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Syllabus part I: advanced planning

New things to be looked at include some more advanced mhaterigplanning
algorithms:

e Heuristics and GraphPlanincorporating heuristics into partial-order plan-
ning, planning graphs, the GraphPlan algorithm. [1 ledture

e Planning using propositional logic:representing planning problems using
propositional logic, and generating plans using satidftglsolvers. [1 lec-
ture]

e Planning using constraint satisfactiorepresenting planning problems so that
they can be solved using constraint satisfaction solvérgdture]

There is no warranty attached to the stated lecture timings.



Syllabus part Il: uncertainty in Al

We then delve into some more modern material which takesusataaf uncer-
tainty:

e Uncertainty and Bayesian networkeeview of probability as applied to Al,
Bayesian networks, inference in Bayesian networks usirtly éxact and ap-
proximate techniques, other ways of dealing with uncetyald lectures]

e Utility and decision-makingmaximising expected utility, decision networks,
the value of information. [1 lecture]

Please read theupplementary notes on probabilitandout.



Syllabus part Ill: uncertainty and time

We then look at how uncertain reasoning and learning cangiake wheriimeis
to be taken into account:

e Markov processedransition and sensor models.

e Inferenceain temporal models: filtering, prediction, smoothing andliny the
most likely explanation.

e Hidden Markov modelq2 lectures]



Syllabus part 1V: learning

Finally, we apply probability tacsupervised learningo obtain [1 lecture] more
sophisticated models of learning.

e Bayes theoreras applied to supervised learning. [1 lecture]
e Themaximum likelihoocdAndmaximum a posteriotypotheses. [1 lecture]

e Applying the Bayesian approachieural networks[3 lectures]
We finish the course by taking a brief lookratnforcement learning

e How can we learn fromewards and punishmer#s

e The O-learningalgorithm. [1 lecture]

Reinforcement learning can be thought of as combining mdrhe elements
covered in this course and in Al |, and thus provides a napleale to stop.



Books

Once again, the main single text book for the course is:

e Artificial Intelligence: A Modern ApproachStuart Russell and Peter Norvig,
Prentice Hall.

There Is an accompanying web site at
al ma. cs. ber kel ey. edu

Either the second or third edition should be fine, but avoalfttst edition as it
does not fit this course so well.

Chapter numbers given in these notes refer to the thirdoediti



Books

For some of the new material on neural networks you might Bitgoto take a
look at:

e Pattern Recognition and Machine Learnir@hristopher M. Bishop. Springer,
2006.

For some of the new material on reinforcement learning yaghitrlike to consult:
e Machine Learning Tom Mitchell. McGraw Hill, 1997.
For further material on planning try:

e Automated Planning: Theory and PracticMalik Ghallab, Dana Nau and
Paolo Traverso. Morgan Kaufmann, 2004.



Dire Warning

This course contains quite a lot of:

1. Probability
2. Matrix algebra

3. Calculus

As | am an who likes to be | will

assume that you know everything on these subjects that wasembin earlier
courses.

If you don’t it is essentialthat you re-visit your old notes and make sure that
you're at home with that material.



How’s your maths?

To see if you're up to speed on the maths, have a go at the fiokipw

/OO exp(—a?) dx

o0

Evaluate the integral

Hint: this is a pretty standard result. Square the integral andggh#o polar
coordinates.



How’s your maths?

Following on from that, here’s something a bit more challagg

Evaluate the integral

0 0.9 1
/ .../ . (_ﬁ(ggﬁxwm) Bor oo

whereXl is a symmetrio: x n matrix with real elementsy € R”, 5 € R and
x! = [:Cl To -+ - xn} c R"

(This second one is a bit tricky. I'll show you the answerllate)
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Planning Il

We now examine:
e The way in whichbasic heuristicsnight be defined for use in planning prob-
lems.

e The construction oplanning graphsand their use in obtaining more sensible
heuristics.

e Planning graphs as the basis of theaphPlanalgorithm.
e Planning usingpropositional logic

¢ Planning usingonstraint satisfaction

Reading: Russell and Norvig, relevant sections of chapter 11.
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A quick review

We used the following simple example problem.

The intrepid little scamps in th€ambridge University Roof-Climbing Society
wish to attach an inflatable gorilla to the spire of a famou#iége. To do this
they need to leave home and obtain:

e An inflatable gorilla these can be purchased from all good joke shops.
e Somerope available from a hardware store.

e A first-aid kit also available from a hardware store.

