonacci y 11

Problems with Early Machines y 12

technology limited memory size, speed, reliability, etc.

instruction set does not support:

subroutine calls

floating point operations

minimal support for bit wise logic operations (AND, OR, etc)

functions not invented then, nor:

interrupts, exceptions, memory management, etc. (see future
lectures)

instructions have only one operand

so each instruction does little work

Stack Machines y 13

operand stack replaces accumulator

allows more intermediate results to be stored within the processor

reduces load on memory bus (von Neumann bottleneck)

equations easily manipulated into reverse Polish notation

some stack machines supported a data stack for parameter passing,
storing return addresses and local variables (see Compilers course)

Stack Program Example — Fibonacci y 14

Register Machines y 15

register file = small local memory used to store intermediate results

physically embedded in the processor for fast access

it is practical for small memories to be multiported (i.e. many simultanious
reads and writes)

allows for parallelism (more later...)

Number of Operands Per Instruction y 16

EDSAC and Baby instructions

— single operand per instruction (address)

— accumulator implicit in most instructions

stack machines also usually just have one operand

register machines can have multiple operands, e.g.:

add r1,r2,r3

— adds contents of registers r2 and r3 and writes the result in r1

— memory bus not even used to complete this!

load r4,(r5+#8)

— calculates an address by adding the constant 8 to the contents of
register r5, loads a value from this calculated address and stores
the result in r4

these instructions are independent of each other, so could execute in
parallel (more later...)

Lecture 7 — Thacker’s Tiny Computer 3 25

Computer Design — Lecture 7

Thacker’s Tiny Computer 3 y 1

Overview of this lecture
Review Thacker’s Tiny Computer 3 used in the ECAD+Arch labs.

The paper is attached to the handout.

Instruction format y 2

��������������

�	 �AB
C �D EF�� ����� ���� ������

EF�������

������ !

������"!

�����! �

�����!"�

�������#�!

�������$�!

��%����&�!

�����'�(�')��

������*'��A��(�'�+��,�

��������(����

������C-��

������C-�.

������C-�%

�����

�������)�'

������B/0�

������B/1�

�����2���3

�������

�������'4A5���	1E*�A6ED,6�(����������������

�����(��'�78��789�D:1�A6��	1E*�A6�D,6�(����������������

�����(��'�28��289�D:1�A6��	1E*�A6�D,6�(����������������

������F����F���'�D�6��	1E*�A6�D,6�(����������������

�����5�A�78���	1789�D:6��B/1E*�A6�D,6�(����������������

����������	1��;�A�A6��B/1E*�A6�D,6�(����������������

��%��<F4����	1=C �6�=C1E*�A6�D,6����(���

�����'�(�')��

BC15�A�����(�A���*D��(���������������(�'F�����,6����(���

=C1�'�+'A4���F���'

�B/1EF������*�A6�D,6�	��'������EF��������(�(����>���D3�����EF���D��(

E*�A6�D,1'��A��*�����6��B/,6�	��'������'��A������(�(����>���D3�����������D��(

Chuck Thacker’s schematic y 3

���������

�	A B C	

DE

F���

��

���C����

��� F���

� F���

���C����

������

��� � �C�����

!�

� � ��"��#

�$ B C	

������%����

��"��#

�$ B C	

DE"�&

�' DE��%

��

D(�

���C��)�

���	C��*�

����+����

��

�F���

F%,�

-%,�

F ���

- ���

� ���

-���

���� .���

F/0�C�����

D(�

D(�

F��' ��1' /���%

���2�C�

�%,�
D(�

D(�

D(� �%,�

�%,�

!	

DE��%	

DE

E'3

E'3 ����#

�' ���	C����

4�"�

/� �E����

��

/� �

�������,�%�

������

4�"� DE��,

���5�*�

���+�)�E#%,�

D(�

D(� �%,�

�%,�

Example program y 4

machine code (instruction fields) assembler code
Rw LC Ra Rb Func Shift Skip Opcode label assember comment
r1 0 r1 r1 AND - - IN r1 <- in # get input parameter
r2 1 1 lc r2 1 # a=1
r3 1 1 lc r3 1 # b=1
r4 1 7 lc r4 test # r4=addr. of test
r4 0 r4 r4 AND - - JMP jmp r4 # jump test
r2 0 r2 r3 ADD - - - loop: r2 r2 r3 add # a=a+b
r3 0 r2 r3 SUB - - - r2 r2 r3 sub # b=a-b
r4 1 5 test: lc r4 loop # r4=addr. of loop
r1 0 r1 r1 DEC - LEZ - dec r1 ?<0 # r1−−; if(r1<=0) skip
r4 0 r4 r4 AND - - jmp r4 # jump loop
r3 0 r3 r3 AND - - OUT r3 ->out # output result in r3
r21 1 12 lc r21 end # r21=addr. of end
r21 0 r21 r21 AND - - JMP end: jmp r0 r21 # jump end, return address in r0

Simulation trace for fib(3) y 5

20: Test data being sent
50: PC=0x00 rw=r01= 3=0x00000003 ra=r01=0xxxxxxxxx rb=r01=0xxxxxxxxx func=AND r o t a t e =NSH sk ip=NSK op=IN
60: Test data being sent
70: PC=0x02 l c rw=r02=1
90: PC=0x03 l c rw=r03=0
110: PC=0x04 l c rw=r04=7
130: PC=0x04 rw=r04= 5=0x00000005 ra=r04=0x00000007 rb=r04=0x00000007 func=AND r o t a t e =NSH sk ip=NSK op=JMP
−−
150: PC=0x08 l c rw=r04=5
170: PC=0x08 rw=r01= 2=0x00000002 ra=r01=0x00000003 rb=r01=0x00000003 func=DEC r o t a t e =NSH sk ip=LEZ op=FUN
190: PC=0x09 rw=r04= 10=0x0000000a ra=r04=0x00000005 rb=r04=0x00000005 func=AND r o t a t e =NSH sk ip=NSK op=JMP
−−
210: PC=0x05 rw=r02= 1=0x00000001 ra=r02=0x00000001 rb=r03=0x00000000 func=ADD r o t a t e =NSH sk ip=NSK op=FUN
230: PC=0x06 rw=r03= 1=0x00000001 ra=r02=0x00000001 rb=r03=0x00000000 func=SUB r o t a t e =NSH sk ip=NSK op=FUN
250: PC=0x08 l c rw=r04=5
270: PC=0x08 rw=r01= 1=0x00000001 ra=r01=0x00000002 rb=r01=0x00000002 func=DEC r o t a t e =NSH sk ip=LEZ op=FUN
290: PC=0x09 rw=r04= 10=0x0000000a ra=r04=0x00000005 rb=r04=0x00000005 func=AND r o t a t e =NSH sk ip=NSK op=JMP
−−
310: PC=0x05 rw=r02= 2=0x00000002 ra=r02=0x00000001 rb=r03=0x00000001 func=ADD r o t a t e =NSH sk ip=NSK op=FUN
330: PC=0x06 rw=r03= 1=0x00000001 ra=r02=0x00000002 rb=r03=0x00000001 func=SUB r o t a t e =NSH sk ip=NSK op=FUN
350: PC=0x08 l c rw=r04=5
370: PC=0x08 rw=r01= 0=0x00000000 ra=r01=0x00000001 rb=r01=0x00000001 func=DEC r o t a t e =NSH sk ip=LEZ op=FUN
390: PC=0x09 rw=r04= 10=0x0000000a ra=r04=0x00000005 rb=r04=0x00000005 func=AND r o t a t e =NSH sk ip=NSK op=JMP
−−
410: PC=0x05 rw=r02= 3=0x00000003 ra=r02=0x00000002 rb=r03=0x00000001 func=ADD r o t a t e =NSH sk ip=NSK op=FUN
430: PC=0x06 rw=r03= 2=0x00000002 ra=r02=0x00000003 rb=r03=0x00000001 func=SUB r o t a t e =NSH sk ip=NSK op=FUN
450: PC=0x08 l c rw=r04=5
470: PC=0x08 rw=r01= 4294967295=0 x f f f f f f f f ra=r01=0x00000000 rb=r01=0x00000000 func=DEC r o t a t e =NSH sk ip=LEZ op=FUN
490: PC=0x0a rw=r03= 2=0x00000002 ra=r03=0x00000002 rb=r03=0x00000002 func=AND r o t a t e =NSH sk ip=NSK op=OUT
500: >>>>>>>>>> output = 0x00000002 = 2 <<<<<<<<<<

510: PC=0x0c l c rw=r21=12
530: PC=0x0c rw=r00= 13=0x0000000d ra=r21=0x0000000c rb=r21=0x0000000c func=AND r o t a t e =NSH sk ip=NSK op=JMP
−−
STOP c o n d i t i o n i d e n t i f i e d − l oop ing on the spot
Break i n Module DisplayTraces a t t t c . sv l i n e 113
Simula t ion Breakpoint : Break i n Module DisplayTraces a t t t c . sv l i n e 113
MACRO . / t t c s i m f i b . do PAUSED at l i n e 20

Structural vs. Behavioural implementation style y 6

For our SystemVerilog version of the TTC we’ve used a more behavioural
style

A good example of this is the ALU where we describe what functions we
require and Thacker describes the logic on a per bit basis

The structrual approach makes it clear how many logic blocks are likely to
be used

The behavioural approach allows the synthesis tools to use other FPGA
resources like DSP blocks

Timing of SystemVerilog version y 7

Thacker’s TTC using two clocks breaking operations down into phases

We used one clock and only the positive edge of it

Our design breaks execution into two steps:

1. instruction fetch followed by decode

2. register fetch, ALU operation, shift, write-back, memory access,
branch

The critical path is through register fetch → ALU → shift → write-back

The design is not pipelined unlike modern machines (see later lectures)

ttc.sv — types y 8

/∗ ∗∗
∗ Thacker ’ s Tiny Computer 3 i n SystemVeri log
∗ ==
∗ Copyr ight Simon Moore and Frankie Robertson , 2011
∗∗ ∗ /

typedef log ic [6 : 0] RegAddr ;
typedef log ic [9 : 0] ProgAddr ;
typedef log ic [9 : 0] DataAddr ;
typedef log ic [3 1 : 0] Word ;
typedef log ic signed [3 1 : 0] SignedWord ;

/ / enumeration types desc r ib ing f i e l d s i n the i n s t r u c t i o n
typedef enum logic [2 : 0] {ADD,SUB, INC ,DEC,AND,OR,XOR} Func ;
typedef enum logic [1 : 0] {NSH,RCY1,RCY8,RCY16} Rotate ;
typedef enum logic [1 : 0] {NSK, LEZ ,EQZ, INR} Skip ;
typedef enum logic [2 : 0] {FUN,STD, STI ,OUT,LDD, IN ,JMP} Op;

/ / s t r u c t u r e desc r ib ing the i n s t r u c t i o n format
typedef s t ruc t packed {

RegAddr rw ;
log ic l c ;
s t ruc t packed {

RegAddr ra ;
RegAddr rb ;
Func func ;
Rotate r o t a t e ;
Skip sk ip ;
Op op ;

} payload ;
} I n s t ;

26 Computer Design

ttc.sv — helper functions y 9

/ / f u n c t i o n to determine i f a sk ip i s to be performed
funct ion log ic s k i p t e s t e r (I n s t i n s t r u c t i o n , SignedWord a l u r e s u l t) ;

r e t u r n ! i n s t r u c t i o n . l c && (((i n s t r u c t i o n . payload . sk ip == LEZ) && (a l u r e s u l t < 0)) | |
((i n s t r u c t i o n . payload . sk ip == EQZ) && (a l u r e s u l t == 0))) ;

endfunction

/ / f u n c t i o n to determine the next program counter value
funct ion ProgAddr pc mux (log ic jump , log ic skip , log ic reset mode ,

SignedWord a l u r e s u l t , Word pc) ;
i f (reset mode) r e t u r n 0 ;
else i f (jump) r e t u r n a l u r e s u l t [9 : 0] ;
else i f (sk ip) r e t u r n pc + 2;
else r e t u r n pc + 1;

endfunction

/ / f u n c t i o n to decode the opcode
funct ion log ic [6 : 0] opcode decode (I n s t i n s t r u c t i o n) ;

r e t u r n (i n s t r u c t i o n . l c ? 0 : 7 ’ h7f)
& { i n s t r u c t i o n . payload . op == STD,

i n s t r u c t i o n . payload . op == STI ,
i n s t r u c t i o n . payload . op == OUT,
i n s t r u c t i o n . payload . op == LDD,
i n s t r u c t i o n . payload . op == IN ,
i n s t r u c t i o n . payload . op == JMP,
! i n s t r u c t i o n . payload . op [2] } ;

endfunction

/ / f u n c t i o n implementing the r e s u l t m u l t i p l e x e r
funct ion Word r e g f i l e w r i t e d a t a m u x (I n s t i n s t r u c t i o n , log ic jump ,

log ic l oad a lu , log ic load dm , log ic in ,
ProgAddr pc , SignedWord alu , Word dm, Word a s i i n d a t a) ;

i f (jump) r e t u r n pc + 1;
else i f (i n s t r u c t i o n . l c) r e t u r n Word ’ (i n s t r u c t i o n . payload) ;
else i f (l oad a lu) r e t u r n a lu ;
else i f (load dm) r e t u r n dm;
else i f (i n) r e t u r n a s i i n d a t a ;
else r e t u r n 1 ’ bx ;

endfunction

/ / f u n c t i o n to implement the ALU and s h i f t e r
funct ion SignedWord a lu (I n s t i n s t r u c t i o n , Word r f a o u t , Word r f b o u t) ;

SignedWord p r e s h i f t ;
unique case (i n s t r u c t i o n . payload . func)

ADD: p r e s h i f t = r f a o u t + r f b o u t ;
SUB: p r e s h i f t = r f a o u t − r f b o u t ;
INC : p r e s h i f t = r f b o u t + 1 ;
DEC: p r e s h i f t = r f b o u t − 1;
AND: p r e s h i f t = r f a o u t & r f b o u t ;
OR: p r e s h i f t = r f a o u t | r f b o u t ;
XOR: p r e s h i f t = r f a o u t ˆ r f b o u t ;

defau l t : p r e s h i f t = 1 ’ bx ;
endcase ;
case (i n s t r u c t i o n . payload . r o t a t e)

NSH: r e t u r n p r e s h i f t ;
RCY1: r e t u r n { p r e s h i f t , p r e s h i f t } >> 1;
RCY8: r e t u r n { p r e s h i f t , p r e s h i f t } >> 8;
RCY16: r e t u r n { p r e s h i f t , p r e s h i f t } >> 16;

endcase ;
endfunction

ttc.sv — module to help with debug y 10

/ / he lper module f o r debug purposes
module DisplayTraces (

input c lk , input enable , input i n t t r a c e l e v e l ,
input I n s t i , input Jump , input ProgAddr PC,
input Word WD, input Word RFAout , input Word RFBout) ;

ProgAddr oldPC =0;
always @(posedge c l k)

i f (enable)
i f (t r a c e l e v e l ==1)

begin
$wr i t e (”%05t : ” , $t ime) ; / / ou tput s imu la t i on t ime
i f (i . l c) / / d i sp l ay load−constant i n s t r u c t i o n s

$display (”PC=0x%02x l c rw= r%02d=%1d ” ,PC, i . rw ,WD) ;
else / / d i sp l ay o ther i n s t r u c t i o n s

begin
$wr i t e (”PC=0x%02x rw= r%02d=%11d=0x%08x ra= r%02d=0x%08x rb= r%02d=0x%08x ” ,

oldPC , i . rw ,WD,WD, i . payload . ra , RFAout , i . payload . rb , RFBout) ;
$display (” func=%s r o t a t e=%s sk ip=%s op=%s ” ,

i . payload . func , i . payload . ro ta te , i . payload . skip , i . payload . op) ;
end

i f (Jump) $display (”−−”) ;
i f (PC==oldPC)

begin
$display (”STOP c o n d i t i o n i d e n t i f i e d − l oop ing on the spot ”) ;
$stop ;

end
oldPC <= PC;

end / / i f (debug trace ==1)
else

begin
i f (i . payload . op==IN)

$display (”%05t : i npu t =0x%08x ” , $time ,WD) ;
i f (i . payload . op==OUT)

$display (”%05t : ou tput=0x%08x ” , $time , RFAout) ;
end / / e lse : ! i f (t r a c e l e v e l ==1)

endmodule

ttc.sv — Test bench y 11

module TestTinyComp () ;
/ / parameters f o r the i n s t r u c t i o n ROM i n i t i a l i s a t i o n
parameter progpath mi f= ” ” ;
parameter progpath rmb= ” ” ;
/ / parameter to determine the debug l e v e l
parameter debug trace =1;

log ic c s i c l k c l k , r s i r e s e t r e s e t ;
log ic o u t v a l i d ;
Word out da ta ;
log ic i n v a l i d , i n ready ;
Word i n d a t a ;
log ic [7 : 0] i n s t a t e ;
log ic i n s t r u c t i o n c o m p l e t e ;

TinyComp #(
. p rogpath mi f (p rogpath mi f) ,
. progpath rmb (progpath rmb) ,
. debug trace (debug trace)
) dut (

/ / pass parameters w i th matching names
.∗ ,

/ / n u l l data memory i n t e r f a c e
. avm m1 address () ,
. avm m1 read () ,
. avm m1 readdata () ,
. avm m1 write () ,
. avm m1 writedata () ,
. avm m1 waitrequest (1 ’ b0) ,

/ / ou tput stream
. aso out data (ou t da ta) ,
. a s o o u t v a l i d (o u t v a l i d) ,
. aso out ready (1 ’ b1) ,

/ / i npu t stream
. a s i i n d a t a (i n d a t a) ,
. a s i i n v a l i d (i n v a l i d) ,
. a s i i n r e a d y (in ready)
) ;

/ / i n i t i a l i s e c lock and rese t
i n i t i a l begin

c s i c l k c l k = 1 ;
r s i r e s e t r e s e t = 1 ;
#20

r s i r e s e t r e s e t = 0 ;
end

/ / o s c i l a t e the c lock
always #5 c s i c l k c l k = ! c s i c l k c l k ;

/ / t e s t sequencer which sends two values on to the TTC on i t s In stream
/ / and d isp lays the r e s u l t s from the Out stream
always @(posedge c s i c l k c l k or posedge r s i r e s e t r e s e t)

i f (r s i r e s e t r e s e t)
begin

i n s t a t e <= 0;
i n v a l i d <= 0;
i n d a t a <= 0;

end
else

begin
i f (o u t v a l i d)

$display (”%05t : >>>>>>>>>> output = 0x%08x = %1d <<<<<<<<<<” , $time , out data , ou t
i f (i n ready)

i n v a l i d <= 0;
else

i f (! i n v a l i d) / / on ly send data once the l a s t l o t has been consumed
begin

case (i n s t a t e)
0 : i n d a t a <= 32 ’d10 ;
1 : i n d a t a <= 32 ’d99 ;
2 : i n d a t a <= 32 ’d2 ;
3 : i n d a t a <= 32 ’d3 ;
defau l t : i n d a t a <= 32 ’h0 ;

endcase / / case (i n s t a t e)
i f (i n s t a t e <4)

begin
$display (”%05t : Test data being sent ” , $t ime) ;
i n s t a t e <= i n s t a t e +1;
i n v a l i d <= 1;

end
end

end

endmodule / / TestTinyComp

Lecture 7 — Thacker’s Tiny Computer 3 27

ttc.sv — TinyComp module (part 1) y 12

module TinyComp (
/ / c lock and rese t i n t e r f a c e
input c s i c l k c l k ,
input r s i r e s e t r e s e t ,

