
C and C++
3. Pointers — Structures

Stephen Clark

University of Cambridge
(heavily based on last year’s notes (Andrew Moore) with thanks to Alastair R. Beresford

and Bjarne Stroustrup)

Michaelmas Term 2011

1 / 1

Pointers

� Computer memory is often abstracted as a sequence of bytes,
grouped into words

� Each byte has a unique address or index into this sequence

� The size of a word (and byte!) determines the size of addressable
memory in the machine

� A pointer in C is a variable which contains the memory address of
another variable (this can, itself, be a pointer)

� Pointers are declared or defined using an asterisk(*); for example:
char *pc; or int **ppi;

� The asterisk binds to the variable name, not the type definition; for
example char *pc,c;

� A pointer does not necessarily take the same amount of storage space
as the type it points to

2 / 1

Example

...... ...

0
x
2
c

0
x
3
0

0
x
3
4

0
x
3
8

0
x
4
c

0
x
5
0

0
x
6
0

05

42

1c

52 00

00

00

62

c
h
a
r

c

c
h
a
r

*
p
c

i
n
t

i

i
n
t

*
p
i

i
n
t

*
*
p
p
i

00

00

00

38 4c

00

00

00

41

41

Little

Big

3 / 1

Manipulating pointers

� The value “pointed to” by a pointer can be “retrieved” or
dereferenced by using the unary * operator; for example:
int *p = ...
int x = *p;

� The memory address of a variable is returned with the unary
ampersand (&) operator; for example
int *p = &x;

� Dereferenced pointer values can be used in normal expressions; for
example: *pi += 5; or (*pi)++

4 / 1

Example

1 #include <stdio.h>
2

3 int main(void) {
4 int x=1,y=2;
5 int *pi;
6 int **ppi;
7

8 pi = &x; ppi = π
9 printf("%p, %p, %d=%d=%d\n",ppi,pi,x,*pi,**ppi);

10 pi = &y;
11 printf("%p, %p, %d=%d=%d\n",ppi,pi,y,*pi,**ppi);
12

13 return 0;
14 }

5 / 1

Pointers and arrays

� A C array uses consecutive memory addresses without padding to
store data

� An array name (without an index) represents the memory address of
the beginning of the array; for example:
char c[10];
char *pc = c;

� Pointers can be used to “index” into any element of an array; for
example:
int i[10];
int *pi = &i[5];

6 / 1

Pointer arithmetic

� Pointer arithmetic can be used to adjust where a pointer points; for
example, if pc points to the first element of an array, after executing
pc+=3; then pc points to the fourth element

� A pointer can even be dereferenced using array notation; for example
pc[2] represents the value of the array element which is two elements
beyond the array element currently pointed to by pc

� In summary, for an array c, *(c+i)≡c[i] and c+i≡&c[i]
� A pointer is a variable, but an array name is not; therefore pc=c and

pc++ are valid, but c=pc and c++ are not

7 / 1

Example

1 #include <stdio.h>
2

3 int main(void) {
4 char str[] = "A string.";
5 char *pc = str;
6

7 printf("%c %c %c\n",str[0],*pc,pc[3]);
8 pc += 2;
9 printf("%c %c %c\n",*pc, pc[2], pc[5]);

10

11 return 0;
12 }

8 / 1

Pointers as function arguments

� Recall that all arguments to a function are copied, i.e.
passed-by-value; modification of the local value does not affect the
original

� In the second lecture we defined functions which took an array as an
argument; for example void reverse(char s[])

� Why, then, does reverse affect the values of the array after the
function returns (i.e. the array values haven’t been copied)?

� because s is a pointer to the start of the array

� Pointers of any type can be passed as parameters and return types of
functions

� Pointers allow a function to alter parameters passed to it

9 / 1

Example

� Compare swp1(a,b) with swp2(&a,&b):

1 void swp1(int x,int y)
2 {
3 int temp = x;
4 x = y;
5 y = temp;
6 }

1 void swp2(int *px,int *py)
2 {
3 int temp = *px;
4 *px = *py;
5 *py = temp;
6 }

10 / 1

Arrays of pointers

� C allows the creation of arrays of pointers; for example
int *a[5];

� Arrays of pointers are particularly useful with strings

� An example is C support of command line arguments:
int main(int argc, char *argv[]) { ... }

� In this case argv is an array of character pointers, and argc tells the
programmer the length of the array

11 / 1

Example

NULL

argv:

firstarg\0

progname\0

secondarg\0

argv[0]

argv[3]

argv[2]

argv[1]argc: 3

12 / 1

Multi-dimensional arrays

� Multi-dimensional arrays can be declared in C; for example:
int i[5][10];

� Values of the array can be accessed using square brackets; for
example: i[3][2]

� When passing a two dimensional array to a function, the first
dimension is not needed; for example, the following are equivalent:
void f(int i[5][10]) { ... }
void f(int i[][10]) { ... }
void f(int (*i)[10]) { ... }

� In arrays with higher dimensionality, all but the first dimension must
be specified