They need to return home after they've finished their shappin

How do they go about planning their jolly escapade?
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The STRIPS language

STRIPS: “Stanford Research Institute Problem Solver’” Q97

States:areconjunctionof ground literalswith no functions
At (Home) A —Have(Cori | | a)
A ~Have(Rope)
A —-Have(Kit)
Goals: are conjunctionsof literals where variables are assumed existentially

guantified.
At (x)ANSells(x,CGorill a)

A planner finds a sequence of actions that makes the goal titea performed.
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An example of partial-order planning

Here is the initial plan:

At (Home) ASells(JS, G AlSel Il s(HS, R) ASel | s(HS, F

At (Home) AHave( G AHa

Thin arrows denote ordering.
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An example of partial-order planning

There are two actions available:

At (z),Sel | s(z,y) |

Buy (y)

Have(y)
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An example of partial-order planning

At (Hone) ,Sel | s(JS\G , Se , R),Sel | s(HS, FA)

At (JS),Sells(JS, G Sel | s(HS, R) ,At (HS)

At (Hone) ,Have( G ,Have(R) ,Have( FA)

TheAt ( HS) precondition is easy to achieve.

But if we introduce a causal link fro®t ar t to Go( HS) then we risk invalidating
the precondition foiGo( JS) .
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An example of partial-order planning

The planner could backtrack and try to achieveAhexr) precondition using the
existingGo(JS) step.

At (JS)

At (Hone) , Sel | s(JSeI | s(HS, FA)

At (JS),Sel 1 s(JS, G Sel | s(HS, R) , At (HS)

~At (JS)

At (Homre) ,Have( G ,Have(R) ,Have( FA)

This involves a threat, but one that can be fixed using pramoti
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Using heuristics in planning

We found in looking at search problems thaguristicswere a helpful thing to
have.

Note that now:

e There is no simple representation oftate

e Consequently it is harder to measure the distancegtmed

Defining heuristics for planning is therefore more difficthian it was for search
problems.
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Using heuristics in planning

We can quickly suggest some possibilities.

For example
h = number of unsatisfied preconditions

or

h =number of unsatisfied preconditions
— number satisfied by the start state

These can lead to underestimates or overestimates:

e Underestimates if actions can affect one another in uraldsimvays.

e Overestimates if actions achieve many preconditions.
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Using heuristics in planning

We can go a little further by learning froonstraint Satisfaction Problenand
adopting themost constrained variableeuristic:

e Prefer the precondition satisfiable in the smallest numbesays.
This can be computationally demanding but two special casebelpful:

e Choose preconditions for which no action will satisfy them.

e Choose preconditions that can only be satisfied in one way.
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Planning graphs

Planning graphs can be used:

e To compute more sensible heuristics.

e To generate entire plans.

Also, planning graphs areasy to construct

They apply only when it is possible to work entirely usimgpositionalrepresen-
tations of plans.

Luckily, STRIPS can always be propositionalized...
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Planning graphs

For example the triumphant return of the gorilla-purchasing roofadters...

Predicate Propositional

At (HS), -At (JS)

and so on...
At (HS), -At (Home)

At (JS)

Go(Hormre)

At (Hore), —At (JS)
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Planning graphs

A planning graph is constructed in levels:

e Level 0 corresponds to thetart state

e At each level we keeppproximaterack of all things thatould be true at the
corresponding time.

e At each level we keeppproximaterack of what actionsould be applicable
at the corresponding time.

The approximation is due to the fact that not all conflictsnestn actions are
tracked.Sa

e The graph camnderestimatéow long it might take for a particular proposi-
tion to appear, and therefore ...

e ...a heuristic can be extracted.
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Planning graphs: a simple example

Our intrepid student adventurers will of course need to teflaeirgorilla before
attaching it to alistinguished roof It has to be purchased before it can be inflated.

Start state Empty.
We assume that anything not mentioned in a state is falseheSstdite is actually
—Have(Gorill a)and—Infl ated(Gorill a)

Actions

—Have(Gorill a) Have(Gorill a)

Buy(Gorill a) Inflate(CGorillg)

Have(Goril |l a) I nflated(Gorilla)

Goal Have(Gori |l I a)andl nfl ated(Gori | | a).
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Planning graphs

Describe start All actions available in All possibilities for ~ All actions that might All possibilities for
state. start state. what might be the be available at time what might be the
case at timd. 1. case at time.

[] = apersistence actica-what happens if no action is taken.
An action levelA; containsall actions thatould happen given the propositions .




Mutex links

We also record, usinghutual exclusion (mutex) linkghich pairs of actions could
not occur together.

Mutex links 1 Effects are inconsistent.

The effect of one action negates the effect of another.
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Mutex links

Mutex links 2 The actions interfere.

The effect of an action negates the precondition of another.
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Mutex links

Mutex links 3 Competing for preconditions.