/ / avalon master f o r data memory (unused i n labs)
output DataAddr avm m1 address ,
output log ic avm m1 read ,
input Word avm m1 readdata ,
output log ic avm m1 write ,
output Word avm m1 writedata ,
input log ic avm m1 waitrequest ,

/ / avalon i npu t stream f o r IN i n s t r u c t i o n s
input Word a s i i n d a t a ,
input log ic a s i i n v a l i d ,
output log ic as i i n ready ,

/ / avalon output stream f o r OUT i n s t r u c t i o n s
output Word aso out data ,
output log ic aso ou t va l i d ,
input log ic aso out ready ,

/ / exported s i g n a l f o r connect ion to an a c t i v i t y LED
output log ic i n s t r u c t i o n c o m p l e t e
) ;

/ / parameters f o r the i n s t r u c t i o n ROM i n i t i a l i s a t i o n
parameter progpath mi f= ” ” ;
parameter progpath rmb= ” ” ;
/ / parameter to determine the debug l e v e l
parameter debug trace =1;

/ / dec lare v a r i a b l e s
SignedWord WD;
Word RFAout , RFBout ;
ProgAddr PC, PCmux, im addr ;
SignedWord ALU;
Word DM;
I n s t IM , IM pos ;
log ic doSkip , WriteIM , WriteDM , Jump , LoadDM, LoadALU , In , Out ;
log ic div , phase0 , phase1 ;
log ic [1 : 0] d i v r e s e t d l y ;

/ / i n s t a n t i a t e he lper module to do t r a c i n g i n s imu la t i on
‘ i f d e f MODEL TECH
DisplayTraces d t (c s i c l k c l k , phase1 , debug trace , IM pos ,

Jump , PCmux, WD, RFAout , RFBout) ;
‘ end i f

/ / i n s t r u c t i o n memory (ROM) i n i t i a l i s e d f o r Quartus
(∗ r a m i n i t f i l e = progpath mi f ∗) I n s t im block [0:(1<< $ b i t s (ProgAddr)) −1] ;
i n i t i a l begin / / i n i t i a l i s a t i o n o f ROM f o r ModelSim

‘ i f d e f MODEL TECH
$readmemb (progpath rmb , im block) ;
‘ end i f

end
always @(posedge c s i c l k c l k)

im addr <= PCmux;
assign IM = im block [im addr] ;

/ / implement the r e g i s t e r f i l e
Word r f b l o c k [0:(1<< $ b i t s (RegAddr)) −1] ;
RegAddr RFA read addr , RFB read addr ;
always f f @(posedge c s i c l k c l k)

begin / / r e g i s t e r f i l e po r t A
i f (d i v)

r f b l o c k [IM pos . rw] <= WD;
else

RFA read addr <= IM . payload . ra ;
end

assign RFAout = r f b l o c k [RFA read addr] ;

always f f @(posedge c s i c l k c l k)
RFB read addr <= IM . payload . rb ;

assign RFBout = r f b l o c k [RFB read addr] ;

/ / combinat iona l l o g i c
always comb

begin
phase0 = ! d i v ;
phase1 = d iv && ! avm m1 waitrequest &&

((! In && ! Out) | | (Out && ! a s o o u t v a l i d) | | (In && a s i i n v a l i d)) ;
DM = avm m1 readdata ;
ALU = alu (IM pos , RFAout , RFBout) ;
doSkip = s k i p t e s t e r (IM pos , ALU) ;
PCmux = pc mux (Jump , doSkip , d i v r e s e t d l y [1] , ALU, PC) ;
WD = r e g f i l e w r i t e d a t a m u x (IM pos , Jump , LoadALU , LoadDM, In , PC, ALU, DM, a s i i n d a t a) ;
a s i i n r e a d y = (In && d iv) ;
avm m1 write = WriteDM && d iv ;
avm m1 read = LoadDM && d iv ;
avm m1 address = DataAddr ’ (RFBout) ;
avm m1 writedata = RFAout ;

end

ttc.sv — TinyComp module (part 2) y 13

/ / the main always block implementing the processor
always f f @(posedge c s i c l k c l k) / / or posedge r s i r e s e t r e s e t)

i f (r s i r e s e t r e s e t)
begin

d iv <= 0;
d i v r e s e t d l y <= 3;
PC <= 0;
{WriteDM , WriteIM , Out , LoadDM, In , Jump , LoadALU} = 7 ’b0 ;
a s o o u t v a l i d <= 1 ’b0 ;

end
else

begin
i f (aso out ready && a s o o u t v a l i d)

a s o o u t v a l i d <= 1 ’b0 ;
i f (phase0)

begin
IM pos <= IM ;
{WriteDM , WriteIM , Out , LoadDM, In , Jump , LoadALU} <= opcode decode (IM) ;

end
i f (phase1)

begin
d iv <= 1 ’b0 ;
PC <= PCmux;
i f (Out)

begin
a s o o u t v a l i d <= 1 ’b1 ;
aso out data <= RFAout ;

end
i n s t r u c t i o n c o m p l e t e <= 1 ’b1 ;

end
else

begin
i n s t r u c t i o n c o m p l e t e <= 1 ’b0 ;
d i v <= ! (| d i v r e s e t d l y) ;
d i v r e s e t d l y <= { d i v r e s e t d l y [0] , 1 ’ b0 } ;

end
end

endmodule

28 Computer Design

lecture 8 — System-on-FPGA Design 29

Computer Design — Lecture 8

Systems-on-FPGA y 1

Overview of this lecture
Explore systems-on-FPGA design

Review Altera’s Qsys tool and design motivations

Support Materials y 2

Altera video:
http://www.altera.com/education/webcasts/all/

wc-2011-conquer-fpga-complexity.html

Altera white paper (copy at the end of the handout):
http://www.altera.com/literature/wp/wp-01149-noc-qsys.pdf

Motivation y 3

facilitate reusuable components through standard interfaces

use parameterisable communication fabric on-chip

much research and industry work on networks-on-chip (NoCs),
including in Cambridge

make it easier to connect components together

SystemVerilog is not good at interfaces — interfaces are just wires to
the synthesis tool without higher level semantics (e.g. channels)

a graphical approach can make it easier to rapidly build systems (possibly
true but debatable...)

Avalon Interconnects y 4

AvalonMM — Avalon Memory Mapped interface

used to connect memory mapped masters and slaves in a switched
interconnect but with bus-like interfaces at the end points

AvalonST — Avalon STreaming interface

represents point-to-point communcation channels between devices

you’ll use this sort of interface in the labs

AvalonMM Example from Quartus 11 manual y 5

���������

M

��	A�BC��DD��

DDR3

Controller

DDR3 Chip

Data

Memory

S

Instruction

M

Data

MM

Control

Read Write

Instruction

Memory

Master Command Connectivity

Slave Response Connectivity

Interface to Off-Chip Device

M

S

Avalon-MM Master Port

Avalon-MM Slave Port

TC Avalon Tri-state Conduit

Flash

Memory

Chip

S

SSS

Ethernet

MAC/PHY

Chip

S

E��F�B�����C��
�	��D�B����

Tristate Conduit

Pin Sharer and Bridge

�BC����BB��C

Qsys Design

in Altera FPGA

�A�

A����B����C��
�	��D�B����

TC TC

���C����C�����BC�� ���

�D�����C�����BC�� ���

AvalonMM signals y 6

Basic signals neede for an AvalonMM master interface with default naming:

outputs:

avm_m1_address — address of device to access

avm_m1_read — bit to indicate if a read is requested

avm_m1_write — bit to indicate if a write is requested

avm_m1_writedata — any data to be written

inputs:

avm_m1_readdata — data returned on read request

avm_m1_waitrequest — bit to indicate if the master should wait

other signals to do byte access, burst transfers, etc.

much more information in the Quartus manual (Chapter 7) with timing
information shown by Qsys tool when importing interfaces

Avalon Streaming Interfaces (AvalonST) y 7

The most basic streaming interface

Data Source Data Sink
data

A complete streaming interface
ready

Data Source Data Sink

valid

channel

startof packet

endofpacket

empty

error

data

AvalonST interfaces on the TTC y 8

Input stream:

asi_in_data — input data (32-bits wide)

asi_in_valid — input bit indicating if data is valid

asi_in_ready — bit output from TTC to indicate that it’s ready to
receive more data

Output stream:

aso_out_data — output data (32-bits wide)

aso_out_valid — output bit indicating when data is valid

aso_out_ready — input bit indicating when the consumer is ready to
receive data

30 Computer Design

Lecture 9 — RISC Processor Design 31

Computer Design — Lecture 9

RISC Processor Design y 1

Review of the last lecture
Last lecture we talked about early computers.

Overview of this lecture
This lecture is about RISC processor design and the MIPS and ARM
instruction sets.

The Design Space y 2

a complex set of inter-related problems ranging from physical constraints
to market forces

requires spiralling refinement

driven by benchmarks – synthetic applications like SPEC marks

hardware is highly parallel

to attain high performance we must exploit parallelism

data has spatial and temporal characteristics

it takes time and (usually) power to move data from one place to
another

digital electronics is improving at a phenomenal pace (Moore’s law - see
lecture 1)

but new challenges for nano CMOS: reliability issues, increased
device variability, across chip wires have stopped scaling...

Design Goals y 3

Amdahl’s Law and the
Quantitative Approach to Processor Design

speedup =
performance for the entire task without using the enhancement

performance for entire task using the enhancement when possible

Amdahl’s version: if an optimisation improves a fraction f of execution time by a
factor of a then:

speedup =
Told

((1− f) + f/a)Told

=
1

(1− f) + f/a

example: if a program spends 80% of its time doing multiplies and we
want it to go 4 times faster, how much faster must the multiply be?

⇒ make the common case fast

forms the basis of quantitative processor design and the Reduced
Instruction Set Computer (RISC) philosophy

Some Fallacies y 4

MIPS (Millions of Instructions Per Second) is an accurate measure for
comparing performance among computers

there is such a thing as a typical program

synthetic benchmarks predict performance for real programs

peak performance tracks observed performance

you can design a flawless architecture

Pitfall: Eliminating the Semantic Gap y 5

in the 1970s it was vogue to minimise the semantic gap between high level
languages and assembler in order to improve on performance

this resulted in the CISC (complex instruction set computer) era from
which the Intel x86 series is still trying to escape

but by giving too much semantic content to the instruction the usefulness
of the instruction was either limited or so general and complex that it was
slow

Overview of the MIPS Processor y 6

market — originally (1980s) for workstations, but now used mostely in
embedded/low power systems (PDAs, set top boxes, machine control etc)
requiring good MIPS/Watt

The ARM processor (local company) is more domenant in the
embedded systems space but MIPS is now taught so that a complete
processor design can be presented without ARM’s lawyers getting
upset

instruction set — RISC — a load/store architecture: only special load and
store instructions can access memory, everything else is
register-to-register

registers — 32 registers, each 32-bit long

An Alternative: The ARM Processor y 7

Similar to MIPS but UK designed by Acorn (who did the BBC Micro)

architects: Steve Furber and Roger Wilson

ARM Ltd was a subsidiary of Acorn

Acorn doesn’t exist but ARM is going strong

most mobile phone have an ARM processor

iPods have 3 ARM processors, iPhone has 5

ARM is (unsually) an intellectual property (IP) licensing company (i.e. they
license designs but make no chips)

no longer taught because I wanted to produce a cut down FPGA
implementation for this course but they were unhappy about the IP
issues, so I switched to MIPS for 2007

Example: Iterative Fibonacci Calculation y 8

assume x is held in $a0 at start
addi $t1, $zero, 1 # initialisation
addi $t2, $zero, 1
addi $t3, $zero, 2

loop: sub $t0, $t3, $a0 # if i > x
bgtz $t0, finish # then jump to finish
add $t1, $t1, $t2 # a := a + b
sub $t2, $t1, $t2 # b := a - b
addi $t3, $t3, 1 # i := i + 1
j loop

finish: add $v0, $zero, $t1 # return the result in $v0

where x is held in register $a0
a is held in register $t1
b is held in register $t2
i is held in register $t3

would normally be wrapped up as a subroutine...more later...

32 Computer Design

The MIPS Register File (application’s view) y 9

A register file is used to localise intermediate results which improves
performance. The MIPS provides:

32 x 32 bit registers

HI and LO registers for the results of mult and div operations (more later)

PC; the program counter

Name Number Use Callee must preserve
$zero $0 constant 0 N/A
$at $1 assembly temporary no
$v0 - $v1 $2 - $3 function returns no
$a0 - $a3 $4 - $7 function arguments no
$t0 - $t7 $8 - $15 temporaries no
$s0 - $s7 $16 - $23 saved temporaries yes
$t8 - $t9 $24 - $25 temporaries no
$k0 - $k1 $26 - $27 kernel use no
$gp $28 global pointer yes
$sp $29 stack pointer yes
$fp $30 frame pointer yes
$ra $31 return address N/A

Reminder: MIPS Instruction Formats y 10

rs Index of first operand register
rt Index of second operand register
rd Index of destination register
shamt Shift amount, used only in shift operations
imm 16-bit signed immediate
addr Memory address

R-type instruction
31:26 25:21 20:16 15:11 10:6 5:0

opcode rs rt rd shamt funct

I-type instruction
31:26 25:21 20:16 15:0

opcode rs rt imm

J-type instruction
31:26 25:0

opcode addr

MIPS R-type instructions y 11

These instructions are all register-to-register (i.e. they do not access main
memory)

R-type instructions - sorted by funct
all have operands rs, rt, rd and shamt

Funct Mnemonic Operation
0000 00 SLL $rd = $rt << shamt
0000 01 SRL $rd = $rt >> shamt
0000 11 SRA $rd = $rt >>> shamt
0001 00 SLLV $rd = $rt << $rs[4:0]

assembly: sllv rd rt rs
0001 10 SRLV $rd = $rt >> $rs[4:0]

assembly: srlv rd rt rs
0001 11 SRAV $rd = $rt >>> $rs[4:0]

assembly: srav rd rt rs
0010 00 JR PC = $rs
0010 01 JALR $ra = PC + 4; PC = $rs
0100 00 MFHI $rd = $hi
0100 01 MTHI $hi = $rs
0100 10 MFLO $rd = $lo
0100 11 MTLO $lo = $rs
0110 00 MULT {$hi, $lo} = ($rs × $rt)
0110 01 MULTU {$hi, $lo} = ($rs × $rt)
0110 10 DIV $lo = $rs / $rt

$hi = $rs % $rt
0110 11 DIVU $lo = $rs / $rt

$hi = $rs % $rt
1000 00 ADD $rd = $rs + $rt
1000 01 ADDU $rd = $rs + $rt
1000 10 SUB $rd = $rs − $rt
1000 11 SUBU $rd = $rs − $rt
1001 00 AND $rd = $rs & $rt
1001 01 OR $rd = $rs | $rt
1001 10 XOR $rd = $rs ⊕ $rt
1001 11 NOR $rd = ¬ ($rs | $rt)
1010 10 SLT $rs < $rt ? $rd = 1 : $rd = 0
1010 11 SLTU $rs < $rt ? $rd = 1 : $rd = 0

MIPS mult and div instructions y 12

Multiplications of 2 32-bit numbers can produce an answer up to 64 bits
long. The MIPS provides 2 registers HI and LO to store this result. HI gets
the most significant 32 bits of the result, LO the least significant 32 bits.

A division leaves the remainder in HI and the quotient in LO.

Data can be moved to/from HI/LO using the instructions mthi, mfhi, mtlo,
mflo respectively.

MIPS immediate instructions y 13

These instructions are also register-to-register but with an immediate (i.e.
constant value supplied within the instruction). These all use the I-type format

MIPS instruction set - sorted by opcode
Opcode Mnemonic Operands Function
0010 00 ADDI rs rt imm $rt = $rs + SignImm
0010 01 ADDIU rs rt imm $rt = $rs + SignImm
0010 10 SLTI rs rt imm $rs < SignImm ? $rt = 1 : $rt = 0
0010 11 SLTIU rs rt imm $rs < SignImm ? $rt = 1 : $rt = 0
0011 00 ANDI rs rt imm $rt = $rs & ZeroImm
0011 01 ORI rs rt imm $rt = $rs | ZeroImm
0011 10 XORI rs rt imm $rt = $rs ⊕ ZeroImm
0011 11 LUI rs rt imm $rt = { imm, { 16 { 1’b0 } } }

Lecture 9 — RISC Processor Design 33

MIPS branch and jump instructions y 14

These instructions allow the flow of control to be changed by calculating a new
program counter (PC) value. Some of the instructions are conditional to
support if type statements found in high-level languages.

MIPS instruction set - sorted by opcode
Opcode Mnemonic Operands Function
0000 01 BLTZ ($rt = 0) rs rt imm if ($rs < 0) PC = BTA

BGEZ ($rt = 1) if ($rs ≥ 0) PC = BTA
0000 10 J addr PC = addr
0000 11 JAL addr $ra = PC+4; PC = addr
0001 00 BEQ rs rt imm if ($rs == $rt) PC = BTA
0001 01 BNE rs rt imm if ($rs != $rt) PC = BTA
0001 10 BLEZ rs rt imm if ($rs ≤ 0) PC = BTA
0001 11 BGTZ rs rt imm if ($rs > 0) PC = BTA

The MIPS branch delay slot y 15

When a branch instruction occurs in assembler, a pipelined processor does not
know what instruction to fetch next.
We could:

Stall the pipeline until the decision is made – very inefficient

Predict the branch outcome and branch target, if the prediction is wrong,
flush the pipeline to remove the wrong instructions and load in the correct
ones

Execute the instruction after the branch regardless of whether it is taken or
not. By the time that instruction is loaded, the branch result is known. This
is the branch delay slot . The branch therefore does not take effect until
after the following instruction

Processors using one of the first 2 options are hardware interlocked

Processors using the final option are software interlocked, since they
require compiler support to produce code for that architecture

The MIPS processor is software interlocked

An Application’s View of Memory y 16

An application views memory as a linear sequence of bytes

Memory is referenced by addresses

usually addresses are in numbers of bytes from the start of memory

MIPS can access bytes, halfwords and words (32-bits in this case)

addresses for words must be word aligned (bits 0 and 1 zeroed)

addresses for halfwords must be halfword aligned (bit 0 zeroed)

words are normally stored in little endian but MIPS may be switched
to big endian. (N.B. the processor used in the labs is little endian
only)

MIPS memory access instructions y 17

Memory access instructions are of the format:
{lw|lh|lb|sw|sh|sb} $rd offset($rs)

The memory address is $rs + offset and the value at this location is loaded
into $rd.

Code Examples y 18

Using slt for register comparison — IF $rs < $rt THEN GOTO Label
SLT $rd, $rs, $rt
BNE $rd, $zero, Label
...