13 / 1

Pointers to functions

� C allows the programmer to use pointers to functions

� This allows functions to be passed as arguments to functions

� For example, we may wish to parameterise a sort algorithm on
different comparison operators (e.g. lexicographically or numerically)

� If the sort routine accepts a pointer to a function, the sort routine can
call this function when deciding how to order values

14 / 1

Example

1 void sort(int a[], const int len,
2 int (*compare)(int, int))
3 {
4 int i,j,tmp;
5 for(i=0;i<len-1;i++)
6 for(j=0;j<len-1-i;j++)
7 if ((*compare)(a[j],a[j+1]))
8 tmp=a[j], a[j]=a[j+1], a[j+1]=tmp;
9 }

10

11 int inc(int a, int b) {
12 return a > b ? 1 : 0;
13 }

15 / 1

Example

1 #include <stdio.h>
2 #include "example8.h"
3

4 int main(void) {
5 int a[] = {1,4,3,2,5};
6 unsigned int len = 5;
7 sort(a,len,inc); //or sort(a,len,&inc);
8

9 int *pa = a; //C99
10 printf("[");
11 while (len--)
12 printf("%d%s",*pa++,len?" ":"");
13 printf("]\n");
14

15 return 0;
16 }

16 / 1

The void * pointer

� C has a “typeless” or “generic” pointer: void *p

� This can be a pointer to anything

� This can be useful when dealing with dynamic memory

� Enables “polymorphic” code; for example:

1 sort(void *p, const unsigned int len,
2 int (*comp)(void *,void *));

� However this is also a big “hole” in the type system

� Therefore void * pointers should only be used where necessary

17 / 1

Structure declaration

� A structure is a collection of one or more variables

� It provides a simple method of abstraction and grouping

� A structure may itself contain structures

� A structure can be assigned to, as well as passed to, and returned
from functions

� We declare a structure using the keyword struct

� For example, to declare a structure circle we write
struct circle {int x; int y; unsigned int r;};

� Once declared, a structure creates a new type

18 / 1

Structure definition

� To define an instance of the structure circle we write
struct circle c;

� A structure can also be initialised with values:
struct circle c = {12, 23, 5};

� An automatic, or local, structure variable can be initialised by
function call:
struct circle c = circle_init();

� A structure can declared, and several instances defined in one go:
struct circle {int x; int y; unsigned int r;} a, b;

19 / 1

Member access

� A structure member can be accessed using ‘.’ notation:
structname.member; for example: pt.x

� Comparison (e.g. pt1 > pt2) is undefined

� Pointers to structures may be defined; for example:
struct circle *pc

� When using a pointer to a struct, member access can be achieved
with the ‘.’ operator, but can look clumsy; for example: (*pc).x

� Alternatively, the ‘->’ operator can be used; for example: pc->x

20 / 1

Self-referential structures

� A structure declaration can contain a member which is a pointer
whose type is the structure declaration itself

� This means we can build recursive data structures; for example:

1 struct tree {
2 int val;
3 struct tree *left;
4 struct tree *right;
5 }

1 struct link {
2 int val;
3 struct link *next;
4 }

21 / 1

Unions

� A union variable is a single variable which can hold one of a number
of different types

� A union variable is declared using a notation similar to structures;
for example: union u { int i; float f; char c;};

� The size of a union variable is the size of its largest member

� The type held can change during program execution

� The type retrieved must be the type most recently stored

� Member access to unions is the same as for structures (‘.’ and ‘->’)

� Unions can be nested inside structures, and vice versa

22 / 1

Bit fields

� Bit fields allow low-level access to individual bits of a word

� Useful when memory is limited, or to interact with hardware

� A bit field is specified inside a struct by appending a declaration with
a colon (:) and number of bits; for example:
struct fields { int f1 : 2; int f2 : 3;};

� Members are accessed in the same way as for structs and unions

� A bit field member does not have an address (no & operator)
� Lots of details about bit fields are implementation specific:

� word boundary overlap & alignment, assignment direction, etc.

23 / 1

Example (adapted from K&R)

1 struct { /* a compiler symbol table */
2 char *name;
3 struct {
4 unsigned int is_keyword : 1;
5 unsigned int is_extern : 1;
6 unsigned int is_static : 1;
7 ...
8 } flags;
9 int utype;

10 union {
11 int ival; /* accessed as symtab[i].u.ival */
12 float fval;
13 char *sval;
14 } u;
15 } symtab[NSYM];

24 / 1

Exercises

1. If p is a pointer, what does p[-2] mean? When is this legal?

2. Write a string search function with a declaration of
char *strfind(const char *s, const char *f); which returns a
pointer to first occurrence of s in f (and NULL otherwise)

3. If p is a pointer to a structure, write some C code which uses all the
following code snippets: “++p->i”, “p++->i”, “*p->i”, “*p->i++”,
“(*p->i)++” and “*p++->i”; describe the action of each code snippet

4. Write a program calc which evaluates a reverse Polish expression given on
the command line; for example
$ calc 2 3 4 + *

should print 14 (K&R Exercise 5-10)

25 / 1