The precondition for an action is mutually exclusive witle tprecondition for
another. (See next slide!)
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Mutex links

A state levelS; containsall propositions thatould be true, given the possible
preceding actions.

We also use mutex links to record pairs that can not be truel&meously:

Possibility I pair consists of a proposition and its negation.
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Mutex links

Possibility 2 all pairs of actions that could achieve the pair of proposg are
mutex.

The construction of a planning graph is continued until ta@entical levels are
obtained.
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Planning graphs
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Obtaining heuristics from a planning graph

To estimate the cost of reaching a single proposition:
e Any proposition not appearing in the final level haSnite costandcan never
be reached

e Thelevel costof a proposition is the level at which it first appears this may
be inaccurate as several actions can apply at each levehencbist does not
count thenumber of actions(It is howeveradmissible)

e A serial planning graphncludes mutex links between all pairs of actions ex-
cept persistence actions.

Level cost in serial planning grapltan be quite a good measurement.
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Obtaining heuristics from a planning graph

How about estimating the cost to achievecdectionof propositions?
e Max-level use the maximum level in the graph of any proposition in &te s
Admissible but can be inaccurate.

e Level-sum use the sum of the levels of the propositions. Inadmisdiole
sometimes quite accurate if goals tend to be decomposable.

e Set-leveluse the level at whichll propositions appear with none being mutex.
Can be accurate Iif goals tendtto be decomposable.
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Other points about planning graphs

A planning graph guarantees that:

1. If a proposition appears at some level, there/be a way of achieving it.
2. If a proposition doesot appear, it camot be achieved.

The first point here is a loose guarantee becausejotyg of items are linked by
mutex links.

Looking at larger collections can strengthen the guarabt#en practice the gains
are outweighed by the increased computation.
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Graphplan

The GraphPlanalgorithm goes beyond using the planning graph as a source of
heuristics.

Start at |evel O;
whil e(true) {
i f (all goal propositions appear in the current |evel
AND no pair has a nutex link) {

attenpt to extract a plan;

if (a solution is obtained)
return the sol ution;

else if (graph indicates there is no solution)
return fail;

el se
expand the graph to the next |evel;

}
}

We extract a plandirectly from the planning graph. Termination can be proved
but will not be covered here.

35



Graphplan in action

Here, at levelss; andS; we do not have bothi( G andl ( G) available with no
mutex links, and so we expand first$e and then toS,.

At S, we try to extract a solution (plan).
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Extracting a plan from the graph

Extraction of a plan can be formalised asssrch problem
Statescontain devel and a collection ofinsatisfied goal propositions

Start state:the current final level of the graph, along with the relevardigropo-
sitions.

Goal: a state at leveb|, containing the initial propositions.
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Extracting a plan from the graph

Actions: For a stateS with level S;, a valid action is to select any s&tof actions
In A;_; such that:

1. no pair has a mutex link;
2. no pair of their preconditions has a mutex link;

3. the effects of the actions ik achieve the propositions is..

The effect of such an action is a state having level, and containing the pre-
conditions for the actions I1X.

Each action has a cost of
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Graphplan in action

Start state

Action: Buy( G Action: I nf (G andO
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Heuristics for plan extraction

We can of course also appheuristicsto this part of the process.

For example, when dealing withsat of propositions

e Choose the proposition havimgaximum level codirst.

e For that proposition, attempt to achieve it using the adwonwhich themaxi-
mum/sum level cost of its preconditions Is minimum
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Planning Ill: planning using propositional logic

Last year we saw that plans might be extracted from a knoweledge vidheorem
proving, usingfirst order logic (FOL)andsituation calculus

BUT: this might be computationally infeasible for realistioptems.

Sophisticated techniques are available for testiagsfiability in propositional
logic, and these have also been applied to planning.

The basic idea is to attempt to find a model of a sentence havenfprm

description of start state
A descriptions of the possible actions
A\ description of goal

41



Propositional logic for planning

We attempt to construct this sentence such that:

e If M Is a model of the sentence thénassigns! to a proposition if and only
If it is in the plan.

e Any assignment denoting an incorrect plan will not be a madethe goal
description will not ber .

e The sentence is unsatisfiable If no plan exists.
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Propositional logic for planning

Start state
S =At"(a,spire)AAt’b,ground)
A —At “(a, gr ound) A —At ’(b,spire)

+
a
+ @ The two climbers want to swap places...