Label: # example label

Invert the bits in register $rd
NOR $rd, $rd, $rd

Loops — for (int i = 0; i < 10; i++) a = a + i;
ADDI $t0, $zero, 0
ADDI $t1, $zero, 0
loop:
ADD $t1, $t1, $t0
ADDI $t0, $t0, 1
SLTI $t2, $t0, 10
BNE $t2, $zero, loop
...

Overview of the ARM Processor y 19

market — embedded/low power systems (PDAs, set top boxes, machine
control etc) requiring good MIPS/Watt

instruction set — RISC — a load/store architecture: only special load and
store instructions can access memory, everything else is
register-to-register

registers — 16 registers, each 32-bit long

Example: Iterative Fibonacci Calculation y 20

; assume x is held in r0 at start
mov r1,#1 ; initialisation
mov r2,#1
mov r3,#2

loop: cmp r3,r0 ; if i>x
bgt finish ; then jump finish
add r1,r1,r2 ; a:=a+b
sub r2,r1,r2 ; b:=a-b
add r3,r3,#1 ; i:=i+1
b loop

finish: mov r0,r1 ; return result in r0

where x is held in register r0
a is held in register r1
b is held in register r2
i is held in register r3

would normally be wrapped up as a subroutine...more later...

The ARM Register File (application’s view) y 21

A register file is used to localise intermediate results which improves
performance. Also, only a simple and short operand encoding scheme is
required which facilitates fixed length instructions and fast decoding (more
later...).
ARM has:

15 × 32 bit general purpose registers (R0...R14)

R15 is also the PC (program counter)

CPSR — current program status register

34 Computer Design

Conditionals y 22

Every ARM instruction is conditionally executed according to top 4 condition
flags in the CPSR and the condition field of the instruction:

field code meaning
0000 EQ Z set (equal)
0001 NE Z clear (not equal)
0010 CS C set (unsigned higher or same)
0011 CC C clear (unsigned lower)
0100 MI N set (negative)
0101 PL N clear (positive or zero)
0110 VS V set (overflow)
0111 VC V clear (no overflow)
1000 HI C set and Z clear (unsigned higher)
1001 LS C clear and Z set (unsigned lower or same)
1010 GE N set and V set, or N clear and V clear (>=)
1011 LT N set and V clear, or N clear and V set (<)
1100 GT Z clear, and either N set and V set, or N clear and V clear (>)
1101 LE Z set, or either N set and V clear, or N clear and V set (<=)
1110 AL always — if no condition specified then assume AL
1111 NV never

Single Loads and Stores — machine code format y 23

N.B. don’t need to remember ARM instruction formats and mnemonics for the
exam!

Single Loads and Stores — assembler format y 24

< LDR|STR > {cond}{B}{T}Rd,< address >
where LDR = load

STR = store
cond = conditional execution bits

B = if present then byte transfer
T = if present then write back post-indexing

Rd = destination (LDR) / source (STR) register
< address > = one of the following:

PC relative pre-indexed address:
< expression > PC+ < expression >

Pre-indexed address (i.e. calculate first and optionally write to Rn):
[Rn{, < #expression >}]{!} Rn+ expression with optional write through (!)
[Rn, {+/−}Rm{, shift}]{!} Rn+ shifted(Rm) with optional write through (!)

Post-indexed address (i.e. calculate afterwards and write to Rn):
[Rn]{, < #expression >} Rn+ expression
[Rn], {+/−}Rm{, shift} Rn+ shifted(Rm)

Load and Store Multiple y 25

< LDM |STM > {cond} < FD|ED|FA|EA|IA|IB|DA|DB > Rn{!},
< Rlist > {̂}

where LDM/STM = load/store multiple
cond = conditional execution bits
Rn = base address register

! = write back
< Rlist > = 16 bit register selection field

̂ = load the CPSR along with the PC (user mode) or...
...force use of the user register bank (more later)

action stack mnemonic alternative mnemonic
pre-increment load LDMED LDMIB
post-increment load LDMFD LDMIA
pre-decrement load LDMEA LDMDB
post-decrement load LDMFA LDMDA
pre-increment store STMFA STMIB
post-increment store STMEA STMIA
pre-decrement store STMFD STMDB
post-decrement store STMED STMDA

Register/Memory Swap y 26

Swap a registers with memory:
SWP{cond}{B}Rd,Rm, [Rn]

Register Rd is loaded from address [Rn] followed by storing Rm to address
[Rn].

where {cond} — is the condition part
{B} — if present the swaps bytes, otherwise words

Rm,Rn,Rd — are registers

Data Processing Instructions — operations y 27

Mnemonic Action
AND operand1 AND operand2
EOR operand1 EOR operand2 (XOR)
SUB operand1 – operand2
RSB operand2 – operand1
ADD operand1 + operand2
ADC operand1 + operand2 + carry
SBC operand1 – operand2 + carry – 1
RSC operand2 – operand1 + carry – 1
TST as AND but results not written
TEQ as EOR but results not written
CMP as SUB but results not written
CMN as ADD but results not written
ORR operand1 OR operand2
MOV operand2 (operand1 is ignored)
BIC operand1 AND NOT(operand2)
MVN NOT(operand2) (operand1 is ignored)

Data Processing Instructions — assembler for-
mats y 28

Monadic instructions — MOV and MVN:
< opcode > {cond}{S}Rd,< Op2 >

Instructions which do not produce a result but set the condition codes — CMP,
CMN, TEQ, TST:

< opcode > {cond}Rn,< Op2 >

Lecture 9 — RISC Processor Design 35

Data Processing Instructions — assembler formats
cont... y 29

Dyadic instructions — AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, ORR,
BIC:

< opcode > {cond}{S}Rd,Rn,< Op2 >

where < cond > is the conditional execution part
{S} sets condition codes if present

< Op2 > = Rm,< shift > or < #expression >
Rd,Rn,Rm are registers

< #expression > is a constant expression
< shift > is < shiftname >< register >

or < shiftname > #expression
or RRX (rotate right one bit with extend)

< shiftname > is one of: ASL arithmetic shift left
LSL logical shift left (same as ASL)
LSR logical shift right
ASR arithmetic shift right
ROR rotate right

Multiply and Multiply-Accumulate y 30

Assembler syntax:
MUL{cond}{S}Rd,Rm,Rs
MLA{cond}{S}Rd,Rm,Rs,Rn

where {cond} is the condition part
{S} sets the condition codes if present

MUL performs Rd = Rm×Rs
MLA performs Rd = Rm×Rs+Rn

Branch and Branch with Link Instructions y 31

Assembler syntax:
B{L}{cond} < expression >

The < expression > is shifted 2 bits left, sign extended to 32 bits and added to
the PC. This allows PC relative branches to +/− 32 Mbytes.

If the L flag is set then the PC value is written to R14 before the branch takes
place. This allows subroutine calls.

Jumps (none PC relative branches if you like) may be performed by directly
writing to R15 which holds the PC.

Coprocessor Data Operations y 32

Provided by the Coprocessor Data Operation (CDP) instruction which has the
following assembler syntax:

CDP{cond} p#, < expression1 >, cd, cn, cm{, < expression2 >}

where {cond} is the usual conditional execution part
p# the unique number of the required coprocessor

< expression1 > a constant which represents the coprocessor operand
cd, cn and cm are the coprocessor registers

< expression2 > when present provides an extra 3 bits of information
for the coprocessor

Coprocessor Data Transfers y 33

Provided by a the LDC and STC instructions for loading and storing
coprocessor registers. The address is sourced from the CPU register file but
the other registers refer to the coprocessor.

Assembler syntax:

< LDC|STC > {cond}{L} p#, cd, < address >

where {cond} is the usual conditional execution part
{L} transfer length — coprocessor specific meaning
p# the unique number of the required coprocessor
cd is the coprocessor source or destination register

< address > is one of:
< expression > a PC relative address
[Rn{, < #expression >}]{!} pre-indexed address
[Rn]{, < #expression >} post-indexed address

N.B. see the last lecture for pre and post indexed addressing

Coprocessor Register Transfers y 34

For transferring registers between a coprocessor and the CPU.

Assembler syntax:

< MRC|MCR > {cond} p#, < expression1 >,Rd, cn, cm{, < expression2 >}

where {cond} is the usual conditional execution part
p# the unique number of the required coprocessor

< expression1 > a constant which represents the coprocessor operand
Rd is the CPU source/destination register

cn and cm are the coprocessor registers
< expression2 > when present provides an extra 3 bits of information

for the coprocessor

Floating-point Coprocessor y 35

The floating point coprocessor is not supported by the ARM710 but it is by
other ARMs. The following mnemonics are converted into the appropriate
coprocessor instructions by the assembler.

ASB absolute value Fd := ABS(Fm)
ACS arccosine Fd := ACS(Fm)
ADF add floating Fd := Fn + Fm
ASN arcsine Fd := ASN(Fm)
ATN arctangent Fd := ATN(Fm)
CMF compare floating Flags := (Fn == Fm)
CNF compare negative floating Flags := (Fn == –Fm)
COS cosine Fd := COS(Fm)
DVF divide floating Fd := Fn / Fm
EXP exponentiation Fd := eFm

FDV fast divide floating Fd := Fn / Fm (single precision)
FIX convert float to integer Rd := FIX(Fm)
FLT convert integer to float Fd := FLT(Rd)

etc...

Overly complex. Few instructions ever supported by the (slow) floating
point coprocessor — the others were handeled as exceptions

36 Computer Design

Code Examples y 36

Using conditional for logical OR — IF Rn=p OR Rm=q THEN GOTO Label
CMP Rn,#p
BEQ Label
CMP Rm,#q
BEQ Label
...

Label: ; example label

May be reduced to:
CMP Rn,#p
CMPNE Rm,#q
BEQ Label

Multiply by 2n, i.e. Rb := Ra× 2n:
MOV Rb, Ra, LSL #n

Multiply by 1 + 2n, i.e. Rb := Ra+Ra× 2n:
ADD Rb, Ra, Ra, LSL #n

Other ARM instruction sets y 37

This lecture presented the classic 32-bit ARM instruction set

ARM have introduced other instruction sets:

Thumb — their first 16-bit instruction set - better coding density

Thumb2 — a 16-bit and 32-bit instruction set

Jazelle DBX — direct execution of some Java bytecodes (with the
other instructions causing traps allowing software to emulate)

Lecture 10 — Memory Hierarchy 37

Computer Design — Lecture 10

Memory Hierarchy y 1

Overview of this Lecture
This lecture is about memory hierarchy (caching etc).

An Early Observation y 2

Ideally one would desire an indefinitely large memory capac-
ity such that any particular. . . word would be immediately avail-
able. . . We are. . . forced to recognize the possibility of construct-
ing a hierarchy of memories, each of which has greater capacity
than the preceding but which is less quickly accessible.

A. W. Burks, H. H. Goldstine and J. von Neumann
Preliminary Discussion of the Logical Design of
an Electronic Computing Instrument (1946)

Memory Hierarchy y 3

Common Memory Technologies y 4

static memory — SRAM

maintains store provided power kept on

typically 4 to 6 transistors per bit

fast but expensive

dynamic memory — DRAM

relies on storing charge on the gate of a transistor

charge decays over time so requires refreshing

1 transistor per bit

fairly fast, not too expensive

ROM/PROM/EPROM/EEPROM/flash memory

ROM — read only memory — data added by manufacturer

PROM — programmable ROM — write once

EPROM — erasable PROM — very slow erase (around 20 mins)

EEPROM — electronically erasable — faster erase

Flash memory — bank erasable

— increasingly common since high density and yet erasable
— slow write, fairly fast read

magnetic disk — Hard Disk

maintains store even when power turned off

much slower than DRAM but much cheaper per MB

Latency and Bandwidth y 5

latency = number of cycles to wait for data to be returned

bandwidth = amount of data returned per cycle

register file

multi-ported small SRAM

< 1 cycle latency, multiple reads and writes per cycle

first level cache

single or multi-ported SRAM

1 to 3 cycle latency, 1 or 2 reads or writes per cycle

second level cache

single ported SRAM

around 3 to 9 cycles latency, 0.5 to 1 reads or writes per cycle

main memory

DRAM

reads: anything from 10 to 100 cycles to get first word can receive
adjacent words every 2 to 8 cycles (burst read)

writes: single write 8 to 80 cycles, further consecutive words every 2
to 8 cycles (burst write)

hard disk

slow to seek/find (around 10ms or around 2×106 processor cycles),
returns a large block of data but may be faster due to onboard cache

Cache Principles y 6

make use of temporal and spatial locality of data accesses

temporal locality

if a word is accessed once then it is likely to be accessed again soon

spatial locality

if a word is accessed then its neighbours are likely to be accessed
soon

in both cases it would be advantageous to store the data close to the
processor

Naı̈ve Cache Design y 7

(fully associative, one word cache lines)

allow any word to be stored anywhere in the cache

so to find a word you have to be able to look it up by its address

this is called a content addressable memory (or CAM)

but too large since there is a huge amount of overhead involved in storing
and looking up addresses

Cache lines y 8

to make use of spatial locality store neighbouring words to form a cache
line

typically 4 or 8 words aligned in memory

take advantage of the fact that a group of words can be read (or written)
from DRAM in a burst

also reduces translation logic

38 Computer Design

Direct Mapped Cache y 9

use part of the address to map directly onto a cache line so a word can
only live in one place in the cache

Set Associative Cache y 10

direct mapped caches behave badly if data is being used from a range of
addresses which overlap in the cache

a set associative caches are direct mapped cache but with a set of cache
lines at each location

lookup the data in the direct mapped cache and used the appropriate
’valid’ tag to indicate which element to read from.

so a word at a particular address can be stored in n places where n is the
number of elements in a fully associative set (typically n = 2 or 4 but
sometimes 64 or more).

Victim Buffer/Cache y

victim buffer — a one line cache line buffer to store the last line overwritten
in the cache

used to augment a direct mapped cache to give it a small amount of
associativity

victim cache — an extension of the victim buffer idea, a small fully
assiciative cache used in conjunction with a direct mapped cache

Cache Line Replacement Policies
For Set Associative Caches y 11

(what to do when the cache is full)

Least Recently Used

good policy but requires usage information to be stored in the cache

Not Last Used

sort of “pass the hot potato”

pass the “potato” on if that cache line is accessed

“potato” tends to come to rest at cache line infrequently used

has a few pathological cases

Random

actually quite simple and works well in practice

Writes to the cache y 12

if data is already in the cache then write over it, otherwise two common
options are...

fetch on write

block is first loaded into the cache and the write is performed

write around

if it isn’t in the cache then leave it uncached but write result to the
next level in the memory hierarchy

Write Back & Write Through y 13

(when to write data to next level in the memory hierarchy)

write through or store through

data is written to both the cache and the lower level memory

so if a cache line is replaced, it doesn’t need to be written back to the
memory

write through common for multiprocessor computers so that cache
coherency is possible

write back or copy back or store in

data is written to the cache only

data only written to the lower level memory when its cache line is
replaced

a dirty bit may be used to indicate if the cache line has been
modified, i.e. if it needs to be written back

Write Buffer & Write Merging y 14

writing to lower level memory takes time

to avoid the processor stalling (waiting) a write buffer is used to store a few
writes

write buffer may also perform write merging

eliminate multiple writes to the same location

merge writes to the same cache line with the hope of performing a
write burst of consecutive words (faster than several single writes)

Virtual & Physically Addressed Caches y 15

address translation takes time and we would rather not introduce the extra
latency when reading from the cache

virtual and physical addresses only differ in the upper bits so if the cache
is no bigger than a page then the lower bits of the virtual address are
sufficient to access the cache without conflict with the physical address

if the cache is bigger than a virtual page then two alternatives are:

translate virtual to physical and use physical address to access cache
(adds latency)

use the virtual address to access the cache, perform address
translation concurrently, and compare physical tag with tag in cache
memory

— but when two virtual addresses map to the same physical
address (e.g. when sharing memory between processes) they
may be mapped to different places in the cache rather than one
as desired

— this is called cache aliasing
— up to the OS to ensure it only allocates shared addresses which

do not alias

Lecture 11 — Hardware for OS Support 39

Computer Design — Lecture 11

Hardware for OS Support y 1

Overview of this lecture
This lecture is about operating system support provided by the hardware
including memory management.

Introduction to Exceptions, Software Exceptions
and Interrupts y 2

Errors, like division by zero and illegal (or unsupported) instruction, cause
an exception to occur.

An exception terminates the current flow of execution and invokes an
exception handler.

Software exceptions are caused by inserting a special instruction
(SYSCALL on the MIPS, SWI on the ARM) which can be used to make an
operating system call.

Interrupts have a similar affect to exceptions except they are caused by an
external signal, e.g. a DMA (direct memory access) device signalling
completion.

Introduction to Operating Modes y 3

Applications normally run in user mode. However, when an interrupt or
exception occurs the processor is switched into an alternative mode which has
a higher privilege (kernel-mode on MIPS). By having a higher privilege, the
software handler is exposed to more of the internals of the processor and sees
a more complex memory model.

MIPS Exception Handling y 4

registers k0 and k1 ($26 and $27) reserved for kernal use

i.e. you’d better not use them for user code or they might get
clobbered! (not nice!)

the PC is saved in the EPC (exception PC) on coprocessor 0

Coprocessor 0 registers (MIPS R2000/R3000)
Exception registers

4 Context
8 BadVAddr — bad virtual address

12 SR — status register
13 Cause
14 EPC
15 PRid — process id
TLB registers (more later)

0 index into TLB
1 random number (assists software replacement policy)
2 TLB EntryLo

10 TLB EntryHi

Simple MIPS Exception Handler y 5

This simple exeption handler simply counts the number of exceptions. Note
that “exceptionCounter” must be stored somewhere that will never cause an
exception when accessed.

exceptionCounterHandler:

la k0,exceptionCounter # get address of counter

lw k1,0(k0) # load counter

nop # (load delay)

addi k1,k1,1 # increment k1

sw k1,0(k0) # store counter

mfc0 k0,C0_EPC # get EPC from coproc. 0

nop # (load delay, mfc0 slow)

j k0 # return to program

rfe # restore from exception (in delay slot)

User/Kernel mode bit held in SR (status register) along with interrupt mask
bits. rfe restores the interrupt mask and changes the mode back to user. rfe
usually executed in branch delay slow of a jump instruction.

Memory Protection and Memory Management y 6

Issues:

isolate different applications/threads

allocate physical memory easily (e.g. in 4kB blocks)

David Wheeler quote:
Any problem in computer science can be solved with another layer of
indirection. But that usually will create another problem.

History: David Wheeler invented the subroutine and many other things,
e.g. the Burrows-Wheeler transform which is the basis for bzip lossless
compression

Introduction to Virtual Addressing y 7

Notes on Virtual Addressing y 8

Virtual addresses are what an application uses to address its memory.

Virtual addresses must be converted to physical addresses so that they
reference a piece of physical memory.

Virtual to physical translation is usually performed on blocks of memory, or
“pages” (usually between 1 and 64 kbytes).

Thus, the upper bits of the virtual address correspond to the virtual page
and the lower bits specify an index into that page.

If there is insufficient physical memory then some of the pages may be
swapped to disk.

