C and C4++

1. Types — Variables — Expressions & Statements

Stephen Clark

University of Cambridge
(heavily based on last year's notes (Andrew Moore) with thanks to Alastair R. Beresford
and Bjarne Stroustrup)

Michaelmas Term 2011

Text books

There are literally hundreds of books written about C and C++; five you
might find useful include:

» Eckel, B. (2000). Thinking in C4++, Volume 1: Introduction to
Standard C++ (2nd edition). Prentice-Hall.
(http://waw.mindview.net/Books/TICPP/ThinkingInCPP2e.html)

» Kernighan, B.W. & Ritchie, D.M. (1988). The C programming
language (2nd edition). Prentice-Hall.

» Stroustrup, B. (2000). The C++ Programming Language Special
Edition (3rd edition). Addison Wesley Longman

» Stroustrup, B. (1994). The design and evolution of C++.
Addison-Wesley.

» Lippman, S.B. (1996). Inside the C++ object model.
Addison-Wesley.

Structure of this course

Programming in C:
> types, variables, expressions & statements
» functions, compilation, pre-processor
> pointers, structures

» extended examples, tick hints ‘n’ tips

Programming in C4++:
» references, overloading, namespaces,C/C++ interaction
> operator overloading, streams, inheritance
> exceptions and templates

» standard template library

Past Exam Questions

» 1993 Paper 5 Question 5 1993 Paper 6 Question 5
» 1994 Paper 5 Question 5 1994 Paper 6 Question 5
» 1995 Paper 5 Question 5 1995 Paper 6 Question 5
> 1996 Paper 5 Question 5 (except part (f) setjmp)

» 1996 Paper 6 Question 5

» 1997 Paper 5 Question 5 1997 Paper 6 Question 5
» 1998 Paper 6 Question 6 *

» 1999 Paper 5 Question 5 * (first two sections only)

» 2000 Paper 5 Question 5 *

» 2006 Paper 3 Question 4 *

» 2007 Paper 3 Question 4 2007 Paper 11 Question 3
» 2008 Paper 3 Question 3 2008 Paper 10 Question 4
» 2009 Paper 3 Question 1

» 2010 Paper 3 Question 6

» 2011 Paper 3 Question 3

* denotes CPL questions relevant to this course.

4/23

Context: from BCPL to Java

vV vV vV V.V V. VY VvV VY%

1966 Martin Richards developed BCPL

1969 Ken Thompson designed B

1972 Dennis Ritchie's C

1979 Bjarne Stroustrup created C with Classes

1983 C with Classes becomes C+-+

1989 Original C90 ANSI C standard (ISO adoption 1990)
1990 James Gosling started Java (initially called Oak)

1998 ISO C++ standard

1999 C99 standard (ISO adoption 1999, ANSI, 2000)
2017 C440x - the next 1ISO C+-+ standard

Classic first example

#include <stdio.h>

i

{

}

nt main(void)

printf ("Hello, world\n");

return O;

Compile with:

$ cc examplel.c

Execute program with:

$./a.out
Hello, world
$

Cis a “low-level” language

» C uses low-level features: characters, numbers & addresses
» Operators work on these fundamental types

» No C operators work on “composite types”
e.g. strings, arrays, sets

» Only static definition and stack-based local variables
heap-based storage is implemented as a library

» There are no read and write primitives
instead, these are implemented by library routines

» There is only a single control-flow
no threads, synchronisation or coroutines

Basic types

» C has a small and limited set of basic types:
type ‘ description (size)
char characters (> 8 bits)
int integer values (> 16 bits, commonly one word)
float | single-precision floating point number
double | double-precision floating point number

» Precise size of types is architecture dependent

» Various type operators for altering type meaning, including:
unsigned, long, short, const, static

» This means we can have types such as long int and unsigned char

23

Constants

» Numeric constants can be written in a number of ways:

type style example

char none none

int number, character or es- | 12 A’ >\n’ ’\007’
cape seq.

long int number w/suffix 1 or L 1234L

float number with *.’, ‘e’ or 'E' | 1.234e3F or 1234.0f
and suffix £ or F

double number with *.’, ‘e’ or ‘E' | 1.234e3 1234.0

long double

number ‘.’, ‘e’ or ‘E' and
suffix 1 or L

1.234E31 or 1234.0L

» Numbers can be expressed in octal by prefixing with a ‘0" and
hexadecimal with ‘0x’; for example: 52=064=0x34

Variables

» Variables must be defined (i.e. storage set aside) exactly once

» A variable name can be composed of letters, digits and underscore
(_); a name must begin with a letter or underscore

» Variables are defined by prefixing a name with a type, and can
optionally be initialised; for example: long int i = 28L;

» Multiple variables of the same basic type can be defined together; for
example: char c,d,e;

11/23

Defining constant values

» An enumeration can be used to specify a set of constants; e.g.:
enum boolean {FALSE, TRUE},

» By default enumerations allocate successive integer values from zero

» It is possible to assign values to constants; for example:
enum months {JAN=1,FEB,MAR}
enum boolean {F,T,FALSE=0,TRUE,N=0,Y}

