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Text books

There are literally hundreds of books written about C and C++; five you
might find useful include:

» Eckel, B. (2000). Thinking in C4++, Volume 1: Introduction to
Standard C++ (2nd edition). Prentice-Hall.
(http://waw.mindview.net/Books/TICPP/ThinkingInCPP2e.html)

» Kernighan, B.W. & Ritchie, D.M. (1988). The C programming
language (2nd edition). Prentice-Hall.

» Stroustrup, B. (2000). The C++ Programming Language Special
Edition (3rd edition). Addison Wesley Longman

» Stroustrup, B. (1994). The design and evolution of C++.
Addison-Wesley.

» Lippman, S.B. (1996). Inside the C++ object model.
Addison-Wesley.

Structure of this course

Programming in C:
> types, variables, expressions & statements
» functions, compilation, pre-processor
> pointers, structures

» extended examples, tick hints ‘n’ tips

Programming in C4++:
» references, overloading, namespaces,C/C++ interaction
> operator overloading, streams, inheritance
> exceptions and templates

» standard template library

Past Exam Questions

» 1993 Paper 5 Question 5 1993 Paper 6 Question 5
» 1994 Paper 5 Question 5 1994 Paper 6 Question 5
» 1995 Paper 5 Question 5 1995 Paper 6 Question 5
> 1996 Paper 5 Question 5 (except part (f) setjmp)

» 1996 Paper 6 Question 5

» 1997 Paper 5 Question 5 1997 Paper 6 Question 5
» 1998 Paper 6 Question 6 *

» 1999 Paper 5 Question 5 * (first two sections only)

» 2000 Paper 5 Question 5 *

» 2006 Paper 3 Question 4 *

» 2007 Paper 3 Question 4 2007 Paper 11 Question 3
» 2008 Paper 3 Question 3 2008 Paper 10 Question 4
» 2009 Paper 3 Question 1

» 2010 Paper 3 Question 6

» 2011 Paper 3 Question 3

* denotes CPL questions relevant to this course.
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Context: from BCPL to Java

vV vV vV V.V V. VY VvV VY%

1966 Martin Richards developed BCPL

1969 Ken Thompson designed B

1972 Dennis Ritchie's C

1979 Bjarne Stroustrup created C with Classes

1983 C with Classes becomes C+-+

1989 Original C90 ANSI C standard (ISO adoption 1990)
1990 James Gosling started Java (initially called Oak)

1998 ISO C++ standard

1999 C99 standard (ISO adoption 1999, ANSI, 2000)
2017 C440x - the next 1ISO C+-+ standard

Classic first example

#include <stdio.h>

i

{

}

nt main(void)

printf ("Hello, world\n");

return O;

Compile with:

$ cc examplel.c

Execute program with:

$ ./a.out
Hello, world
$

Cis a “low-level” language

» C uses low-level features: characters, numbers & addresses
» Operators work on these fundamental types

» No C operators work on “composite types”
e.g. strings, arrays, sets

» Only static definition and stack-based local variables
heap-based storage is implemented as a library

» There are no read and write primitives
instead, these are implemented by library routines

» There is only a single control-flow
no threads, synchronisation or coroutines

Basic types

» C has a small and limited set of basic types:
type ‘ description (size)
char characters (> 8 bits)
int integer values (> 16 bits, commonly one word)
float | single-precision floating point number
double | double-precision floating point number

» Precise size of types is architecture dependent

» Various type operators for altering type meaning, including:
unsigned, long, short, const, static

» This means we can have types such as long int and unsigned char
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Constants

» Numeric constants can be written in a number of ways:

type style example

char none none

int number, character or es- | 12 A’ >\n’ ’\007’
cape seq.

long int number w/suffix 1 or L 1234L

float number with *.’, ‘e’ or 'E' | 1.234e3F or 1234.0f
and suffix £ or F

double number with *.’, ‘e’ or ‘E' | 1.234e3 1234.0

long double

number ‘.’, ‘e’ or ‘E' and
suffix 1 or L

1.234E31 or 1234.0L

» Numbers can be expressed in octal by prefixing with a ‘0" and
hexadecimal with ‘0x’; for example: 52=064=0x34

Variables

» Variables must be defined (i.e. storage set aside) exactly once

» A variable name can be composed of letters, digits and underscore
(_); a name must begin with a letter or underscore

» Variables are defined by prefixing a name with a type, and can
optionally be initialised; for example: long int i = 28L;

» Multiple variables of the same basic type can be defined together; for
example: char c,d,e;
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Defining constant values

» An enumeration can be used to specify a set of constants; e.g.:
enum boolean {FALSE, TRUE},

» By default enumerations allocate successive integer values from zero

» It is possible to assign values to constants; for example:
enum months {JAN=1,FEB,MAR}
enum boolean {F,T,FALSE=0,TRUE,N=0,Y}

» Names for constants in different enums must be distinct; values in the
same enum need not