When an application attempts to use a page which has been swapped to
disk then the address translation mechanism causes an exception which
invokes the operating system. The operating system then swaps an
existing page from memory to disk, and then swaps the required page
from disk to memory.

Thus, virtual addressing allows a computer to appear to have a larger
main memory (a virtual memory) than it actually has.

It also simplifies memory allocation — e.g. any free physical page may be
mapped to extend a linear set of virtual pages.

40 Computer Design

Simplified View of Address Translation y 9

The big problem is that the translation table must be large. However, it is
sparse so a more complex data structure will solve the problem.

Translation Look-aside Buffer y 10

We can use a content addressable memory to store address translations -
a translation look-aside buffer (TLB).

Translation Look-aside Buffer cont... y 11

But associative TLBs don’t scale so they can only cache recently
performed translations so that they may be reused.

Typically TLBs have round 64 to 128 entries.

How do we handle a TLB miss? Hardware? Software?

Address translation — the problem y 12

if we have 4kB pages ⇒ 12 bits for page offset

if we have 32 bit addressing, then the virtual page number is 32− 12 = 20
bits

page table has 4 byte word for each entry, so simple page table
4× 220 = 4194304 bytes = 4MB memory per table (e.g. per application)

one solution: multilevel page tables (tree structure)

Multilevel Page Tables y 13

Alternative: Inverted Page Tables y 14

have a page table with an entry per physical page

each entry contains: (valid, processes ID, virtual page number)

advantage: compact table

disadvantage: have to search the table to match the virtual address
(solutions to this beyond the scope of this course)

Hardware page table walking on ARMs y 15

ARM processors and others (e.g. IA32 and IA64 processors) handle TLB
misses in hardware using page table walking logic.

The ARM710 supports address translation on the following block sizes:

1 Mbyte blocks — sections
64 kbyte blocks — large pages
16 kbyte blocks — a subpage of a large page
4 kbyte blocks — small pages
1 kbyte blocks — a subpage of the small page

First Level Fetch y 16

A translation table is provided for each section (1 Mbyte block):

N.B. The translation table base register is set by the operating system on a
context switch.

Lecture 11 — Hardware for OS Support 41

First Level Descriptor y 17

The first level pointer is used as an address to lookup the first level descriptor:

where domain identifies which of the 16 subdomains this belongs to
C & B control the cache and write-buffer functions (more later)

AP controls the access permissions — what can be read and
written in User and Supervisor modes.

Using a Section Base Address y 18

Using a Page Table Base Address y 19

page table base address is prepended with the level 2 (L2) table index to
form the second level pointer (see next slide)

the second level pointer is then used to look up the second level
descriptor:

where C & B control the cache and write-buffer functions (more later)
AP0...AP3 controls the access permissions — what can be read and

written in User and Supervisor modes — for the four subpages.

Translating Small Page References y 20

Translating Large Page References y 21

TLB and Memory Protection y 22

A TLB entry not only contains the translation information, but also the
protection data.

Possible exceptions raised:

alignment fault — e.g. attempting to read a 32 bit word from an
address which is not on a 4 byte boundary

translation fault — a TLB miss occurred and the relevant translation
information was not present in the translation structure

domain fault — the TLB entry does not have the same subdomain as
the currently executing application

permission fault — the current application does not have the correct
read or write permissions to access the page

Memory-Mapped I/O y 23

Input and Output (I/O) devices are usually mapped to part of the address
space

reading from an I/O device often has side effects, e.g. reading data from a
FIFO or reading the status of a device which might then clear the status

memory protection used to ensure that only the device driver has access

device drivers can be in user mode or kernel mode depending on the OS

some processors (notably IA32) have special instructions to access I/O
within a dedicated I/O address space

42 Computer Design

Single or Multiple Virtual Address Spaces? y 24

There are two principal virtual addressing schemes:

multiple address space — each application resides in its own separate
virtual address space and is prohibited from making accesses outside this
space.

single address space — there is only one virtual address space and each
application being executed is allocated some part of it.

Multiple address maps are often used — e.g. typically supported by UNIX.
Linking an application’s components together may be performed statically
(pre-run-time). However, sharing libraries and data is more difficult — it
involves having several virtual addresses for the same physical address.

Single address maps force linking at load time because the exact address of
any particular component is only known then. However, sharing libraries and
data is much simpler — only one virtual address for each physical one —
which also makes better use of the TLB (see later).

Lecture 12 — CISC machines and the Intel I32 Instruction Set 43

Computer Design — Lecture 12

CISC & Intel ISA y 1

Overview of this Lecture
This lecture is about the Intel instruction set.

A Brief History y 2

early 4-bit and 8-bit processors: 4004, 8008, 8080

8086 — 1978

16-bit processor with 16 internal registers and a 16 bit data path

registers not general purpose, so more of an extended accumulator
machine

20-bit address space (1MB)

8088 — later in 1978

as 8086 but 8-bit external datapath (cheaper than 8086)

8087 — 1980

floating-point coprocessor for 8086 based on an extended stack
architecture

80186 and 80188 — c1982

as 8086 and 8088 but reduced the need for so many external support
chips

80286 — 1982

extended addressing to 24-bits

introduced memory protection model

has a “Real Addressing” mode for executing 8086 code

A Brief History cont... y 3

80386 — 1985

extended architecture to 32-bits (32-bit registers and address space)

added new addressing modes and additional instructions

makes register usage more general purpose

80386SX version with smaller external data bus

80387

floating-point coprocessor for 80386

80486 — 1989

floating-point unit and caches on same chip

80486SX — floating-point disabled — crippleware!

Pentium (80586) — 1993

superscalar & larger caches

P6 Family (Pentium Pro, Pentium II, Celeron) — 1995

Pentium 4 — 2000

Xeon — 2001-

Core, Core 2 — 2006

Atom and Core i7, i5, i3 — 2008-

Integer Registers y 4

Floating-point Registers y 5

8 × 80-bit registers implementing a stack

floating-point instructions have one operand as the top of stack and the
other operand as any of the 8 floating-point registers

floating-point registers are also used to store byte and word vectors for
MMX (typically multimedia) operations

General Instruction Format y 6

variable length instructions typified by CISC era

more complex to decode that RISC but can be more compact

registers are specialised (although increasingly more general purpose)

prefixes modify main instruction behaviour

opcode specifies instruction, with the possibility of 3 additional bits from
the ModR/M field

ModR/M byte — specifies addressing mode and up to 2 registers
(instruction dependent)

SIB — extends ModR/M

44 Computer Design

Addressing Modes y 7

Data Types y 8

Data Types cont... y 9

BCD integers

just store digits 0...9 in 4-bits (packed) or 8-bits (unpacked)

bit fields

a contiguous sequence of bits which can begin at any position of any
byte in memory and can contain up to 32-bits

strings

contiguous sequences of bits, bytes words or doublewords.

a bit string can begin at any bit position of any byte and can contain
up to 232 − 1 bits

byte string can contain bytes, words, or doublewords and can range
from 0 to 232 − 1 bytes (4GB)

floating-point types

single (32-bit), double (64-bit), extended (80-bit) reals

word (16-bit), short (32-bit), long (64-bit) binary integers

18 digit BCD integer with sign

MMXTM

packed 64-bit data types to support multi-media operations (e.g.
JPEG)

Procedure Calling Convention y 10

parameters may be passed in the 6 general purpose registers
(GPR0,1,2,3,6,7)

these registers are not preserved across procedure boundaries

some or all of the parameters may also be passed on the stack

ESP (GPR4) points to top of stack

EBP (GPR5) points to base of stack (stack frame pointer)

CALL pushes the EIP (PC) onto the stack and then jumps to the procedure

RET pops the value off the stack into EIP, thereby returning to the routine
which made the call

for procedures in a different code segment, a far call is required

ENTER

allocates stack space for local variables (etc.) and sorts out stack
frame pointers for block structured languages (e.g. Pascal, Modula,
etc.)

see Compilers course

LEAVE

reverse of ENTER

Software Interrupts y 11

INTn

raise interrupt or exception n

can be used to call the OS (n = 128 for Linux OS call)

IRET

return from interrupt

INTO

raises overflow exception if overflow flag (OF) is set

BOUND

compares a signed value against upper and lower bounds and raises
bound exception if out of range

Lecture 12 — CISC machines and the Intel I32 Instruction Set 45

AMD64 vs. Intel 64 war y 12

Intel heading for new ISA incompatible with IA32: IA64

AMD introduced 64-bit extension to IA32 and won!

Intel played catch-up with Intel 64 (sometimes called x64)

Intel 64 y 13

64-bit flat linear addressing

no segment registers in 64-bit mode

old CS, DS, ES and SS segment registers treated as being zero

64-bit wide resiters and instruction pointers

8 additional general-purpose registers

8 additional registers for streaming extensions

new instruction-pointer relative-addressing mode

compatability mode for IA32 applications

Intel Instruction Set Summary y 14

full document available from:
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

46 Computer Design

Lecture 13 — Java Virtual Machine 47

Computer Design — Lecture 13

The Java Virtual Machine y 1

Overview of this Lecture
This lecture gives a taste of the Java Virtual Machine Architecture

Introduction y 2

the Java Virtual Machine (JVM) is a (virtual) processor specification for
running Java programs

JVM programs are typically executed by a Java interpreter

or can be code converted to run directly on another processor

– or a combination of the two with a Just In Time (JIT) compiler

or executed by a Java Processor

– may be slower than code converting to a register machine!

instruction set architecture is stack based with variable length byte code
instructions

Why use virtual machines?

→֒ virtual machines (abstract machine for which an interpreter exists) allows
portability

compile to an interpretive code

porting to new architecture requires writing new interpreter which is
(usually) easier than rewriting the back end to the compiler

also allows just one binary to be shipped for all architectures

A Brief History of Portable Interperative Codes y 3

not a new idea — a few examples (dates approximate):

1960 Redcode — used to play Core War (originally “Darwin”)
on MARS (Memory Array Redcode Simula-
tor)

1961 Algol intermediate code
1971 OCODE — by Martin Richards for BCPL (more recently,

Cintcode and Mintcode)
1976 P-Code — intermediate code produced by the Pascal-

P compiler (later used by UCSD P-system)
1982 PSL — Portable Standard Lisp from University Utah
1992 POPLOG — multi-language programming environment

developed at the University of Sussex
1995 Java VM — virtual machine for Java

Primative Data Types y 4

byte — 1-byte signed 2’s complement integer
short — 2-byte signed 2’s complement integer
int — 4-byte signed 2’s complement integer
long — 8-byte signed 2’s complement integer
float — 4-byte IEEE 754 single-precision float
double — 8-byte IEEE 754 double-precision float
char — 2-byte unsigned Unicode character
object — 4-byte reference to a Java object
returnAddress — 4 byte subroutine return address

Registers y 5

the JVM has 4 special purpose registers:

PC — program counter containing the address of the next bytecode
to be executed

vars — register holding base address of memory where local
variables are held

optop — register holding address of top of operand stack

frame — register holding address of base of current frame (holds
environment data)

Frames y 6

A frame is used to hold data for a method being executed

contains local variables, operand stack and other run time data

created dynamically each time a method is invoked, and is garbage
collected when the method terminates

Operand Stack y

used to hold intermediate results (instead of using a register file)

JVM Instructions — Genral Format y 7

opcode
operand 1
operand 2

...

first byte = opcode = 8-bit number of instruction

subsequent n bytes are operands (in big endian format), where n can be
determined from the instruction

JVM Instructions — Arithmetic Instructions y 8

all take one or two operands of the stack and replace with the result

96 iadd Integer add
97 ladd Long integer add
98 fadd Single floats add
99 dadd Double float add
100 isub Integer subtract
101 lsub Long integer subtract
102 fsub Single float subtract
103 dsub Double float subtract
104 imul Integer multiply
105 lmul Long integer multiply
106 fmul Single float multiply
107 dmul Double float multiply
108 idiv Integer divide
109 ldiv Long integer divide
110 fdiv Single float divide
111 ddiv Double float divide
112 irem Integer remainder
113 lrem Long integer remainder
114 frem Single float remainder
115 drem Double float remainder
116 ineg Integer negate
117 lneg Long integer negate
118 fneg Single float negate
119 dneg Double float negate

similarly for logical operations (AND, OR, NOT, shifts, etc.)

JVM Instructions — Stack Manipulation y 9

0 nop Do nothing
87 pop Pop top stack word
88 pop2 Pop 2 top stack words
89 dup Duplicate top stack word
92 dup2 Duplicate top 2 stack words
90 dup x1 Duplicate top stack word and put 2 down†
93 dup2 x1 Duplicate top 2 stack words and put 2 down
91 dup x2 Duplicate top stack word and put 3 down
94 dup2 x2 Duplicate top 2 stack words and put 3 down
95 swap Swap top 2 stack words

† where put n down means insert the value n places into the stack, e.g.
dup x1 does:

..., value2, value1 ⇒ ..., value1, value2, value1

48 Computer Design

JVM Instructions — Jumps, etc. (incomplete) y 10

conditional (if required) is popped off the stack

most branches are 16 bit indicies relative to the PC

153 ifeg Branch if equal (i.e. value popped is zero)
154 ifne Branch if not equal (i.e. value! =0)
155 iflt Branch if less than (i.e. value<0)
156 ifge Branch if greater or equal to (i.e. value>=0)
157 ifgt Branch if greater than (i.e. value>0)
158 ifle Branch if less than or equal (i.e. value<=0)
159 if icmpeq Branch if top 2 items of the stack are equal
160 if icmpne Branch if top 2 items of the stack are not equal
161 if icmplt Branch if top 2 items of the stack are less than
162 if icmpge Branch if top 2 items of the stack are greater or equal
163 if icmpgt Branch if top 2 items of the stack are greater than
164 if icmple Branch if top 2 items of the stack are less or equal
198 ifnull Branch if null (i.e. value popped is null ref to object)
199 ifnonnull Branch if not null (i.e. value popped is a ref to object)
167 goto Unconditional jump
200 goto w Unconditional jump to 32-bit offset
168 jsr Jump subroutine, return address pushed on stack
201 jsr w As jsr but 32-bit offset
169 ret Return from subroutine
209 ret w As ret but 32-bit offset

JVM Instructions — Objects and Arrays y 11

object management (complex):

new — create a new object (memory allocation, etc.)

checkcast — make sure object can be converted to a given type

instanceof — determine if an object is of a given type

managing arrays:

newarray, anewarray, multianewarray — array creation

arraylength — array size

iaload, laload, faload, daload, aaload, baload, caload, saload — extract
item from an array

iastore, lastore, fastore, dastore, aastore, bastore, castore, sastore —
save item in an array

JVM Instructions — Miscellaneous y 12

return values function (ireturn, lreturn, freturn, dreturn, areturn, return) all
push return values of a particular type onto stack in previous frame
(caller’s frame)

tableswitch — long variable length instruction which takes the form:

tableswitch default offset low value high value

array of jump offsets

which pops an index off the stack and does the following:

if((index<low_value) || (index>high_value))

goto default_offset

else

goto array_of_jump_offsets[index]

lookupswitch — similar to tableswitch but jump table is indexed
associatively

manipulating object fields — putfield, getfield, putstatic, getstatic (don’t
worry about details!)

method invokation — invokevirtual, invokenonvirtual, invokestatic,
invokeinterface

exception handling — athrow

concurrency control — monitorenter, monitorexit

Example Fibonacci Program in Java y 13

class Fib {

public static void main(String[] args) {

for(int i = 0; i<10; i++)

System.out.println("Fib(" + i + ") = " + fib(i));

}

static public int fib(int n) {

if(n<2)

return 1;

else

return fib(n-1)+fib(n-2);

}

}

compile using ‘javac Fib.java’ and disassemble using ‘javap -c Fib’ (e.g. on
Linux part of Thor — belt or gloves)

Disassembly y 14

Compiled from Fib.java

synchronized class Fib extends java.lang.Object

/* ACC_SUPER bit set */

{

public static void main(java.lang.String[]);

public static int fib(int);

Fib();

}

Method void main(java.lang.String[])

0 iconst_0

1 istore_1

2 goto 42

5 getstatic #13 <Field java.io.PrintStream out>

8 new #6 <Class java.lang.StringBuffer>

11 dup

12 ldc #2 <String "Fib(">

14 invokespecial #9 <Method java.lang.StringBuffer(java.lang.String)>

17 iload_1

18 invokevirtual #10 <Method java.lang.StringBuffer append(int)>

21 ldc #1 <String ") = ">

23 invokevirtual #11 <Method java.lang.StringBuffer append(java.lang.String)>

26 iload_1

27 invokestatic #12 <Method int fib(int)>

30 invokevirtual #10 <Method java.lang.StringBuffer append(int)>

33 invokevirtual #15 <Method java.lang.String toString()>

36 invokevirtual #14 <Method void println(java.lang.String)>

39 iinc 1 1

42 iload_1

43 bipush 10

45 if_icmplt 5

48 return

Disassembly cont... y 15

Method int fib(int)

0 iload_0

1 iconst_2

2 if_icmpge 7

5 iconst_1

6 ireturn

7 iload_0

8 iconst_1

9 isub

10 invokestatic #12 <Method int fib(int)>

13 iload_0

14 iconst_2

15 isub

16 invokestatic #12 <Method int fib(int)>

19 iadd

20 ireturn

Method Fib()

0 aload_0

1 invokespecial #8 <Method java.lang.Object()>

4 return

Lecture 13 — Java Virtual Machine 49

Resources y 16

Java virtual machine:

http://www.cl.cam.ac.uk/javadoc/vmspec/

Miscellaneous — Free Online Dictionary of Computing (FOLDOC):

http://wombat.doc.ic.ac.uk/foldoc/

50 Computer Design

Lecture 14 — Pipelining 51

Computer Design — Lecture 14

Pipelining y 1

Overview of this lecture
This lecture is about pipelining.