%b

Remember that an expression suchAa$(a, spi r e) is aproposition The su-
perscripted number now denotes time.
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Propositional logic for planning

Goal
G =At '(a,ground) A At ‘(b,spire)
A —At ‘(a,spire)A—At’(b,ground)

Actions can be introduced using the equivalent of successor-atatens
At '(a,gr ound) «

(At °(a, gr ound) A =(At “(a,gr ound) A Move’(a, gr ound, spi re)))

Vv (At °(a,spi re) A Mwve'(a,spire,ground))

(1)

Denote byA the collection of all such axioms.
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Propositional logic for planning

We will now find thatS A AAG has a model in whiclvbve'(a, spi r e, gr ound)
andMove'(b, gr ound, spi r e) areT while all remaining actions are.

In more realistic planning problems we will clearly not knawadvance at what
time the goal might expect to be achieved.

We therefore:

e Loop through possible final timées.
e Generate a goal for timé& and actions up to timé'.
e Try to find a model and extract a plan.

e Until a plan is obtained or we hit some maximum time.
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Propositional logic for planning

Unfortunately there is a problem—we may, if considerablee aa not applied,
also be able to obtain less sensible plans.

In the current example
Move'(b,ground,spire)=T
Move'(a,spire,ground) =T

Move'(a,ground,spire) =T

IS @ model, because the successor-state axiom (1) does faut ipreclude the
application ofVbve’(a, gr ound, spi re).

We need arecondition axiom
Move'(a,ground,spire) — At ’(a,ground)

and so on.
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Propositional logic for planning

Life becomes more complicated still if a third location iglad:hospi t al .
Move'(a,spi re,ground) A Move'(a,spire hospital)

Is perfectly valid and so we need to specify that he can’t movavo places
simultaneously

—-(Move'(a,spi re,ground) A Move'(a,spi re,hospital))
—-(Move'(a,ground,spi re) A Move'(a,ground,hospi t al ))

and so on.
These arection-exclusioraxioms.

Unfortunately they will tend to produdstally-orderedrather tharpartially-ordered
plans.
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Propositional logic for planning

Alternatively:

1. Prevent actions occurring together if one negates tleetadi precondition of
the other.

2. Or, specify that something can’t be in two places simatusly
Vz,i,l 1,12 11412 — =(At"(z,1 1) AAL(z,] 2))

This is an example of atate constraint

Clearly this process can become very complex, but thereeatentques to help
deal with this.
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Planning IV: planning using constraint satisfaction
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Review of constraint satisfaction problems (CSPSs)

We have:

e A set ofn variablesVy, V5, ..., V.
e For eachl; adomainD; specifying the values that can take.

e A set ofm constraintsCy, Cs, ..., C,,.

Each constraint’; involves a set of variables and specifiesslnwable collection
of values

e A stateis an assignment of specific values to some or all of the vimsab
e An assignment isonsistentf it violates no constraints.

e An assignment isompletdf it gives a value to every variable.

A solutionis a consistent and complete assignment.
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Example

We will use the problem ofolouring the nodes of a grapds a running example.

Each node corresponds tovariable We have three colours and directly con-
nected nodes should have different colours.

Caution required:later on, edges will have a different meaning.
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Example

This translates easily to a CSP formulation:

e The variables are the nodes
V. = node:

e The domain for each variable contains the values black, mddtcgan

DZ:{B,R,C}

e The constraints enforce the idea that directly connecte@saonust have dif-
ferent colours. For example, for variablgsand; the constraints specify

(B,R),(B,C),(R,B),(R,C),(C,B),(C,R)

e Variablelk is unconstrained.
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Different kinds of CSP

This is an example of the simplest kind of CSP: itliscretewith finite domains
We will concentrate on these.

We will also concentrate oninary constraintsthat is, constraints betwegmirs
of variables

e Constraints on single variablessary constraints-can be handled by ad-
justing the variable’s domain. For example, if we don’t wanto bered, then
we just remove that possibility from,.

e Higher-order constraint@applying to three or more variables can certainly be
considered, but...

e ...when dealing with finite domains they can always be convadesets of
binary constraints by introducing extsaixiliary variables

How does that work?
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The state-variable representation

Another planning language: tlsate-variable representation

Things of interest such as people, places, objettare divided intadomains

Dy = {climberl, climber2}
Dy = {home, jokeShop, hardwareStore, pavement, spire, hospital}
D3 = {rope,inflatableGorilla}

Part of the specification of a planning problem involvesistatvhich domain a
particular item is in. For example

D1(climberl)
and so on.
Relations and functions have arguments chosen from unfahggse domains.
above(x,y) C D x D3Pve

is a relation. Theé>2*°"¢ are unions of one or more,.
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The state-variable representation

The relatiomabove Is in fact arigid relation (RR) as it is unchanging: it does not
depend upostate (Remembefluentsin situation calculus?)