» The preprocessor can also be used (more on this later)

Operators
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» All operators (including assignment) return a result

» Most operators are similar to those found in Java:

type operators

arithmetic | + - x / ++ —= Y

logic == I=>>= < <= || && !

bitwise | & << >> =~ ~

assignment | = += -= %= /= J= <<= >>= &= |= "=
other sizeof
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Type conversion Expressions and statements

» An expression is created when one or more operators are combined,;

» Automatic type conversion may occur when two operands to a binary
for example x *=y % =z

operator are of a different type

» Generally, conversion “widens” a variable (e.g. short — int) > Every expression (even assignment) has a type and a result

» Operator precedence provides an unambiguous interpretation for every

» However “narrowing” is possible and may not generate a compiler )
expression

warning; for example:
» An expression (e.g. x=0) becomes a statement when followed by a

1 int 1 = 1234; . .
semicolon (i.e. x=0;)

2 char c;
3 ¢ = i+l; /* i overflows c */ » Several expressions can be separated using a comma *,’; expressions

) ] o ) are then evaluated left to right; for example: x=0,y=1.0
» Type conversion can be forced by using a cast, which is written as:

(type) exp: for example: ¢ = (char) 1234L; » The type and value of a comma-separated expression is the type and

value of the result of the right-most expression
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Blocks or compound statements Variable scope

» Variables can be defined outside any function, in which case they:

> A block or compound statement is formed when multiple statements > are often called global or static variables

are surrounded with braces ({ }) » have global scope and can be used anywhere in the program
» A block of statements is then equivalent to a single statement > consume storage for the entire run-time of the program

. . > are initialised to zero by default

» In ANSI/ISO C90, variables can only be declared or defined at the > Variables defined with ybl ¥ function):

start of a block (this restriction was lifted in ANSI/ISO C99) ariables defined within a bloc (e:g. une fon):

. . . . o » are often called local or automatic variables

» Blocks are typically associated with a function definition or a control can only be accessed from definition until the end of the block

>
flow statement, but can be used anywhere » are only allocated storage for the duration of block execution
> are only initialised if given a value; otherwise their value is undefined
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Variable definition versus declaration

» A variable can be declared but not defined using the extern keyword,;

for example extern int a;

» The declaration tells the compiler that storage has been allocated

elsewhere (usually in another source file)

» If a variable is declared and used in a program, but not defined, this

will result in a link error (more on this later)
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Arrays and strings

One or more items of the same type can be grouped into an array; for
example: long int i[10];

The compiler will allocate a contiguous block of memory for the
relevant number of values

» Array items are indexed from zero, and there is no bounds checking

» Strings in C are usually represented as an array of chars, terminated

with a special character ’\0’

There is compiler support for string constants using the ‘"' character;
for example:

char str[]="two strs mer" "ged and terminated"

String support is available in the string.h library
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Scope and type example

1 #include <stdio.h>

2

3 int a; /*what value does a have? */
4 unsigned char b = ’A’;

5 extern int alpha; /* safe to use this? */
6

7 int main(void) {

8 extern unsigned char b; /* is this needed? */
9 double a = 3.4;

0 {

11 extern a; /*why is this sloppy? */
12 printf ("%d %d\n",b,a+1); /*what will this print? */
13}

15 return O;

Control flow

» Control flow is similar to Java:

> exp 7 exp : exp
» if (exp) stmt; else stmts
» switch(exp) {
case exp;:
stmty

default:
stmt,,+1
}
» while (exp) stmt
» for ( exp;; exp,; exps ) stmt
» do stmt while (exp);

» The jump statements break and continue also exist
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Control flow and string example

1 #include <stdio.h>
2 #include <string.h>

3

4 char s[]="University of Cambridge Computer Laboratory";

5

6 int main(void) {

7

8

9
10
11
12
13
14

15

char c;

int i, j;

for (i=0,j=strlen(s)-1;i<j;i++,j--) /* strlen(s)-1 7 */
c=s[i], slil=s[j], sl[jl=c;

printf ("%s\n",s);
return O;
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Exercises

1. What is the difference between ’a’ and "a"?

. Will char i,j; for(i=0;i<10,j<5;i++,j++) ; terminate? If so,

under what circumstances?

Write an implementation of bubble sort for a fixed array of integers.
(An array of integers can be defined as int i[] = {1,2,3,4}; the
2nd integer in an array can be printed using printf("%d\n",i[11);.)

Modify your answer to (3) to sort characters into lexicographical
order. (The 2nd character in a character array i can be printed using
printf ("%c\n",i[1]);.)
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Goto (considered harmful)

» The goto statement is never required
> It often results in code which is hard to understand and maintain

» Exception handling (where you wish to exit or break from two or
more loops) may be one case where a goto is justified:

1 for (...) {
for (...) {

if (critical_problem)
goto error;

}

2
3
4
5
6
.
8
9

error:

fix problem, or abort
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