Review of MIPS Execution Sequence y 2

instruction memory (instruction fetch)

decoder

register file

branch/jump

execute (ALU)

data memory (memory access)

write back

MIPS data movement y 3

Sequential vs pipelined — trading latency for fre-
quency y 4

Sequential

maximum latency = ℓs =
∑

2

i=0
maxtime(taski)

maximum frequency = 1
ℓs

Pipelined

maximum task time = mt = MAX
2

i=0maxtime(taski)
maximum latency = ℓp = 3× (mt+ latch time)

maximum frequency = 1
mt+latch time

MIPS pipeline y 5

Sequencing y 6

five pipeline stages/steps identified:

1. instruction fetch (IF)

2. decode/branch/register fetch (DC)

3. execute (EX)

4. memory access (MA)

5. write back (WB)

sequencing options:

sequential — perform each step one at a time

parallel — perform all steps in parallel

parallelism offers more performance, but the programmer’s model must be
preserved (or modified to fit what the hardware is doing)

Pipelining: data hazards (example 1) y 7

example code:

add t4,t1,t2 // A1: t4=t1+t2

add t5,t4,t3 // A2: t5=t4+t3

pipeline behaviour:
time IF DC EX MA WB

0 A1 ? ? ? ?
1 A2 A1 ? ? ?
2 ? A2 A1 ? ?
3 ? ? A2 A1 ?
4 ? ? ? A2 A1
5 ? ? ? ? A2

dependency on register t4 is a problem

A2 uses the old value of t4 because A1 hasn’t written its result back

Pipelining: data hazards (example 2) y 8

example code:

lw t2,0(t1) // L: t2=load(t1)

add t3,t3,t2 // A: t3=t3+t2

pipeline behaviour:
time IF DC EX MA WB

0 A ? ? ? ?
1 L A ? ? ?
2 ? A L ? ?
3 ? ? A L ?
4 ? ? ? A L
5 ? ? ? ? A

dependency on register t2 is a problem

A uses the old value of t2 because L hasn’t written its result back

52 Computer Design

Pipelining: Data hazards (stall) y 9

example code:

add t4,t1,t2 // A1: t4=t1+t2

add t5,t4,t3 // A2: t5=t4+t3

pipeline behaviour with stalls avoid hazards:
time IF DC EX MA WB

0 A1 ? ? ? ?
1 A2 A1 ? ? ?
2 ? A2 A1 ? ?
3 ? A2 B A1 ?
4 ? A2 B B A1
5 ? ? A2 B B
6 ? ? ? A2 B
7 ? ? ? ? A2

A2 stalled at decode stage until result written

no-operations/bubbles (B) inserted into pipeline

bubbles reduce performance

Pipelining: Data hazards (forwarding) y 10

• forwarding (or bypass) paths added to get the result to the execute stage
faster

Pipelining: Stall still required for load y 11

example code:

lw t2,0(t1) // L: t2=load(t1)

add t3,t3,t2 // A: t3=t3+t2

pipeline behaviour:
time IF DC EX MA WB

0 A ? ? ? ?
1 L A ? ? ?
2 ? A L ? ?
3 ? A B L ?
4 ? ? A B L
5 ? ? ? A B
6 ? ? ? ? A

stall still required to allow L instruction to complete

forwarding reduces bubbles from 2 to 1

load is said to have one load delay slot for this pipeline

Hardware vs Software Interlocks y 12

hardware interlocks (common approach)

preserve a simple sequential programming model, but add complexity
to the control logic (hardware)

a score board can be used to indicate availability of data items

– one bit flag per register indicating if the register is available
– load instructions clear the destination register flag during decode

& set the flag again during memory access

software interlocks

expose the load delay slot to the programmer/compiler

simple sequential programmer’s model is not preserved

problem: architecturally dependent, so code is not portable between
architectures unless you preserve the old pipeline model

hardware interlocks usually used, but compiler needs to optimise code to
avoid triggering hardware interlock stalls to get max. performance

Microprocessor without Interlocked
Pipeline Stages y 13

“MIPS” (as in the MIPS architecture) comes from “Microprocessor without
Interlocked Pipeline Stages”

originally all hazards were to be resolved in software

branch delay slots exposed but load delay slots are not on later
machines

hardware interlocks on result of mul or div allow for different
implementations of these functions to trade area for performance

some compilers for MIPS (e.g. gcc for MIPS) optionally allows you to
enable or disable software resolution of hazards (e.g. branch delay
slots) depending upon the amount of hardware support

Note that “MIPS” is also used in computer architecture to mean “Millions of
Instructions Per Second” (just to add to the confusion!)

Control Hazards (branch delay slots) y 14

example code:

j label // J: jump to label

add t3,t1,t2 // A1: t3=t1+t2

label: add t6,t4,t5 // A2: t6=t4+t5

pipeline behaviour:
time IF DC EX MA WB

0 J ? ? ? ?
1 A1 J ? ? ?
2 A2 A1 B ? ?
3 ? A2 A1 B ?
4 ? ? A2 A1 B
5 ? ? ? A2 A1
6 ? ? ? ? A2

problem: jump/branch taken in DC (then converted into a bubble (B)), but
A1 already fetched

solution 1: flush A1 from the pipeline (convert to a bubble)

solution 2: execute A1 anyway (i.e. expose the branch delay slot)

MIPS uses option 2 (i.e. it has branch delays slots)

Lecture 14 — Pipelining 53

Conditional Branches and Data Hazards y 15

conditional branches require register values very early in the pipeline

forwarding only helps a little, e.g.:

addi t1,t1,-1 // A: t1=t1-1

beq t1,zero,label // BR: branch if t1==0

nop // N: no operation

pipeline behaviour:
time IF DC EX MA WB

0 A ? ? ? ?
1 BR A ? ? ?
2 N BR A ? ?
3 N BR B A ?
4 ? N B B A

conditional branch (BR) has to stall in decode until result from A is
available via a forwarding path

introduces 1 bubble even with forwarding

note that when BR has executed in decode, a bubble (B) propagates to
the rest of the stages

Alternative: Executing Branches at EX Stage y 16

allows the ALU to be used to calculate the branch target (ARM7 does this)

register values available via bypass network for conditional check

but it results in two branch delay slots

54 Computer Design

Lecture 15 — Communication on and off chip 55

Computer Design — Lecture 15

Communication on and off chip y 1

Overview of this lecture
This lecture is about communication off-chip and on-chip.

From theory to practise

Trends and examples in off-chip communication

The changing face of on-chip communication

Why communication isn’t trivial y 2

Transmission lines y 3

Engineering rule of thumb: when the wire is longer than 1/100 of the
wavelength, then we need to consider the transmission properties of the wire
(e.g. any wire over 3mm for a 1GHz signal).

Where: R = resistance (Ohms) of the wire
G = conductance (Siemens = Ohm−1) of the insulator
L = inductance (Henries) — magnetism between the wires
C = capacitance (Farads) — capacitance formed by wires and insulator

Balanced transmission y 4

Characteristic impedance — For a loss-less transmission line (i.e. R and
G are negligible) which is terminated the characteristic impedance is given
by:

Z0 =
√

L

C

where Z0 is the characteristic impedance measured in Ohms.

The model gets a lot more complex when you consider resistance,
reflected waves and irregular conductors and insulators — see Maxwell’s
equations...

Reflections — An electrical pulse injected into a transmission line has
energy. If the end of the transmission line is unconnected, the pulse is
reflected!

Termination — To prevent reflections, the energy should be dissipated at
the receiver, e.g. using a resistor which is equal to Z0

Parallel Communication y 5

Parallel communication is usually synchronous: data is sent in parallel
(e.g. 8, 16 or 32 bits at a time) and a clock or request signal is usually sent

Timing assumption: the data bits arrive almost simultaneously and the
timing relationship between the data bits and the clock is preserved

Problem: transmission line effects result in timing skew between signals
on wires

Conclusion: parallel communication doesn’t work well for high clock
frequencies over long distances

The longer the distance, the bigger the problem:

PCI (expansion cards in PCs) was limited to 66MHz

but DDR2 memory chips already operating at 660MHz (shorter
distance, closer matched transmission parameters, etc.)

Also, bidirectional communication using tristate drivers works even less
well (lots of nasty timing and electrical issues)

Serial Communication y 6

Serial communication serialises the data before transmitting (usually)
asynchronously

The data is usually coded, e.g. 8B/10B coding which converts every 8-bits
to a 10-bit symbol guaranteeing the maximum run length (i.e. the
minimum number of transitions used for resynchronisation) and DC
balancing (i.e. same number of 1s and 0s which allows for AC coupling via
capacitors or transformers)

The clock is recovered from the data stream, e.g. using a Phase Locked
Loop (PLL) which is used to retrieve the data

Data is usually sent differentially over a twisted pair or coaxial connection
(i.e. over a good transmission line)

High data rates are possible:

1Gb/s and more recently 10Gb/s for Ethernet

3Gb/s for SATA (to disks)

2.5Gb/s per lane for PCI-e (PCI-express)

Example: PCI and PCI-e y 7

PCI PCI-e
clock rate 33 or 66 MHz 2.5 GHz (5 GHz soon)
transmission 32 or 64 bits parallel up to 32 serial links 8B/10B
signalling 5V single rail signals 2.5V differential signals

bus based, bidirectional links point-to-point unidirectional links
max bandwidth 4.2 Gb/s 64 Gb/s (after coding removed)

So what is the difference between parallel communication and several
serial links?

Striping vs parallel transmission?

Wires vs transistor costs y 8

General trend: increasingly communication costs more than
computation

Prediction: this will have a fundamental impact on computer design

More trivial example: RS-232 vs USB

simpler connector reduces costs

twisted pair communication improves bandwidth

more intelligence allows more sophisticated protocols to be used, e.g.
makes plug-and-play possible
(an optical mouse probably has more compute power than very early
computers!)

56 Computer Design

RS-232y 9

very old but still commonly used asynchronous serial line standard

electrical:

originally used current-loop signalling

in 1969 the EIA updated to RS-232C which used voltage signalling

with a further update in 1986

but the standard doesn’t specify enough so there are lots of different
RS-232 cables and connectors

protocol:

very simple...

individual wires to report status, e.g. “telephone ringing” (RI)

speed and number of data bits and stop bits set by operator

some more modern devices will auto-detect speed and number of
data and stop bits

but originally intended for very dumb devices (e.g. electro-mechanical
teletype)

some devices ignore the handshake wires (RTS, CTS, etc) but
instead use a software handshake protocol (ctrl-S to stop data send
and ctrl-Q to restart which are still used on X-terminals, etc.)

RS-232C Pin Definitions y 10

pin number
name 25-pin 9-pin direction function
TD 2 3 out transmitted data
RD 3 2 in received data
RTS 4 7 out request to send
CTS 5 8 in clear to send
DTR 20 4 out data terminal ready
DSR 6 6 in data set ready
DCD 8 1 in data carrier detect
RI 22 9 in ring indicator
FG 1 – frame ground (=chassis)
SG 7 5 signal ground

Serial Data Transmission — sending an ’A’ y 11

Here the receiver is recovering the data by oversampling the signal to
identify where the edges are and hence the middle positions of the bits

ASCII code for character A= 6510 = 4116 = 010000012

rising edge of start bit (a logic-0) allows sampling circuit to synchronise

stop bit (a logic-1) ensures that a 0 is always transmitted before the next
start bit to ensure resynchronisation

if no data is being sent the line remains at logic-1

USBy 12

Universal Serial Bus (USB)

designed to support a range of devices

keyboards, mice, modems, ISDN, audio, slow scanners, printers,
interfacing to mobile devices etc.

devices can be chained together

e.g. from computer to keyboard and then to mouse

electrical:

a twisted data pair (bidirectional differential signalling)

power and ground lines to supply power to devices

USB 1.1: 1.5Mb/s slow mode, 12Mb/s full speed

USB 2 added a 480Mb/s mode

protocols:

includes a standard to allow devices to be identified by class, vendor,
etc., to allow plug and play

moderately complex initialisation and usage protocols (requires
intelligent devices)

USB on the Desktop y 13

USB Cable and Plugs y 14

A and B plugs ensure star wiring

On-chip communication y 15

Communication on chip has been reasonably easy

lots of wires available

short distances

But wire scaling favours transistors over wires

Moving from bidirectional buses to point-to-point parallel links to switched
networks

Lecture 15 — Communication on and off chip 57

On-chip bus protocols y 16

Motivation: make it easier to reuse larger hardware components
(processors, I/O devices, memories, etc.)

ARM’s AMBA Buses:

ARM’s AMBA Highspeed Bus Architecture (AHB) is widely used

Freely available communications protocol standard

More recently: AXI (AMBA eXtensible Interface)

OpenCores.org:

Wishbone interconnect

Altera buses for their FPGAs:

Avalon — memory communication bus for their NIOS processors and
associated I/O units

Atlantic — point-to-point interfacing of library components

Networks-on-Chip y 17

Challenges:

multiple clock cycle communication latencies

wire reuse to prevent an explosion in wiring complexity

multiple processors, memories and I/O devices on the same chip

On-chip routers are being developed

commercially from Ateris, Sonics Inc., Silistix, ...

lots of research to be done...

58 Computer Design

Lecture 16 — Many-Core 59

Computer Design — Lecture 16

Many-core machines y 1

Overview of this lecture
This lecture reviews parallelism from instruction-level to many-core
architectures.

Flynn’s Taxonomy of Parallel Architectures y 2

Instruction Streams
Data Streams Single Multiple

Single SISD MISD
uniprocessor not interesting?

Multiple SIMD MIMD
vector processing many core

Instruction Level Parallelism (ILP) y 3

independent instructions can be executed in parallel

e.g. the following instructions have independent destination registers and
the result from the first is not used by the second

add t0,t1,t3

add t4,t2,t3

processors which exploit ILP are often said to be superscalar

programmer’s model is still SISD but some parallelism is extracted

Super Pipelining y 4

execution rate can be increased by making the pipelining more fine
grained

also have to pipeline the caches

diminishing returns and increased power

penalty for miss-predicted branch is high

Pentium 4 was probably near the limit with 31 pipeline stages (Cedar Mill
version)

Simultaneous Multithreading (SMT) y 5

idea: hold the context (registers/flags) for 2 or more threads in the
processor and schedule them in hardware

MIMD on one processor

scheduling might interleave instruction issues every cycle

combine with superscalar processing to issue from both threads in the
same cycle

Intel’s name for its version of SMT: hyperthreading — usually just 2
threads per CPU

Companion Scheduling y 6

1
6

4
.g

zi
p

1
7

5
.v

p
r

1
7

6
.g

cc

1
8

1
.m

cf

1
8

6
.c

ra
ft

y

1
9

7
.p

a
rs

e
r

2
5

2
.e

o
n

2
5

3
.p

e
rl

b
m

k

2
5

4
.g

a
p

2
5

5
.v

o
rt

e
x

2
5

6
.b

zi
p

2

3
0

0
.t

w
o

lf

1
6

8
.w

u
p

w
is

e

1
7

1
.s

w
im

1
7

2
.m

g
ri

d

1
7

3
.a

p
p

lu

1
7

7
.m

e
sa

1
7

9
.a

rt

1
8

3
.e

q
u

a
ke

1
8

8
.a

m
m

p

2
0

0
.s

ix
tr

a
ck

3
0

1
.a

p
si

164.gzip

175.vpr

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.twolf

168.wupwise

171.swim

172.mgrid

173.applu

177.mesa

179.art

183.equake

188.ammp

200.sixtrack

301.apsi

Speedup > 30%

Speedup 25 to 30%

Speedup 20 to 25%

Speedup 15 to 20%

Speedup 10 to 15%

Speedup 5 to 10%

Approx same

Slowdown 5 to 10%

Slowdown 10 to 15%

Slowdown 15 to 20%

Slowdown > 20%

Figure from James Bulpin’s thesis UCAM-CL-TR-619 — SPEC CPU2000
benchmarks running on a Prescott

Companion Scheduling cont... y 7

the good: one thread might run whilst another is waiting for data

e.g. one thread may be waiting on a cache miss but another thread
can be scheduled so the processor is kept busy

i.e. multithreading offers tolerance to memory latencies

results in applications run in parallel completing earlier than if they
had been run sequentially one after the other

makes more efficient use of the memory system which is really more
important than keeping the processor busy

the bad: independent applications/threads compete for resources

e.g. one thread can “pollute” the cached data of another

results in applications running slower in parallel than if they had been
run sequentially one after the other

the ugly: 3 or more active threads is a bad fit on Prescott

CMP/Multi-Core y 8

CMP = Chip Multi-Processor

MIMD

Multi-Core = Intel’s name for CMP

typical configuration:

currently small numbers of processors with shared L2 or L3 cache

can be combined with SMT/hyperthreading

60 Computer Design

Shared Memory y 9

shared memory ⇒ threads share a coherent view of memory

definition: a memory system is coherent if the results of any execution of a
program are such that for each location is is possible to construct a
hypothetical serial order of all operation to the location that it consistent
with the results of the execution in which:

1. operations issued by any particular process occur in the order issued
by that process, and

2. the value returned by a read is the value written by the last write to
that location in the serial order

two necessary features:

1. write propagation — value written must become visible to others

2. write serialisation — write to location seen in the same order by all

Shared Memory Approaches y 10

simple approach — broadcast writes, e.g. over a shared bus

caches are updated (made coherent) by “snooping” the broadcast
data

clearly doesn’t scale beyond a few (e.g. 4) processors

more complex approach — directory based cache coherency

a directory (e.g. one entry per page) identifies the master writer
processor and any reader processors

updates are then multicast rather than broadcast

more scalable, but directory still grows linearly with the number of
processors + the directory has to be distributed

still results in a lot of memory traffic

more on cache coherency in Comparative Architectures

Shared Memory: Atomic Actions y 11

Need hardware to prove some sort of atomic primitive, e.g.:

test & set

swap

fetch & operation (fetch-and-increment, fetch-and-decrement)

compare and swap

all can be used to provide a locking mechanism used to protect critical
sections

the memory system has to be designed to make these atomic

system-wide atomic operations usually take a significant amount of time

Test and Set Example y 12

Pseudo code:

do {

while(lock != free) { wait(period); } // initial wait

} while(testAndSet(lock) != free); // atomic operation

critical section...

lock = free; // release lock

Notes:

“initial wait” spins looking at the copy of the lock in the processor’s
cache and waits (e.g. exponential back-off) if the lock is not acquired

“atomic operation” only attempts to acquire the lock if it is likely to be
free since the “testAndSet” operation is usually quite expensive

problem: when lock is released and there are N waiting threads then
there might be as many as N “testAndSet” operations which can be
expensive

Distributed Memory & Message Passing y 13

separate distributed memories are more scalable

e.g. cluster of PCs

communication typically undertaken using message passing

i.e. the programmer has control over the communication complexity

any parallel algorithm can be rewritten to use message passing or shared
memory, but some algorithms more naturally map to one or the other

MPI & OpenMP y 14

MPI = Message Passing Interface

platform and language independent communication system

see also Open MPI

OpenMP = Open Multi-Processing

used to add parallelism to shared memory systems

consists of a set of compiler directives, library routines, and
environment variables that influence run-time behaviour

e.g.:

#define N 100000

int main(int argc, char *argv[])

{

int i, a[N];

#pragma omp parallel for

for (i=0;i<N;i++)

a[i]= 2*i;

return 0;

}

Software Approaches y 15

functional parallel

split application up into reasonably separate tasks

e.g. separate rendering from AI engines in gaming

little inter task communication

data parallel

have several threads crawl over a large data set in parallel

e.g. large matrix operations

streamed/software-pipelined

split data processing into a set of steps that can be processed in
parallel

stream the data set (and the subsequent intermediate results)
through the steps/threads

hybrid — any mixture of the above

see Concurrent Systems course for more details

Lecture 16 — Many-Core 61

Some other companies doing parallel computing y
16

XMOS in Bristol have a very low cost 4 processor chips for embedded
applications. Each processor supports 1 to 8 threads (require 4 or more to
get full performance). XC language — cut-down version of C with
concurrency and channel communications added. Rebirth of the Inmos
Transputer and Occam language (CSP inspired)?

Picochip in Bath — very fine grained processors. Looks more like a
course grained FPGA and is a bit of a nightmare to program.

ARM in Cambridge — a range of processor cores that can be used in
CMP configurations.

Broadcom in Cambridge — bought up Alphamosaic (spin out from
Cambridge Consultants; a video processing chip for embedded
applications) and Element-14 (came out of Acorn; Firepath chip for signal
processing, e.g. DSL line cards).

Tilera in USA — spin-out from MIT; 64 processor chip which looks likes a
bit like a course grained FPGA.