Similarly, we haveunctions
at(x1,s) : DIt x S — D,

Here,at(z, s) is astate-variable The domainDj* and rangeD*" are unions of
one or moreD;. In general these can have multiple parameters

SV(T1,..., 0y, 8) i D} X -+ x DX x § — D,
A state-variable denotes assertions such as
at(gorilla, s) = jokeShop
wheres denotes atateand the seb of all states will be defined later.

The state variable allows things such as locations to chajag@in, much like
fluentsin the situation calculus.

Variables appearing in relations and functions are consdi® betyped
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The state-variable representation

Note:

e For properties such aslacationa function might be considerably more suit-
able than a relation.

e For locations, everything has to bemewherand it can only be imne place
at atime

So a function is perfect and immediately solves some of thblpms seen earlier.
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The state-variable representation

Actionsas usual, have mame aset of preconditionand aset of effects

e Namesare unique, and followed by a list of variables involved ia #ction.
e Preconditionsare expressions involving state variables and relations.

e Effectsare assignments to state variables.

For example:
buy(z,y, [)
Preconditionsat(x, s) = |
sells(l,y
has(y, s) = [
Effects has(y,s) = x
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The state-variable representation

Goalsare sets oéxpressionmvolving state variables

For example:

Goal:

at(climber, s) = home
has(rope, s) = climber
at(gorilla, s) = spire

From now on we will generally suppress the statehen writing state variables.
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The state-variable representation

We can essentially regardséateas just a statement of what values the state vari-
ables take at a given time.

Formally:

e For each state variabler we can consider all ground instances such as—
sv(climber, rope)—with arguments that areonsistenwith the rigid rela-
tions

Define X to be the set of all such ground instances.

e A states is then just a set
s={(v=c)ve X}

wherec is in the range of.

This allows us to define theffect of an action

A planning problem also needss&art states, which can be defined in this way.
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The state-variable representation

Considering all thground actions consistent with the rigid relations

e An action isapplicable ins if all expressions/=c appearing in the set of pre-
conditions also appear i

Finally, there is a function that maps a state and an action to a new state

v(s,a) = s

Specifically, we have
(s a) ={(v=c)lve X}
where either: is specified in an effect of, or otherwiser = ¢ is a member of.

Note: the definition ofy implicitly solves theframe problem.
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The state-variable representation

A solutionto a planning problem is a sequenge, a,, ..., a,) of actions such
that...
e () Is applicable insy and for each, «a, is applicable ins; = ~(s;, 1, a; 1).

e For each goal we have
g € V(Sna an)'

What we need now is a method foansforminga problem described in this lan-
guage into a CSP.

We’'ll once again do this for a fixed upper limit on the number of steps in the
plan.
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Converting to a CSP

Step l:encodeactionsasCSP variables

For each time stepwhere0) <t <7 — 1, the CSP has a variable

action’

with domain
[pRese {ala is the ground instance of an action {none}

Example: at some point in searching for a plan we might attempt to firel th
solution to the corresponding CSP involving

5

action’ = attach(inflatableGorilla, spire)

WARNING:be careful in what follows to distinguish betwesiate variables, ac-
tions etcin the planning problem andariablesin the CSP.
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Converting to a CSP

Step 2:encodeground state variableasCSP variableswith a complete copy of
all the state variable®r each time step

So, for eacht where) < ¢ < '7T"we have a CSP variable

svi(ci,...,cp)

with domainD®Vi. (That is, thedomainof the CSP variable is theange of the
state variable.)

Example: at some point in searching for a plan we might attempt to firel th
solution to the corresponding CSP involving

location”(climberl) = hospital.
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Converting to a CSP

Step 3: encode thepreconditions for actions in the planning probleas con-
straints in the CSP problem

For each time stepand for each ground actiaficy, . . ., ¢,) with argumentson-
sistent with the rigid relations in its preconditions

For a precondition of the formv; = v include constraint pairs

(aCtiont — a<C1, e 7C?”L)7

sV, = )

Example:consider the actiobuy(z, y, /) introduced above, and having the pre-
conditionsat(x) = [, sells(/,y) andhas(y) = [.