» Names for constants in different enums must be distinct; values in the
same enum need not

» The preprocessor can also be used (more on this later)

Operators

10/23

» All operators (including assignment) return a result

» Most operators are similar to those found in Java:

type operators

arithmetic | + - x / ++ —= Y

logic == I=>>= < <= || && !

bitwise | & << >> =~ ~

assignment | = += -= %= /= J= <<= >>= &= |= "=
other sizeof

12/23

Type conversion Expressions and statements

» An expression is created when one or more operators are combined,;

» Automatic type conversion may occur when two operands to a binary
for example x *=y % =z

operator are of a different type

» Generally, conversion “widens” a variable (e.g. short — int) > Every expression (even assignment) has a type and a result

» Operator precedence provides an unambiguous interpretation for every

» However “narrowing” is possible and may not generate a compiler)
expression

warning; for example:
» An expression (e.g. x=0) becomes a statement when followed by a

1 int 1 = 1234; . .
semicolon (i.e. x=0;)

2 char c;
3 ¢ = i+l; /* i overflows c */ » Several expressions can be separated using a comma *,’; expressions

)] o) are then evaluated left to right; for example: x=0,y=1.0
» Type conversion can be forced by using a cast, which is written as:

(type) exp: for example: ¢ = (char) 1234L; » The type and value of a comma-separated expression is the type and

value of the result of the right-most expression

13/23 14 /23

Blocks or compound statements Variable scope

» Variables can be defined outside any function, in which case they:

> A block or compound statement is formed when multiple statements > are often called global or static variables

are surrounded with braces ({ }) » have global scope and can be used anywhere in the program
» A block of statements is then equivalent to a single statement > consume storage for the entire run-time of the program

. . > are initialised to zero by default

» In ANSI/ISO C90, variables can only be declared or defined at the > Variables defined with ybl ¥ function):

start of a block (this restriction was lifted in ANSI/ISO C99) ariables defined within a bloc (e:g. une fon):

. . . . o » are often called local or automatic variables

» Blocks are typically associated with a function definition or a control can only be accessed from definition until the end of the block

>
flow statement, but can be used anywhere » are only allocated storage for the duration of block execution
> are only initialised if given a value; otherwise their value is undefined

15/23 16/23

Variable definition versus declaration

» A variable can be declared but not defined using the extern keyword,;

for example extern int a;

» The declaration tells the compiler that storage has been allocated

elsewhere (usually in another source file)

» If a variable is declared and used in a program, but not defined, this

will result in a link error (more on this later)

17/23

Arrays and strings

One or more items of the same type can be grouped into an array; for
example: long int i[10];

The compiler will allocate a contiguous block of memory for the
relevant number of values

» Array items are indexed from zero, and there is no bounds checking

» Strings in C are usually represented as an array of chars, terminated

with a special character ’\0’

There is compiler support for string constants using the ‘"' character;
for example:

char str[]="two strs mer" "ged and terminated"

String support is available in the string.h library

19/23

Scope and type example

1 #include <stdio.h>

2

3 int a; /*what value does a have? */
4 unsigned char b = ’A’;

5 extern int alpha; /* safe to use this? */
6

7 int main(void) {

8 extern unsigned char b; /* is this needed? */
9 double a = 3.4;

0 {

11 extern a; /*why is this sloppy? */
12 printf ("%d %d\n",b,a+1); /*what will this print? */
13}

15 return O;

Control flow

» Control flow is similar to Java:

> exp 7 exp : exp
» if (exp) stmt; else stmts
» switch(exp) {
case exp;:
stmty

default:
stmt,,+1
}
» while (exp) stmt
» for (exp;; exp,; exps) stmt
» do stmt while (exp);

» The jump statements break and continue also exist

18/23

20/23

Control flow and string example

1 #include <stdio.h>
2 #include <string.h>

3

4 char s[]="University of Cambridge Computer Laboratory";

5

6 int main(void) {

7

8

9
10
11
12
13
14

15

char c;

int i, j;

for (i=0,j=strlen(s)-1;i<j;i++,j--) /* strlen(s)-1 7 */
c=s[i], slil=s[j], sl[jl=c;

printf ("%s\n",s);
return O;

21/23

Exercises

1. What is the difference between ’a’ and "a"?

. Will char i,j; for(i=0;i<10,j<5;i++,j++) ; terminate? If so,

under what circumstances?

Write an implementation of bubble sort for a fixed array of integers.
(An array of integers can be defined as int i[] = {1,2,3,4}; the
2nd integer in an array can be printed using printf("%d\n",i[11);.)

Modify your answer to (3) to sort characters into lexicographical
order. (The 2nd character in a character array i can be printed using
printf ("%c\n",i[1]);.)

23/23

Goto (considered harmful)

» The goto statement is never required
> It often results in code which is hard to understand and maintain

» Exception handling (where you wish to exit or break from two or
more loops) may be one case where a goto is justified:

1 for (...) {
for (...) {

if (critical_problem)
goto error;

}

2
3
4
5
6
.
8
9

error:

fix problem, or abort

22/23