Sun in USA — T1 and T2 multi-core and multi-threaded processors used
in server environments (SPARC ISA). T1 developed by start-up which was
bought by Sun.

Concluding Remarks y 17

optimum number of threads problem

architecture specific — you usually need as many threads as the
hardware can natively support (numberCPUs ×
numberHyperthreads)

too many threads and scheduling has to be done by the OS which is
painful

too few threads and you drop performance on the floor

places a large burden on the application writer to write code which
adapts to different platforms

the future

I believe that we need an “infinite” thread model, i.e. the hardware
can schedule a very large number of threads just like an OS can

the OS then does the out-of-band management (setting priority
levels, etc.)

62 Computer Design

Lecture 17 — Data-flow Machines & Future Directions 63

Computer Design — Lecture 17

Data-flow and Future Directions y 1

Overview of this Lecture
Comparing the principles of data-flow and control-flow processors (or “von
Neumann” processors after the work of von Neumann, Eckert and
Mauchly)

Problems with control-flow processors

Data-flow implementation techniques:

static data-flow

coloured dynamic data-flow

tagged token dynamic data-flow

Evaluation of data-flow

Review and future directions

Comparing Control-flow & Data-flow y 2

Problems with Control-flow y 3

typically optimised to execute sequential code from low latency memory:

concurrency simulated via interrupts and a software scheduler which:

has to throw the register file away and reload

disrupts caching and pipelining

jump/branch operations also disrupt the pipeline

load operations easily cause the processor to stall (cannot execute
another thread whilst waiting).

notes:

multiple pipelines and an increasing disparity between processor and
main memory speed only accentuate these problems

perform badly under heavy load (esp. multithreaded environments)

multiprocessor code is difficult to write

Implementation 1 — Static Data-flow y 4

source: J. Dennis et al. at MIT
characteristics:

at most one token on an arc

backward signalling arcs for flow control

tokens are just address, port and data triplets 〈a, p, d〉

example instruction format:

op-code op1 (op2) dst1 + dc1 (dst2 + dc2) sig1 (sig2)

where () indicates optional parameters
op-code is the instruction identifier
op1 and op2 are the space for operands to wait (op2 missing for monadic
operations)
dst1 and dst2 are the destinations (dst2 being optional)
dc1 and dc2 are destination clear flags (initially clear)
sig1 and sig2 are the signal destinations (handshaking arcs)

Example Static Data-flow Program y 5

address instruction
(e.g.) op-code operands dests. dests. clear sigs.
0x30 mul , , 0x31ℓ,nil, , , (a)ℓ,(b)ℓ
0x31 add , , 0x33ℓ,nil, , , 0x30ℓ,0x32ℓ
0x32 div , , 0x31r,nil, , , (a)r,(c)ℓ
0x33 ret , , undef,undef, , , 0x31ℓ,(dest)ℓ

notes:

instruction ordering in the memory is unimportant

= space for operand to be stored

= space for destination clear to be stored (initially clear)

ℓ and r indicate left or right port

(a),(b) and (c) are difficult to determine — dependent on calling code

functions are difficult to implement because:

mutual exclusion required on writing to function input arcs

backward signal arcs have to be determined

solution: code copying (horrible!)

Implementation 2 — Coloured Data-flow y 6

example machine: Manchester data-flow prototype
characteristics:

many tokens on an arc and no backward signal arcs for flow control

tokens have a unique identifier, a colour, which identifies related data
items

matching tokens for dyadic operations by matching colours

thus, function calls by each caller using a unique colour

instruction format: similar to static data-flow but no backward signals and
operand storage is more complex.
problems:

matching colours is expensive

implemented using hashing with associated overflow

difficult to pipeline

garbage collecting unmatched tokens is expensive

uncontrolled fan-out can cause a token explosion problem

64 Computer Design

Implementation 3 — Tagged-token Data-flow y 7

example machines: Monsoon machine (MIT) and EM4
(Japan)
characteristics:

dynamic data-flow, so many tokens per arc

separates the token storage from the program into activation frames
(similar to stack frames for a concurrent control-flow program)

function calls generate a new activation frame for code to work in

tokens have an associated activation frame instead of a colour

activation frames are stored in a linear memory with an empty/full flag for
every datum, 〈type, value, port , presence〉

Example Tagged Token and
Instruction Formats y 8

example token format:

tag data
frame pointer statement pointer port type value

where frame pointer = address of the start of the activation frame
statement pointer = address of the target statement

port = indicates left or right operand
type = integer, floating point etc.

value = typically 64 bits of data
example instruction format:

op-code (r) dest1 (dest2)

where () indicates optional parameters
op-code is the instruction identifier
r is the activation frame offset number for dyadic operations
dest1 and dest2 are the destination offsets (dest2 being optional)

Matching Algorithm for
Dyadic Operations y 9

incoming token’s statement pointer is used to look up the instruction

the instruction’s activation frame offset is added to the token’s activation
frame number to give an effective address

the effective address is then used to look up the the presence bit in the
activation frame

if the presence = empty then the token’s value and port are written to the
location

if the presence = full then the stored value and token value should make
up the two operands for the dyadic instruction (assuming their ports are
different)

the operation, its operands and the destination(s) are executed
note:

these stages correspond to the stages in the pipeline

Matching Dyadic Operations cont... y 10

Matching Dyadic Operations cont... y 11

Example Tagged-token
Data-flow Program y 12

address instruction
(e.g.) op-code offset destinations
0x30 mul 0, 0x31ℓ,nil
0x31 add 2, 0x33ℓ,nil
0x32 div 1, 0x31r,nil
0x33 ret 0, (dest)ℓ,nil

note:

ret accepts a 〈destination instruction, port , frame〉 triplet as its left
parameter

advantages:

simple matching algorithm which may be implemented using a pipeline

garbage collecting unmatched tokens is easy

problems:

pipeline bubble every time the first operand of an instruction is matched

token explosion problem can still occur (careful code generation required)

Evaluation of Data-flow y 13

advantages:

inherently concurrent and latency tolerant (no need for caches)

multiprocessor applications are easy to write

disadvantages:

assignment a problem because there is too much concurrency, thus
functional languages tend to be used. Furthermore, this makes I/O difficult

ineffective use of very local storage (a register file or stack)

scheduling policies have to be simple because of the instruction level
concurrency

Multithreaded Processors — Combining Control-
flow and Data-flow y 14

example machine: Anaconda (Cambridge)

unit of execution is larger so matching time does not dominate

concurrency allows memory latency to be tolerated

Lecture 17 — Data-flow Machines & Future Directions 65

Anaconda — Activation Frame y 15

activation frame maps directly onto the register file:

intermediate results within a microthread use the register file

data between microthreads is passed via the matching store

Anaconda — Architecture Overview y 16

Review and Future Directions y 17

Control-flow has evolved over more than half a century, now with billions of
dollars invested in research.

Data-flow machines are more recent and only prototypes have been
constructed to date. Results indicate that fine grained data-flow with a
large matching store does not work efficiently

Data-flow ideas now used in today’s superscalar control-flow machines.
The register file(s) are effectively matching stores.

We are now in the multicore era, i.e. parallel processing is going to be the
norm not the exception

Challenge: what revolution in computer architecture and language design
do we need to bring parallel programming to the masses?

A Tiny Computer
Chuck Thacker, MSR

3 September, 2007

Alan Kay recently posed the following problem:

“I'd like to show JHS and HS kids "the simplest non-tricky architecture" in which simple
gates and flipflops manifest a programmable computer”.

Alan posed a couple of other desiderata, primarily that the computer needs to demonstrate
fundamental principles, but should be capable of running real programs produced by a
compiler. This introduces some tension into the design, since simplicity and performance
sometimes are in conflict.

This sounded like an interesting challenge, and I have a proposed design. The machine is
a Harvard architecture (separate data and instruction memory) RISC. It executes each
instruction in two phases correspond to instruction access and register access and ALU
transit. Registers are written at the end of the instruction. Figure 1 is a block diagram of
the machine.

Registers

128 X 32

PC

Aout

WD

IM[31:0]

R/W Addr

R Addr

DM[31:0]

doSkip

InData[31:00]

+1

Data Memory

1K X 32

Instruction

Memory

1K X 32

PCmux

0, PCinc

WD

Ph0

IM[31:25]

IM[23:17]

IM[16:10]

WD

W Addr

Aclk

Bclk

Aaddr

Baddr

Waddr

Bout

Skip Test

ALU[31:00]

Ph1

Ph1

Add, Sub, Logic

IM[4:3]

Wclk
Ph0

Ph0

Ph0 Rclk

Wclk

+2

PCinc2

PC

C,N

C,N InRdy

0, IM[23:00]

Jump

LoadConst

In

Load

WriteSelect

doSkip

Jump PCsel

Figure 1: The Tiniest Computer?

IM[9:7]

IM[6:5]Cycle

Ph0

Ph1 Rclk

Wclk

1

Discussion and Implementation

Although it is impractical today to build a working computer with a “handful of gates and
flipflops”, it seemed quite reasonable to implement it with an FPGA (field programmable
gate array). Modern FPGAs have enormous amounts of logic, as well as a number of
specialized “hard macros” such as RAMs. Xilinx sells evaluation boards for about $150
that includes an FPGA and some auxiliary components for connecting the chip to real-
world devices and the PC that runs the design tools (which are free to experimenters).
This was the approach I took.

Although the machine was designed primarily for teaching, it may have other uses. It is
small, fast, and has 32-bit instructions. This may make it competitive with more complex
FPGA CPUs. The later section on “Extensions” describes some possibilities for making
it a “real” computer (albeit one without Multiply/Divide, Floating Point arithmetic, or
virtual memory).

I chose a Harvard architecture because in this arrangement, it is possible to access the
data and instruction memories simultaneously. It is still possible to write self-modifying
code (although this is usually considered a bad idea), since stores into both memories are
supported.

Because it is implemented in the latest generation semiconductor technology (65 nm), the
design uses a Xilinx Virtex-5 device. This part has an interesting feature that contributes
to the small size of the overall design – a dual-ported static RAM with 1024 words of 36
bits. This RAM is used for the data and instruction memories, and two of them are used
to provide the triple-ported register file.

The machine has 32-bit data paths. Most “tiny” computers are 8 or 16 bits wide, but they
were designed originally in an era in which silicon was very expensive and package pins
were scarce. Today, neither consideration applies. We will implement a variant of the
machine with 36-bit data paths.

The design on the instruction set for the machine was determined primarily by the
instruction and data path widths. It is a RISC design, since that seemed to be the simplest
arrangement from a conceptual standpoint, and it is important to be able to explain the
operation clearly.

Although the memories are wide, they are relatively small, containing only 1K locations.
The section on extensions discusses some ways to get around this limit. For pedagogical
purposes, and for the immediate uses we envision, a small memory seems adequate.

The memory is word-addressed, and all transfers involve full words. Byte addressing is a
complexity that was introduced into computers for a number of reasons that are less

2

relevant today than they were thirty years ago. There is very limited support for byte-
oriented operations.

One thing that is quite different even from modern machines is that the number of
registers directly accessible to the program is 128. This number was chosen because the
three register addresses fit comfortably into a 32-bit instruction. The value of this many
registers may seem questionable, but given the implementation technology, they are
extremely cheap. This was not the case when most computers in use today were
designed. In addition, there is no significant performance advantage in using fewer
registers. The instruction and data memories can be accessed in a single cycle, and so
can the register file. A register file of 128 words uses only 1/8 of the block RAM that
implements it. The Extensions section discusses ways in which the remaining registers
might be used. It might be argued that a compiler cannot effectively use this many
registers. This was certainly true for a compiler designed in an era in which registers
were expensive and much faster than the main store. This is not the case here, and it will
be interesting to see whether a compiler that uses whole-program analysis can actually
use this many registers. If they turn out to be unnecessary, it is easy to reduce the number
of registers.

The only discrete register in the design is the program counter (PC). PC is currently only
10 bits wide, but it could easily expand to any length up to 32 (or 36) bits. The memories
used for RF, IM, and DM all have registers inside them, so we don’t need to provide
them. We do need the PC, since there is no external access to the IM read address. PC is
a copy of this register.

The instruction set (Figure 2) is very simple and regular. All instructions have the same
format. Most operations use three register addresses, and most logical and arithmetic
instructions are of the form Rw <- function(Ra, Rb). This seemed easier to explain than a
machine that used only one or two register addresses per instruction. It also improves
code density and reduces algorithm complexity. If the LC (load constant) bit is true, the
remaining low order bits of the instruction are treated as a 24-bit constant (zero extended)
and written to Rw. Any Skip or Jump is suppressed. The In, LoadDM, and Jump
instructions load Rw with data from an input device, data from DM[Rb], or PC + 1. All
other instructions load Rw with F(Ra, Rb). Any instruction except Jump conditionally
skips the next instruction if the condition implied by the SK field is true. The StoreIM
and StoreDM instructions do DM/IM[Rb] <- Ra. These instructions also load Rw with
the ALU result, and can also conditionally skip. The Output instruction simply generates
a strobe. The intent is that Ra is output data, Rb is an output device selector, but other
arrangements are possible.

3

Rw OpRa Rb Function Shift

Function:

1: A - B

4: A and B

5: A or B

6: A xor B

2: B + 1

3: B - 1

7: Reserved

Shift:

1: RCY 1

2: RCY 8

3: RCY 16

0: A + B

23 417 1031 25 24 016 56 23

Skip

Skip:

0: Never

1: ALU < 0

3: InRdy

2: ALU = 0

Note: If LC, Skip and Jump are suppressed

Figure 2: Instruction Format

0: No shift
L
C

9 7

Op:

0: Normal: Rw <- F(Ra, Rb), Skip if condition

7: Reserved

1: StoreDM: DM[Rb] <- Ra, Rw <- F(Ra, Rb), Skip if condition

2: StoreIM: IM[Rb] <- Ra, Rw <- F(Ra, Rb), Skip if condition

4: LoadDM: Rw <- DM[Rb], ALU <- F(Ra, Rb), Skip if condition

3: Out : OutStrobe, Rw <- F(Ra, Rb), Skip if condition

6: Jump: Rw <- PC + 1, PC <- F(Ra, Rb)

5: In: Rw <- InData, ALU <- F(Ra, Rb), Skip if condition

There are relatively few ALU functions. The shifter is placed after the
adder/subtractor/logic unit. It too has limited capabilities. If we need more elaborate
arithmetic, we can add one or more of Xilinx’ DSP48E cores to the design. These
devices are high speed MACs designed for signal processing, but they can do a number
of other operations. If we want to avoid DSPs, we need ways to do multiple precision
adds and subtracts, multiply, and divide, preferably at one operation per result bit. There
are well-known ways to do this while not increasing the complexity too much. But they
need more Function and Shift bits to specify them. These could be had by reducing the
number of registers to 64, or by increasing all data path widths to 36 bits. The
modification needed to support these operations is trivial.

The machine executes instructions in two phases (Ph0 and Ph1). This is unlike
essentially all modern computers, which use pipelining to improve performance. The
phases are different lengths, since during phase 0, we only need to access the IM, while
during phase 1, we must read from the register file, do the ALU operation, and test the
result to determine whether the instruction skips. This takes much longer then simply
accessing a register. This also makes it much easier to explain how the machine
functions. Even with this simplification, the performance is adequate, executing about 60
million instructions per second.

This approach was first employed (I believe) in the original Data General Nova, a simple
machine that still has a lot to teach us about computer architecture, since it was arguably
the first commercial RISC machine. The major differences are:

(1) There are more registers (128 vs. 4)
(2) There are three register select fields instead or two.
(3) The Function field has different meanings.
(4) The Nova’s Carry field has been eliminated.
(5) The Skip field is different.
 (6) There is no “No load” bit.

4

The Jump instruction saves the (incremented) PC in Rw. This is the only support for
subroutines. There is no call stack. Programs that need a stack must construct it
themselves.

There is an operation (LC) to load a 24-bit constant (with leading zeros) into Rw.
Fabricating constants is usually difficult on a machine with only a few short constants.
During an instruction that loads a constant, skips and jumps are suppressed.

There is very little support for input/output. All I/O is programmed, transferring a single
32-bit word between the machine and an external device. There are no interrupts (but see
the section on extensions for a possible way of dealing with this). Because the instruction
time is completely deterministic, it is easy to write timing-critical programs.

The register addressed by Rw is always written at the end of the instruction. If the value
produced is unwanted, Rw should point to a “trashcan” register.

The instruction sequencing of the machine is shown in Figure 3.

Read

IM

Read

RF Write

RF, PC,
IM, DM

Phase 0

RF:

IR:

IM:

Ph1:

Phase 1

Ph0:

do ALU op,
Skip Test

Phase 0 Phase 1

Figure 3: Instruction Timing

Each instruction requires two phases

During the first phase, IM is first read to retrieve the instruction. At the beginning of
phase 1, the RF address register is loaded with the Ra and Rb addresses specified in the
instruction. RF is read to retrieve the operands. When RF’s outputs appear, they are
passed through the ALU and finally, the register file and PC are written to the register file
at the end of the instruction.

The time to read RF (TRCK_DO) plus the time to do an ALU operation and test the result is
the reason for the asymmetry, since this is a long combinational path. Phase 0 is
approximately of length TRCK_DO + T RCCK_ADDR of the Block RAM, plus wiring delay.

5

The machine is started at Reset by preloading the instruction memory (and if necessary,
the data memory) with a bootstrap loader. This is done as part of configuring the FPGA,
and the loader is included in the FPGA’s bitstream. The PC is reset to 0, and the loader
begins executing. It can load the remainder of the IM and the DM from an I/O device or
external RAM/ROM.

Size and Speed

In Virtex-5 technology, the machine occupies about 200 LUTs (lookup tables) and four
block RAMs, although a more complex ALU would increase this It runs at 66 MHz,
although this could doubtlessly be improved somewhat at the expense of more time spent
routing the design. The Verilog describing the entire design is two pages long (Appendix
A).

Extensions

The limited size of DM and IM is the main thing that makes this computer
noncompetitive. This could be mitigated by using the memories as caches rather than
RAM. The 1K BRAM holds 128 eight-word blocks, which is the transfer size of the
DRAM controller we are designing for the BEE3. We would need to provide I and D tag
stores, but this wouldn’t be very expensive.

For our immediate application, we plan to use the processor to initialize and test two
DDR2 memory controllers that connect to two off-FPGA 4 GB DIMMs each (for a total
of 16 GB). Each DDR DIMM contains two 2 GB ranks of DRAMs, so there are four
ranks per controller. Since these controllers transfer 36 bytes (8 words of 36 bits) in one
access, we can use the write port of DM (which is otherwise unused) as the source and
destination of DRAM data. To do an operation, the system will load three output
registers: A command/rank register containing 3 bits of command, the controller select (1
bit) and the DIMM rank (2 bits), a DRAM address register (31 bits), and the DM address
that will supply or receive the data (10 bits). Loading the command starts the transfer,
and when it is complete, the data will have been taken from or written to eight successive
locations in DM. Completion is tested by testing a “done” flag that is cleared when the
command register is loaded, and set when the transfer is complete. As an added feature,
we can use the reserved ALU function to generate the next sequence in a prime-
polynomial linear feedback shift register. This will be used to generate pseudo-random
patterns to test the DIMMs. For this application, the data paths will be increased in width
to 36 bits.