Assumesells(y, () is only true for
[ = jokeShop

and
y = inflatableGorilla

(it's a very strange town) so we only consider these values &mdy. Then for
each time step we have the constraints...
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Converting to a CSP

action’ = buy(climber1, inflatableGorilla, jokeShop)
paired with
at’(climberl) = jokeShop

action’ = buy(climber1, inflatableGorilla, jokeShop)
paired with
has’(inflatableGorilla) = jokeShop

action’ = buy(climber2, inflatableGorilla, jokeShop)
paired with
at’(climber2) = jokeShop

action’ = buy(climber2, inflatableGorilla, jokeShop)
paired with
has’(inflatableGorilla) = jokeShop

and so on...
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Converting to a CSP

Step 4:.encode theffects of actions in the planning problesconstraints in the
CSP problem

For each time stepand for each ground actiaficy, . . ., ¢,,) with argumentson-
sistent with the rigid relations in its preconditions

For an effect of the formav; = v include constraint pairs
(action’ = a(cy, ..., cp),

svit! =)

Example:continuing with the previous example, we will include coasits

action’ = buy(climber1, inflatableGorilla, jokeShop)
paired with
has'*!(inflatableGorilla) = climber1
action’ = buy(climber2, inflatableGorilla, jokeShop)
paired with
has'*!(inflatableGorilla) = climber?
and so on...
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Converting to a CSP

Step 5:encode thérame axiomsasconstraints in the CSP problem
An action must not change things not appearing in its effets

For:

1. Each time step.

2. Each ground action(c, . . ., ¢,) with argumentsonsistent with the rigid re-
lations In its preconditions

3. Eachsv; thatdoes not appear in the effectsgfand each € D3

Include in the CSP the ternary constraint

(aCtiont — a<C1, <. 7Cn>7

t
SV, = v,

svit! =)
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Finding a plan

Finally, having encoded a planning problem into a CSP, weesibie CSP.

The scheme has the following property:

A solution to the planning problem with at md@ststeps exists if and only if there
IS a a solution to the corresponding CSP

Assume the CSP has a solution.

Then we can extract a plan simply by looking at the valuegjassi to theiction'
variables in the solution of the CSP.

It is also the case that:

There Is a solution to the planning problem with at niBsteps if and only if there
IS a solution to the corresponding CSP from which the sotutian be extracted
In this way

For a proof see:
Automated Planning: Theory and Practice

Malik Ghallab, Dana Nau and Paolo Traverso. Morgan Kaufmai@4 20
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Uncertainty I: Probability as Degree of Belief

We now examine:
e How probability theorymight be used to represent and reason with knowledge
when we areincertainabout the world.

e How inferencein the presence of uncertainty can in principle be performed
using only basic results along with thdl joint probability distribution

e How this approacilhails in practice.

e How the notions ofndependencandconditional independenamay be used
to solve this problem.

Reading:Russell and Norvig, chapter 13.
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Uncertainty in Al

The (predominantly logic-based) methods covered so fag hasorted shortcom-
Ings:

e Limited epistemological commitmeritrue/false/unknown.

e Actions are possible whesufficient knowledgis available...

e ...but this is not generally the case.

e In practice there is a need to cope withcertainty
For example in the Wumpus World:

e \We can not make observations further afield than the curoeatity.

e Consequently inferences regarding pit/wumpus locagtcwill not usually be
possible.
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Uncertainty in Al

A couple of more subtle problems have also presented theassel

e The Qualification Problem:it is not generally possible to guarantee that an
action will succeed—only that it will succeed iifiany other preconditions
do/don’t hold.

e Rational actiondepends on thékelinood of achieving different goals, and
their relative desirability
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Logic (as seen so far) has major shortcomings

An example:
Vx synpt omz,t oot hache) — probl emxz,cavity)

This is plainly incorrect. Toothaches can be caused by shatiger than cavities.

Vax synpt omx,t oot hache) —pr obl emx,cavity)Vv
pr obl emz,abscess)Vv
probl emz,gum di sease)V

BUT:

e It is Impossible to completile list.

e There’s no clear way to take account of tleative likelihoodsof different
causes.
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Logic (as seen so far) has major shortcomings

If we try to make acausal rule
Va pr obl emx,abscess) — synpt omz,t oot hache)
It’s still wrong—abscesses do not always cause pain.
We need further information in addition to
probl emz,abscess)

and it's still not possible to do this correctly.

73



Logic (as seen so far) has major shortcomings

FOL can fail for essentially three reasons:

1. Lazinessitis not feasible to assemble a set of rules that is suffisiexhaus-
tive.

If we could, it would not be feasible to apply them.

2. Theoretical ignoranceinsufficient knowledge=xiststo allow us to write the
rules.

3. Practical ignorance:even if the rules have been obtained there may be insuf-
ficient information to apply them.

Instead of thinking in terms of thiguth or falsity of a statement we want to deal
with an agent’'siegree of beliein the statement.

e Probability theoryis the perfect tool for application here.

e Probability theoryallows us tosummariseghe uncertainty due to laziness and
ignorance.
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An important distinction

There is a fundamental difference betwegaabability theoryandfuzzy logic

e When dealing with probability theory, statements remaifact eithertrue or
false

¢ A probability denotes an agenti®gree of beliebne way or another.

e Fuzzy logic deals withlegree of truth

In practice the use of probability theory has proved spedaaly successful.
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Belief and evidence

An agent’s beliefs will depend on what it hasrceived probabilities are based
onevidenceand may be altered by the acquisition of new evidence:

e Prior (unconditional) probabilitydenotes a degree of belief in the absence of
evidence.

e Posterior (conditional) probabilitgenotes a degree of belief after evidence is
perceived.

As we shall seBayes’ theorerts the fundamental concept that allows us to update
one to obtain the other.
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Making rational decisions under uncertainty

When usingogic, we concentrated on finding an action sequence guaranteed to
achieve a goal, and then executing it.

When dealing withuncertaintywe need to definpreferenceamong states of the
world and take into account thirobability of reaching those states.

Utility theoryis used to assign preferences.
Decision theorcombines probability theory and utility theory.

A rational agent should act in order tnaximise expected utility
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Probability

We want to assign degrees of belief to propositions aboutvtvé.
We will need:
e Random variablesvith associatedlomains—typically Boolean, discrete, or
continuous.
¢ All the usual concepts—events, atomic events, stts
e Probability distributions and densities.
e Probability axioms (Kolmogorov).

e Conditional probability and Bayes’ theorem.

So if you've forgotten this stuff now is a good time to re-retad

78



Probability

The standard axioms are:

e Range

e Always true propositions

Pr(al ways true proposition)=1

e Always false propositions

Pr(al ways fal se proposition)=20

e Union
Pr(z Vy) = Pr(z) + Pr(y) — Pr(z A y)
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Origins of probabillities |

Historically speaking, probabilities have been regaraed number of different
ways:

e Frequentist:probabilities come from measurements.

e ODbjectivist: probabilities are actual “properties of the universe” whice-
guentist measurements seek to uncover.
An excellent example: quantum phenomena.
A bad example: coin flipping—the uncertainty is due to ourartainty about
the initial conditions of the coin.

e Subjectivist:probabilities are an agent’s degrees of belief.
This means the agent is allowed to make up the numbers!
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Origins of probabilities Il

Thereference class probleneven frequentist probabilities are subjective.

Example:Say a doctor takes a frequentist approach to diagnosis. @&meies
a large number of people to establish the prior probabilitywleether or not they
have heart disease.

To be accurate she tries to measure “similar people”. (Sbhe/&hor example that
gender might be important.)

Taken to an extremeayll people arelifferentand there is therefore neference
class
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Origins of probabilities

Theprinciple of indifferencéLaplace).
e Give equal probability to all propositions that are syntadty symmetric with
respect to the available evidence.

e Refinements of this idea led to the attempted developmentibgdp and oth-
ers ofinductive logic

e The aim was to obtain the correct probability of any proposifrom an arbi-
trary set of observations.

It is currently thought that no unique inductive logic egist

Any inductive logic depends on prior beliefs and the effecthmse beliefs is
overcome by evidence.
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Prior probability

A prior probability denotes the probability (degree of belief) assigned to pgro
sitionin the absence of any other evidence

For example
Pr(Cavity =true)=0.05

denotes the degree of belief that a random person has a ¢afiye we make
any actual observation of that person

To keep things compact, we will use
Pr(Cavity)
to denote the entire probability distribution of the randesniableCavi t y.

Instead of
Pr(Cavity =true) =0.05

Pr(Cavity =fal se) =10.95

write
Pr(Cavi ty) = (0.05,0.95)
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Notation

A similar convention will apply for joint distributions. Feexample, ifDecay
can take the valuesever e, noder at e orl owthen

Pr(Cavi ty,Decay)

IS a2 by 3 table of numbers.

severe | noderate|l ow
true 0.26 0.1 0.01
fal se| 0.01 0.02 0.6

Similarly
Pr(t rue,Decay)

denotess numbersetc
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The full joint probability distribution

The full joint probabllity distributionis the joint distribution ofall random vari-
ables that describe the state of the world.

This can be used to answeny query

(But of course life’s not really that simple!)
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Conditional probability

We use theconditional probability

Pr(x|y)

to denote the probability that a propositiorolds given thaall the evidence we
have so fais contained in proposition.

From basic probability theory
Pr(z A y)

Pr(y)
Conditional probability is1ot analogous tdogical implication

Pr(zly) =

e Pr(z|y) = 0.1 doesnot mean that ify is true thenPr(x) = 0.1.
e Pr(z) is aprior probability.
e The notationPr(x|y) is for use wherny is theentire evidence

e Pr(z|y A z) might be very different.
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Using the full joint distribution to perform inference

We can regard the full joint distribution akaowledge base

We want to use it to obtain answers to questions.