The second extension addresses the lack of interrupts. Since the BRAM holding the
registers can hold eight full register contexts, it should be straightforward to provide a
mechanism similar to that of the Alto. A separate three-bit Context register would hold
the current context. Saving and restoring the current context’s PC on a task switch is a bit
problematic, but it is probably fairly straightforward.

6

Appendix A: Tiny Computer Verilog description
`timescale 1ns / 1ps

module TinyComp(

 input Ph0In, Ph1In, //clock phases

 input Reset,

 input [31:00] InData, // I/O input

 input InRdy,

 output InStrobe, //We are executing an Input instruction

 output OutStrobe //We are executing an Output instruction

);

wire doSkip;

wire [31:00] WD; //write data to the register file

wire [23:00] WDmid; //the WD mux intermediate outputs

wire [31:00] RFAout; //register file port A read data

wire [31:00] RFBout; //register file port B read data

reg [9:0] PC; //10-bit program counter

wire [9:0] PCinc, PCinc2, PCmux;

wire [31:00] ALU; // ALUoutput

wire [31:00] AddSubUnit;

wire [31:00] ALUresult;

wire [31:00] DM; //the Data memory (1K x 32) outputs

wire [31:00] IM; //the Instruction memory (1K x 32) outputs

wire Ph0, Ph1; //the (buffered) clocks

wire WriteIM, WriteDM, Jump, LoadDM, LoadALU; //Opcode decodes

//----------End of declarations------------

//this is the only register, other than the registers in the block RAMs.

// Everything else is combinational.

 always @(posedge Ph0)

 if(Reset) PC <= 0;

 else PC <= PCmux;

// the Phases. They are asymmetric -- see .ucf file

BUFG ph0Buf(.I(Ph0In), .O(Ph0)); //this is Xilinx - specific

BUFG ph1Buf(.I(Ph1In), .O(Ph1));

//the Skip Tester. 1 LUT

assign doSkip = (~IM[24] & ~IM[4] & IM[3] & ALU[31]) |

 (~IM[24] & IM[4] & ~IM[3] & (ALU == 0)) |

 (~IM[24] & IM[4] & IM[3] & InRdy);

//Opcode decode. 7 LUTs

 assign WriteIM = ~IM[24] & ~IM[2] & ~IM[1] & IM[0]; //Op 1

 assign WriteDM = ~IM[24] & ~IM[2] & IM[1] & ~IM[0]; //Op 2

 assign OutStrobe = ~IM[24] & ~IM[2] & IM[1] & IM[0]; //Op 3

 assign LoadDM = ~IM[24] & IM[2] & ~IM[1] & ~IM[0]; //Op 4

 assign InStrobe = ~IM[24] & IM[2] & ~IM[1] & IM[0]; //Op 5

 assign Jump = ~IM[24] & IM[2] & IM[1] & ~IM[0]; //op 6

 assign LoadALU = ~IM[24] & ~IM[2] ; //Ops 0..3

// instantiate the WD multiplexer. 24*2 + 8 = 56 LUTs

 genvar i;

 generate

 for(i = 0; i < 32; i = i+1)

 begin: wsblock

 if(i < 10)begin

 assign WDmid[i] = (LoadALU & ALU[i]) | (InStrobe & InData[i]) | (LoadDM & DM[i]);

//6-in

 assign WD[i] = (Jump & PCinc[i]) | (IM[24] & IM[i]) | WDmid[i]; //5-in

 end else if(i < 24) begin

 assign WDmid[i] = (LoadALU & ALU[i]) | (InStrobe & InData[i]) | (LoadDM & DM[i]);

//6-in

 assign WD[i] = (IM[24] & IM[i]) | WDmid[i]; //3-in

 end else

 assign WD[i] = (LoadALU & ALU[i]) | (InStrobe & InData[i]) | (LoadDM & DM[i]); //6-in

 end //wsblock

endgenerate

//the PC-derived signals

7

 assign PCinc = PC + 1;

 assign PCinc2 = PC + 2;

 assign PCmux = Jump ? ALU[9:0] : doSkip ? PCinc2 : PCinc;

//instantiate the IM. Read during Ph0, written (if needed) at the beginning of the next

Ph0

 ramx im(

 .clkb(Ph0), .addrb(PCmux[9:0]), .doutb(IM), //the read port

 .clka(Ph0), .addra(RFBout[9:0]), .wea(WriteIM), .dina(RFAout)); //the write port

//instantiate the DM. Read during Ph1, written (if needed) at the beginning of the next

Ph0

 ramx dm(

 .clkb(Ph1), .addrb(RFBout[9:0]), .doutb(DM), //the read port

 .clka(Ph0), .addra(RFBout[9:0]), .wea(WriteDM), .dina(RFAout)); //the write port

//instantiate the register file. This has three independent addresses, so two BRAMs are

needed.

// read after the read and write addresses are stable (rise of Ph1) written at the end of

the

// instruction (rise of Ph0).

 ramx rfA(.addra({3'b0, IM[31:25]}), .clka(Ph0), .wea(1'b0), .dina(WD), //write port

 .clkb(Ph1), .addrb({3'b0, IM[23:17]}), .doutb(RFAout)); //read port

 ramx rfB(.addra({3'b0, IM[31:25]}), .clka(Ph0), .wea(1'b1), .dina(WD), //write port

 .clkb(Ph1), .addrb({3'b0, IM[16:10]}), .doutb(RFBout)); //read port

//instantiate the ALU: An adder/subtractor followed by a shifter

//32 LUTs. IM[8] => mask A, IM[7] => complement B, insert Cin

 assign AddSubUnit = ((IM[8]? 32'b0 : RFAout) + (IM[7] ? ~RFBout : RFBout)) + IM[7];

//generate the ALU and shifter one bit at a time

 genvar j;

 generate

 for(j = 0; j < 32; j = j+1)

 begin: shblock

 assign ALUresult[j] = //32 LUTs

 (~IM[9] & AddSubUnit[j]) | //0-3: A+B, A-B, B+1, B-1

 (IM[9] & ~IM[8] & ~IM[7] & (RFAout[j] & RFBout[j])) | //4: and

 (IM[9] & ~IM[8] & IM[7] & (RFAout[j] | RFBout[j])) | //5: or

 (IM[9] & IM[8] & IM[7] & (RFAout[j] ^ RFBout[j])) ; //6: xor

 assign ALU[j] = //32 LUTs

 (~IM[6] & ~IM[5] & ALUresult[j]) | //0: no cycle

 (~IM[6] & IM[5] & ALUresult[(j + 1) % 32]) | //1: rcy 1

 (IM[6] & ~IM[5] & ALUresult[(j + 8) % 32]) | //2: rcy 8

 (IM[6] & IM[5] & ALUresult[(j + 16) % 32]) ; //rcy 16

 end //shblock

 endgenerate

endmodule

8

April 2011 Altera Corporation

WP-01149-1.1 White Paper

Subscribe

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS,
QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries.
All other trademarks and service marks are the property of their respective holders as described at
www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in
accordance with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time
without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest
version of device specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive

San Jose, CA 95134

www.altera.com

Feedback

Applying the Benefits of Network on a
Chip Architecture to FPGA System Design

This document describes the advantages of network on a chip (NoC) architecture in Altera®
FPGA system design. NoC architectures apply networking techniques and technology to
communications subsystems in system on a chip designs. NoC interconnect architectures
have significant advantages over traditional, non-NoC interconnects, such as support for
independent layer design and optimization. Altera's Qsys system integration tool, included
with the Quartus® II software, generates a flexible FPGA-optimized NoC implementation
automatically, based on the requirements of the application. The Qsys interconnect also
provides a higher operating frequency for comparable latency and resource characteristics,
with up to a 2X improvement in fMAX compared to traditional interconnects.

Introduction
As FPGA device density increases to more than a million logic elements (LEs), design teams
require larger and more complex systems, with increasing performance requirements, in less
time. Designers can use system-level design tools to quickly design high-performance
systems with a minimum of effort.

Qsys uses a NoC architecture to implement system transactions. The Qsys interconnect
includes features that support high-performance operation on FPGAs, including a flexible
network interconnect that implements only the minimum resources required for a given
application, a packet format that varies depending on the system being supported, and a
network topology that separates command and response networks for higher concurrency
and lower resource utilization.

This white paper explains the Qsys network implementation, discusses its benefits, and
compares the performance results between traditional and Qsys interconnect systems. These
results show that the NoC implementation provides higher frequency performance with the
same latency characteristics, and can provide up to twice the frequency when pipelining
options are enabled.

Understanding NoC Interconnect
The NoC interconnect breaks the problem of communication between entities into smaller
problems, such as how to transport transactions between nodes in the system, and how to
encapsulate transactions into packets for transport. The NoC interconnect is different from
traditional interconnects in one simple, but powerful way. Instead of treating the
interconnect as a monolithic component of the system, the NoC approach treats the
interconnect as a protocol stack, where different layers implement different functions of the
interconnect. The power of traditional protocol stacks, such as TCP-over-IP-over-Ethernet, is
that the information at each layer is encapsulated by the layer below it. The power of the
Qsys NoC implementation comes from the same source, the encapsulation of information at
each layer of the protocol stack.

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=WP-01149
mailto:whitepapers@altera.com?subject=Feedback on WP-01149
http://www.altera.com/common/legal.html

Page 2 Understanding NoC Interconnect

Applying the Benefits of Network on a Chip Architecture to FPGA System Design April 2011 Altera Corporation

Figure 1 shows the basic topology of an NoC system. Each endpoint interface in the
network, master or slave, is connected to a network interface (NI) component. The
network interface captures the transaction or response using the transaction layer
protocol, and delivers it to the network as a packet of the appropriate format. The
packet network delivers packets to the appropriate packet endpoints, which then pass
them to other network interfaces. The network interfaces then terminate the packet
and deliver the command or response to the master or slave using the transaction
layer protocol.

In this system, a component such as a processor communicates with a component
such as a memory controller. Each of these components uses the services of the
network interfaces to communicate with one another via a transaction interface, such
as Altera's Avalon® Memory-Mapped (Avalon-MM) interface or Advanced eXtensible
Interface (AXI). The network interfaces communicate with one another to provide
transaction layer services by relying on the services of the command and response
networks, which provide transport services. Each component at the transport layer
(within the command and response networks) recognizes the transport layer protocol,
but does not need to recognize the particulars of the transactions in each packet.

Benefits of NoC Architecture

Decoupling the layers of the protocol stack has the following benefits over a
traditional approach, such as advanced high performance bus (AHB) or CoreConnect:

■ Independent implementation and optimization of layers

■ Simplified customization per application

■ Supports multiple topologies and options for different parts of the network

■ Simplified feature development, interface interoperability, and scalability

Figure 1. NoC System Basic Topology

Understanding NoC Interconnect Page 3

April 2011 Altera Corporation Applying the Benefits of Network on a Chip Architecture to FPGA System Design

Implement and Optimize Layers

A common approach to complex engineering challenges is to divide the design
problem into smaller problems with well-defined interactions. With NoC
interconnect, the design problem is no longer “How do I best design a flexible
interconnect for a complex system?” but instead consists of the easier questions:
“How do I best map transactions to packets?” and “How do I best transport packets?”
Keeping the layers separate also allows you to optimize the implementation of each
layer independently, resulting in better performance at that layer without having to
redesign other layers. For example, designers can consider and implement a number
of different transport layer topologies and implementations without having to change
anything at the transaction layer.

Simplify Customization per Application

At the transport layer, commands and responses are simply packets carried by the
network, and anything done at the network layer must only support the transport of
these packets. This simplifies the customization of the interconnect for a given
application compared to a traditional interconnect. For example, if the designer
determines that the system needs pipelining or clock crossing between a set of
masters and a set of slaves, the designer can add the needed components as long as
they safely transport packets. The clock crossing and pipelining decisions do not need
to consider the transaction layer responsibilities, such as the different transaction
types, response types, and burst types.

Use Multiple Topologies and Options

NoC interconnect supports use of different optimizations and topologies for different
parts of the network. For example, a design may have a set of high-frequency, high-
throughput components, such as processors, PCI Express® interfaces, a DMA
controller, and memory; and a second set of low-throughput peripherals such as
timers, UARTs, flash memory controllers, and I2C interfaces. Such as system can be
divided at the transport layer. The designer can place the high-performance
components on a wide, high-frequency packet network; while the peripherals are on a
less-expensive mesh network, with only a packet bridge between the two networks.

Simplify Feature Development

Interconnects must be versatile enough to support emerging new features, such as
new transaction types or burst modes. If the interconnect is divided into different
layers, then the addition of new features requires changes only to the layer that
supports the feature. To support new burst modes, for example, only the network
interface components require modification. Likewise, if a new network topology or
transport technology yields higher performance, it can be substituted for the original
network without requiring redesign of the entire network.

Interface Interoperability

Different intellectual property (IP) cores support different interface types, such as
AMBA® AXI, AHB, and APB interfaces; as well as OCP interfaces, Wishbone
interfaces, and Avalon-MM interfaces. Supporting a new interface requires
implementing only the network interface to encapsulate transactions to or from
interfaces of that type using the selected packet format. With this architecture, a
bridge component is not needed, saving logic and latency.

Page 4 NoC System Design with Qsys

Applying the Benefits of Network on a Chip Architecture to FPGA System Design April 2011 Altera Corporation

Scalability

Systems with hundreds of masters and slaves are not uncommon, and traditional
interconnects struggle to meet the required performance. Interconnects designed for
dozens of masters and slaves cannot easily scale to support hundreds of components
required by systems today. With NoC interconnect, it is relatively easy to divide the
network into subnetworks, with bridges, pipeline stages, and clock-crossing logic
throughout the network as required. Therefore, a multi-hop network could easily
support thousands of nodes, and could even provide for a transport network
spanning multiple FPGAs.

NoC System Design with Qsys
Qsys is a powerful system integration tool included as part of Altera’s Quartus II
development software. Qsys simplifies FPGA system design, allowing designers to
create a high-performance system easily, without extensive knowledge of on-chip
interconnects or networks. Qsys includes an extensive IP library from which
designers can build and implement a system on a chip (SoC) in much less time than
using traditional, manual integration methods. Using traditional design methods,
designers write HDL modules to connect components of the system. Using Qsys,
designers instantiate and parameterize system components using a GUI or a scripted
system description. Qsys then generates the components and interconnect at the press
of a button. Figure 2 shows an example system created in Qsys.

In Qsys, the system designer uses the GUI to add the desired IP components to the
system, parameterize each component, and specify interface-level connections
between system components. Qsys connects individual signals within connected
interfaces automatically. Qsys generates the system implementation as RTL, and
manages system interconnect issues such as clock domain crossing, interface width
adaptation, and burst adaptation.

Figure 2. Example System Components Displayed in Qsys

NoC System Design with Qsys Page 5

April 2011 Altera Corporation Applying the Benefits of Network on a Chip Architecture to FPGA System Design

Qsys supports a number of different interface types, such as transaction (read and
write) interfaces, streaming (packets or non-packet) interfaces, interrupts, and resets.
The Qsys transaction interconnect is based on a NoC implementation that is designed
specifically for FPGAs. The Qsys interconnect minimizes the use of FPGA resources,
while at the same time supporting high-performance systems with high frequency
and throughput requirements.

Qsys NoC Interconnect Optimized for FPGAs

The Qsys NoC interconnect has features that make it particularly well-suited to
FPGAs and the systems that use them, including the minimum flexible
implementation, parameterizable packet format designed to reduce adaptation, low-
latency interconnect, and separate command and response networks.

Minimum, Flexible Implementation

The Qsys interconnect is not just aimed at large high-performance systems with
multi-gigabit datapaths and complex bursting, it is also intended for small systems of
only a few components. To support such a wide variety of systems, Qsys implements
only the minimum interconnect required to meet the performance requirements for a
given application.

Qsys begins by dividing the system into multiple interconnect domains. Two
interfaces are in different interconnect domains if there are no connections in the
system that require the system algorithm to consider them together. For example, if
one master connects to two slaves, those slaves are in the same interconnect domain.
For each domain, Qsys considers all the master and slave widths, and sets the
network data width to be the minimum that supports full throughput for the highest
throughput connection in the system, based on the clock rates of the interfaces in the
domain.

In addition, Qsys adds only the interconnect components that are required for the
application. For example, if there is a master in the system that is only connected to
one slave, then the address decoder component is omitted. If there is a slave that is
only connected to one master, then the arbiter component is omitted. If a certain type
of burst adaptation is not required by that application, then support for that burst
adaptation is omitted.

Parameterizable Packet Format Reduces Adaptation

In addition to minimizing interconnect resource use, Qsys determines the packet
format that minimizes logic use and adaptation. For example, the address and
burstcount fields in the packet are the minimum width required to support the
system. The address and other fields within the packet are driven to useful and
accurate values in all cycles of the packet, so the adaptation components do not have
to maintain any state about the packet, and even allow the adapter to be omitted
altogether in some cases.

Page 6 NoC System Design with Qsys

Applying the Benefits of Network on a Chip Architecture to FPGA System Design April 2011 Altera Corporation

Low-Latency Interconnect

Designers commonly associate packets with serialization, thinking that with a packet-
based approach, only a portion of the entire transaction is carried in each cycle. Many
NoC implementations use this approach. Such NoC implementations have a network
latency on the order of 12 to 15 clock cycles, making them inappropriate for the
interconnect between a microcontroller and its local memory, for example. To
overcome latency issues, the components in the Qsys interconnect all have
combinational datapaths. The packet format is wide enough to contain a complete
transaction in a single clock cycle, so that the entire interconnect can support writes
with 0 cycles of latency and reads with round-trip latency of 1 cycle. These wide
connections are well supported by today’s FPGAs. The system designer can change
pipelining options to increase frequency at the expense of latency.

Separate Command and Response Networks

For each transaction domain, Qsys instantiates two independent packet networks, one
for command traffic and one for response traffic, instead of a single network that
supports both. This increases concurrency, since command traffic and response traffic
do not compete for resources like links between network nodes. Qsys also allows the
two networks to be optimized independently, such that even the network topology
and the packet format in the two networks can be different.

Optimized Command and Response Networks

The following steps, describing a read command issued from a master to its intended
slave and the response as it returns to the master, provide and overview of the
command and response networks in the NoC interconnect shown in Figure 3.

Figure 3. Qsys NoC Interconnect Topology

Slave Response Connectivity

Master Command Connectivity

Command
Network

Transport Layer

Transaction Layer

Master

Network
Interface

Master

Interface

Slave
Network
Interface

Slave
Interface

Response
Network

Master

Network
Interface

Master

Interface

Slave
Network
Interface

Slave
Interface

NoC System Design with Qsys Page 7

April 2011 Altera Corporation Applying the Benefits of Network on a Chip Architecture to FPGA System Design

1. When a master issues a command, the first interconnect component that receives
the transaction is the translator, as shown in Figure 4. The translator handles much
of the variability of the transaction protocol specification, such as active high
versus active low signal options and optional read pipelining.

2. The agent is the next block to receive the command. The agent encapsulates the
transaction into a command packet, and sends the packet to the command
network using the transport layer. The agent also accepts and forwards to the
master the response packets from the response network.

3. The router determines the address field within the packet format and the slave ID
that the packet goes to, as well as the routing information for the next hop.

4. The limiter tracks outstanding transactions to different masters, and prevents
commands resulting in an out-of-order or simultaneously-arriving read response.

5. Next, the component is injected into the packet network. The Qsys NoC network
supports maximum concurrency, allowing all masters and slaves to communicate
on any given clock cycle, as long as no two masters attempt to access the same
slave, as shown in Figure 5.

Figure 4. Master Network Interface

Master

Interface

Master Network Interface

Translator Agent

Router

Limiter

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

Figure 5. Maximum Concurrency Packet Network

Packet Network

Arbiter

Arbiter

Page 8 NoC System Design with Qsys

Applying the Benefits of Network on a Chip Architecture to FPGA System Design April 2011 Altera Corporation

1 Note that the NoC architecture allows replacement of the packet network with any
other compatible network implementation.

6. The demultiplexer is the first component that the packet encounters within the
transport layer network. The demultiplexer sends the packet towards the next
slave.

7. The packet arrives at the splitter component (represented by the black dot), which
then essentially copies the packet to the input of the arbiter, and to the input to the
multiplexer.

8. System designers that require application-specific arbitration, other than the
weighted round robin arbitration that Qsys provides by default, can replace the
Qsys arbiter with one of their own. To support this, the Qsys arbiter footprint
accepts the entire packet, so that alternate arbiter implementations can use
detailed transaction information to make their arbitration decision, including data-
dependant arbitration.

9. The decision from the arbiter is sent to the multiplexer, which forwards the
selected packet to the slave’s network interface, as shown in Figure 6.

10. Within the slave’s network interface, the packet enters the slave agent component,
which terminates the packet, and forwards the transaction contained therein to the
slave translator. Simultaneously, the slave agent component pushes transaction
information into the slave agent FIFO buffer for transactions requiring a response,
such as reads and non-posted writes. The slave translator fills the same role as the
master translator, accounting for all the possible variance in the interface
specification. If the slave is busy and cannot accept more transactions, then the
command is backpressured at the entrance of the agent.

11. When the slave responds to the read transaction, the translator forwards the
response to the slave agent. The slave agent pops transaction information from the
slave agent FIFO buffer, such as the originating master ID, and merges that with
the transaction response to create a response packet. The read data FIFO is present
to store the response in case the response network is temporarily unable to accept
the response.

Figure 6. Slave Network Interfaces

Slave
Interface

Slave Network Interface

Agent Translator

waitrequest

overflow error

command

response

Avalon-ST
Network

(Command)

Avalon-ST
Network

(Response)

Performance Examples Page 9

April 2011 Altera Corporation Applying the Benefits of Network on a Chip Architecture to FPGA System Design

12. The slave router then examines the packet to determine the master ID, and assigns
the local routing information.

13. The response is the same as the command, but in reverse. The response packet
travels through a demultiplexer, hits an arbiter, and once selected, is forwarded
through the multiplexer back to the limiter. The limiter then records that the
response is received, and then sends it back to the master agent and eventually to
the master in the form of a transaction response.

In addition to the components described, Qsys adds burst adapters and width
adapters as needed. These are both packet components that examine the packet at the
data in some of the fields to make appropriate adaptation decisions. Qsys can also add
pipelining stages to help meet timing, and automatically adds handshaking or dual-
clock FIFO components when masters and slaves are on different clock domains.

Performance Examples
The following examples compare the performance of two different systems: a 16-
master/16-slave system, and a 4-master/16-slave burst- and width-adaptation
system. This comparison illustrates how the frequency, latency, and resource use of
the Qsys NoC interconnect compares to a traditional interconnect implementation. In
these examples all systems are implemented on Altera's Stratix® IV devices, using the
C2 speed grade. Qsys NoC interconnect system performance is compared to the
traditional Avalon-MM interconnect generated for the same systems by Altera’s
previous generation SOPC Builder tool.

16-Master/16-Slave System

The 16-master/16-slave system is fully connected with a total of 256 connections. The
simple master and slave IP components exist only to test the characteristics of the
interconnect, meaning that the system is representative of a completely homogenous
system, and not a typical embedded system. Table 1, Figure 7, and Figure 8 show the
frequency and resource utilization results of the traditional interconnect and different
latency options of the NoC implementation.

Table 1. 16-Master/16-Slave System: Performance Results (% relative to tradition interconnect)

Interconnect Implementation fMAX MHz Resource Usage ALMs

Traditional interconnect 131 12766

Qsys NoC, fully combinational 161 (+23%) 13999 (+10%)

Qsys NoC, 1 cycle network latency 225 (+71%) 11260 (-12%)

Qsys NoC, 2 cycle network latency 243 (+85%) 12761 (+0%)

Qsys NoC, 3 cycle network latency 254 (+93%) 14206 (+11%)

Qsys NoC, 4 cycle network latency 314 (+138%) 26782 (+110%)

Page 10 Performance Examples

Applying the Benefits of Network on a Chip Architecture to FPGA System Design April 2011 Altera Corporation

Figure 7. 16-Master/16-Slave System: NoC Frequency Compared to Traditional Interconnect (MHz)

Figure 8. 16-Master/16-Slave System: NoC Resource Utilization Compared to Traditional Interconnect (ALUTs)

Performance Examples Page 11

April 2011 Altera Corporation Applying the Benefits of Network on a Chip Architecture to FPGA System Design

4-Master/16-Slave Burst- and Width-Adaptation System

The 4-master/16-slave burst- and width-adaptation system includes characteristics of
typical heterogeneous systems, including masters and slaves of different widths and
differences in burst support, requiring burst adaptation in the interconnect. Table 2,
Figure 9, and Figure 10 show the frequency and resource utilization results of the
traditional interconnect and different latency options of the NoC implementation.

Table 2. 4-Master/16-Slave System: Performance Results (% relative to tradition interconnect)

Interconnect Implementation fMAX (MHz) Resource Usage (ALMs)

Traditional interconnect 123 11658

Qsys NoC, fully combinational 125 (+2%) 9655 (-17%)

Qsys NoC, 1 cycle network latency 150 (+22%) 9423 (-19%)

Qsys NoC, 2 cycle network latency 164 (+33%) 9847 (-16%)

Qsys NoC, 3 cycle network latency 154 (+25%) 13156 (+13%)

Qsys NoC, 4cycle network latency 171 (+39%) 16925 (+45%)

Figure 9. 4-Master/16-Slave System: Frequency Compared to Traditional Interconnect (MHz)

Page 12 Conclusion

Applying the Benefits of Network on a Chip Architecture to FPGA System Design April 2011 Altera Corporation

Conclusion
NoC interconnect architectures provide a number of significant advantages over
traditional, non-NoC interconnects, which allow for independent design and
optimization of the transaction and transport protocol layers. The Qsys system
integration tool generates an exceedingly flexible FPGA-optimized NoC
implementation, based on the requirements of the application. The Qsys NoC
interconnect provides a higher operating frequency for the same latency and resource
characteristics, with up to a 2X improvement in fMAX compared to traditional
interconnects.

Further Information
■ Qsys Software Support page of the Altera website:

http://www.altera.com/support/software/system/qsys/sof-qsys-index.html

■ System Design with Qsys section in volume 1 of the Quartus II Handbook
http://www.altera.com/literature/hb/qts/qsys_section.pdf

■ AN632: SOPC Builder to Qsys Migration Guidelines
http://www.altera.com/literature/an/an632.pdf

■ Qsys System Design Tutorial
http://www.altera.com/literature/tt/tt_qsys_intro.pdf

Acknowledgements
■ Kent Orthner, Sr. Manager, Software & IP, Altera Corporation

Figure 10. 4-Master/16-Slave System: Resource Utilization Compared to Traditional Interconnect (ALUTs)

http://www.altera.com/support/software/system/qsys/sof-qsys-index.html
http://www.altera.com/literature/hb/qts/qsys_section.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/tt/tt_qsys_intro.pdf
http://www.altera.com/support/software/system/qsys/sof-qsys-index.html
http://www.altera.com/literature/hb/qts/qsys_section.pdf
http://www.altera.com/literature/an/an632.pdf
http://www.altera.com/literature/tt/tt_qsys_intro.pdf

Computer Design Exercises

This set of suggested exercises represents the minimum I would expect completed for supervi-
sions. Supervisors are encouraged to set additional material. Suggestions of additional questions
will be gratefully received by the lecturer, as will corrections.

Lectures 1 to 4 – ECAD

• Teach yourself SystemVerilog using the Cambridge SystemVerilog Tutor (CSVT). CSVT
teaches you the SystemVerilog you need to complete the ECAD assessed exercises as
painlessly as possible. A number of self-tests check your progress through learning
the basics of the language. The tutorial explains what you need to do to write Sys-
temVerilog programs. Link to CSVT via:
http://www.cl.cam.ac.uk/Teaching/current/ECAD+Arch/

• Past paper questions on the older ECAD course are generally relevant though they use
an older dialect — Verilog 2001.

Lecture 5 — Historical Computer Architecture

• What was Leo and what was it used for?

• Where and when was Whirlwind developed?

• What did TRADIC first demonstrate?

• If memory capacity continues to double every 18 months, how much main memory
will a typical desktop PC have in 20 years time?

Lecture 6 — Early instruction set architecture

• Read and discuss chapters 1 & 2 from “Computer Architecture — A Quantitative Ap-
proach” (2nd or 3rd editions, not the most recent), particularly the “fallacies and pit-
falls” sections.

Lecture 7 — Thacker’s Tiny Computer 3

• Much of the work for this lecture is in the lab. sessions where you simulate and syn-
thesis the design.

• What is the difference between behavioural and structural SystemVerilog design?

• Why is the code density not very good for this processor architecture? (You should be
able to answer this once you’ve covered lecture 9 since you can compare instruction
sequences with other RISC processors)

Lecture 8 — Systems-on-FPGA Design

• How does a tool like Qsys help to design larger systems-on-FPGA?

Lecture 9 — RISC Processor Design

• Given that the MIPS processor has a branch delay slot, what will the following con-
trived piece of code do?

foo: slti $t0, $t0, 5
beq $t0, $zero, foo
addi $t0, $t0, -1

• Write a loop that copies a region of memory from the address in $a0 to the address
in $a1 for the number of words specified in $a2. You may assume that the regions of
memory are none overlapping.

• How might you improve the performance of your code in (b) by copying more than
one word on each iteration of the loop?

• Every ARM instruction is conditional. What had to be sacrificed in order to make
space in the instruction format for the condition code bits?

• Answer past exam. question 2, paper 5, 2004:
http://www.cl.cam.ac.uk/tripos/y2004p5q2.pdf

Lecture 10 — Memory Hierarchy

• Read and discuss “Memory Hierarchy Design” from “Computer Architecture — A
Quantitative Approach” (2nd or 3rd editions, not the most recent), particularly the
“fallacies and pitfalls” sections.

• Answer past exam. question 3, paper 5, 2009:
http://www.cl.cam.ac.uk/tripos/y2009p5q3.pdf

Lecture 11 — Hardware for OS Support

• Answer past exam. question 3, paper 5, 2011:
http://www.cl.cam.ac.uk/tripos/y2011p5q3.pdf

Lecture 12 — CISC machines and the Intel IA32 Instruction Set

• How did AMD extend Intel’s 32-bit instruction set (IA32) to the 64-bit version AMD64
and subsequent Intel 64?

• How does Intel 64 differ from IA64?

Lecture 13 — Java Virtual Machine

• Write an iterative version of Fibonacci in Java and figure out what the disassembled
code means. Run through the code for a fib(4).

Lecture 14 — Pipelining

• Read about pipelining and resolution of hazards, e.g. in Chapter 7 of Harris & Harris,
Digital Design and Computer Architecture, 2007.

• Attempt past exam. question 2007 P6 Q2

Lecture 15 — Communication on and off chip

• What is the difference between serial and parallel communication?

• What is the difference between latency and bandwidth?

• What is the difference between a bus and a switched communication network?

• Why is it difficult to communicate data in parallel at GHz frequencies?

Lecture 16 — Manycore

• What is the difference between instruction-level parallelism and thread-level paral-
lelism?

• Howdoes SMT exploit both instruction-level parallelism and thread-level parallelism?

• What is companion scheduling?

• What is the difference between manycore and CMP?

Lecture 17 — Data-flow

• What is the difference between data-flow and control-flow?

• Do RISC processors execute instructions in a data-flow or control-flow manner?

• When can modern SMT processors exhibit any data driven behaviour?

Summary of Synthesisable SystemVerilog

Numbers and constants

Example: 4-bit constant 11 in binary, hex and decimal:
4’b1011 == 4’hb == 4’d11

Bit concatenation using {} :
{2’b10,2’b11} == 4’b1011

Note that numbers are unsigned by default.

Constants are declared using parameter vis:
parameter foo = 42

Operators

Arithmetic: the usual + and - work for add and subtract.
Multiply (*) divide (/) andmodulus (%) are provided by
remember that they may generate substantial hardware
which could be quite slow.

Shift left (<<) and shift right (>>) operators are avail-
able. Some synthesis systems will only shift by a con-
stant amount (which is trivial since it involves no logic).

Relational operators: equal (==) not-equal (!=) and the
usual < <= > >=

Bitwise operators: and (&) or (|) xor (ˆ) not (˜)

Logical operators (where a multi-bit value is false if zero,
true otherwise): and (&&) or (||) not (!)

Bit reduction unary operators: and (&) or (|) xor (ˆ)
Example, for a 3 bit vector a:

&a == a[0] & a[1] & a[2]
and |a == a[0] | a[1] | a[2]

Conditional operator ? used to multiplex a result
Example: (a==3’d3) ? formula1 : formula0
For single bit formula, this is equivalent to:

((a==3’d3) && formula1)
|| ((a!=3’d3) && formula0)

Registers and wires

Declaring a 4 bit wire with index starting at 0:
wire [3:0] w;

Declaring an 8 bit register:
reg [7:0] r;

Declaring a 32 element memory 8 bits wide:
reg [7:0] mem [0:31]

Bit extract example:
r[5:2]

returns the 4 bits between bit positions 2 to 5 inclusive.

logic can be used instead of reg or wire and its use
(whether in always_comb or always_ff block) deter-
mines whether it is a register or wire.

Assignment

Assignment to wires uses the assign primitive outside
an always block, vis:

assign mywire = a & b

This is called continuous assignment because mywire is
continually updated as a and b change (i.e. it is all com-
binational logic).

Continuous assignments can also be made inside an
always_comb block:
always_comb mywire = a & b

Registers are assigned to inside an always_ff blockwhich
specifies where the clock comes from, vis:
always_ff @(posedge clock)

r<=r+1;

The <= assignment operator is non-blocking and is per-
formed on every positive edge of clock . Note that if
you have whole load of non-blocking assignments then
they are all updated in parallel.

Adding an asynchronous reset:

always_ff @(posedge clock or posedge reset)
if(reset)

r <= 0;
else

r <= r+1;

Note that this will be synthesised to an asynchronous
(i.e. independent of the clock) reset where the reset is
connected directly to the clear input of the DFF.

The blocking assignment operator (=) is also used inside
an always block but causes assignments to be performed
as if in sequential order. This tends to result in slower
circuits, so we do not used it for synthesised circuits.

Case and if statements

case and if statements are used inside an always_comb
or always_ff blocks to conditionally perform opera-
tions.

Example:

always_ff @(posedge clock)
if(add1 && add2) r <= r+3;
else if(add2) r <= r+2;
else if(add1) r <= r+1;

Note that we don’t need to specify what happens when
add1 and add2 are both false since the default behaviour
is that r will not be updated.

Equivalent function using a case statement:

always_ff @(posedge clock)
case({add2,add1})

2’b11 : r <= r+3;
2’b10 : r <= r+2;
2’b01 : r <= r+1;
default: r <= r;

endcase

And using the conditional operator (?):

always_ff @(posedge clock)
r <= (add1 && add2) ? r+3 :

add2 ? r+2 :
add1 ? r+1 : r;

Which because it is a contrived example can be short-
ened to:

always_ff @(posedge clock)
r <= r + {add2,add1};

Note that the following would not work:

always_ff @(posedge clock) begin
if(add1) r <= r + 1;
if(add2) r <= r + 2;

end

The problem is that the non-blocking assignments must
happen in parallel, so if add1==add2==1 then we are
asking for r to be assigned r+1 and r+2 simultaneously
which is ambiguous.

Module declarations

Modules pass inputs and outputs as wires only. If an
output is also a register then only the output of that reg-
ister leaves the module as wires.

Example:

module simpleClockedALU(
input clock,
input [1:0] func,
input [3:0] a,b,
output reg [3:0] result);

always_ff @(posedge clock)
case(func)

2’d0 : result <= a + b;
2’d1 : result <= a - b;
2’d2 : result <= a & b;
default : result <= a ˆ b;

endcase
endmodule

Example in pre 2001 Verilog:

module simpleClockedALU(
clock, func, a, b, result);

input clock;
input [1:0] func;
input [3:0] a,b;
output [3:0] result;
reg [3:0] result;
always @(posedge clock)

case(func)
2’d0 : result <= a + b;

2’d1 : result <= a - b;
2’d2 : result <= a & b;
default : result <= a ˆ b;

endcase
endmodule

Instantiating the above module could be done as fol-
lows:

wire clk;
wire [3:0] data0,data1,sum;

simpleClockedALU myFourBitAdder(
.clock(clk),
.func(0), // constant function
.a(data0),
.b(data1),
.result(sum));

Notes:

• myFourBitAdder is the name of this instance of
the hardware

• the .clock(clk) notation refers to:
.port_name(your_name)

which ensures that values are wired to the right
place.

• in this instance the function input is zero, to the
synthesis system is likely to simplify the implemen-
tation of this instance so that it is only capable of
performing an addition (the zero case)

Simulation

Example simulation following on from the above instan-
tiation of simpleClockeALU :

reg clk;
reg [7:0] vals;
assign data0=vals[3:0];
assign data1=vals[7:4];

// oscillate clock every 10 simulation units
always #10 clk <= !clk;

// initialise values
initial #0 begin

clk = 0;
vals=0;

// finish after 200 simulation units
#200 $finish;

end

// monitor results
always @(negedge clk)

$display("%d + %d = %d",data0,data1,sum);

Simon Moore
September 2010

	Applying the Benefits of Network on a Chip Architecture to FPGA System Design
	Introduction
	Understanding NoC Interconnect
	Benefits of NoC Architecture
	Implement and Optimize Layers
	Simplify Customization per Application
	Use Multiple Topologies and Options
	Simplify Feature Development
	Interface Interoperability
	Scalability

	NoC System Design with Qsys
	Qsys NoC Interconnect Optimized for FPGAs
	Minimum, Flexible Implementation
	Parameterizable Packet Format Reduces Adaptation
	Low-Latency Interconnect
	Separate Command and Response Networks

	Optimized Command and Response Networks

	Performance Examples
	16-Master/16-Slave System
	4-Master/16-Slave Burst- and Width-Adaptation System

	Conclusion
	Further Information
	Acknowledgements
	Document Revision History