CP —CP
HBP  —HBP|HBP ~HBP
HD [0.09 0.050.07 0.01
~HD| 0.02 0.08/0.03 0.65

We’'ll use this medical diagnosis problem as a running exampl

e HD=Heart di sease
e CP = Chest pain
e HBP = Hi gh bl ood pressure
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Using the full joint distribution to perform inference

The process is nothing more than the application of basidtees

e Sum atomic events:

Pr(HDV CP) = Pr(HD A CP A HBP)
+ Pr(HD A CP A —HBP)
+ Pr(HD A —~CP A HBP)
+ Pr(HD A =CP A —HBP)
+ Pr(—=HD A CP A HBP)
+ Pr(—=HD A CP A —=HBP)

= 0.09 + 0.05 + 0.07 4+ 0.01 + 0.02 4 0.08
= (.32

e Marginalisation: ifA and B are sets of variables then

Pr(A) =) Pr(AAb)=) Pr(Alb)Pr(b)
b b
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Using the full joint distribution to perform inference

Usually we will want to compute theonditional probabilityof some variable(s)
givensome evidence

For example
Pr(HD A HBP) 0.09 + 0.07
Pr(HD|HBP) = _ — 0.76
((HDIHBP) = — 5 FBP)  ~ 000 0.07 + 0.02 5 0.03
and
Pr(—HD A HBP 0.02 + 0.03
Pr(~HDIHBP) — L1 ) - 0.24

Pr(HBP)  0.09+0.07+0.02+0.03
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Using the full joint distribution to perform inference

The process can be simplified slightly by noting that
B 1
~ Pr(HBP)

IS a constant and can be regarded am@analisermaking relevant probabilities
sum tol.

8}

So a short cut Is to avoid computing it as above. Instead:
Pr(HD|HBP) = o Pr(HD A HBP) = (0.09 + 0.07)«

Pr(=HD|HBP) = « Pr(=HD A HBP) = (0.02 + 0.03)«
and we need
Pr(HD|HBP) + Pr(—HD|HBP) = 1

SO
1

&= 0.09+0.07+0.02 + 0.03
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Using the full joint distribution to perform inference

Thegeneral inference procedurs as follows:

(Q\):lPrQ/\ ZPrQ,eu

where

e () Is the query variable.
e ¢ IS the evidence.
e 1, are the unobserved variables.

e 1 /7 normalises the distribution.
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Using the full joint distribution to perform inference

Simple eh?

Well, no...

e Forn Boolean variables the table hasentries.
e Storage and processing time are botiz").

e You need to establishi’ numbers to work with.

In reality we might well have, > 1000, and of course it'®ven worsdf variables
are non-Boolean

How can we get around this?
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Exploiting independence

If | toss a coin and roll a dice, the full joint distribution ofutcomes requires
2 x 6 = 12 numbers to be specified.

1 2 3 4 D §
head |0.014]0.028 | 0.042|0.057 [ 0.071 | 0.086
tail |0.033/0.067| 0.1 [0.133]0.167| 0.2

Here Pr(Coi n = head) = 0.3 and the dice has probability/21 for the ith
outcome.

BUT: if we assume the outcomes are independent then
Pr(Coi n,Di ce) = Pr(Coi n) Pr(Di ce)
WherePr(Coi n) has two numbers anidr(Di ce) has six.

So instead of 2 numbers we only neexl
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Exploiting independence

Similarly, say instead of just considerihdp, HBP and CP we also consider the
outcome of the@xford versus Cambridge tiddlywinks competitiotx

Pr(TC = Oxford)=0.2

Pr(TC = Canbri dge) =0.7

Pr(TC = Draw) = 0.1
Now

Pr(HD, HBP, CP, TC) = Pr(TC|HD, HBP, HD) Pr(HD, HBP, HD)

Assuming that the patient is not amtraordinarily keen fan of tiddlywinksheir
cardiac health has nothing to do with the outcome, so

Pr(TC|HD, HBP, HD) = Pr(TC)

and2 x 2 x 2 x 3 = 24 numbers has been reducedte 8 = 11.
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Exploiting independence

In general you need to identify such independence thrémglvledge of the prob-
lem

BUT:

e It generally does not work as clearly as this.

e The independent subsets themselves can be big.
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Bayes theorem

From first principles
Pr(z,y) = Pr(z|y) Pr(y)

Pr(z,y) = Pr(y|z) Pr(z)

SO
Pr(y|z) Pr(x)

Pr(y)
The most important equation in modern Al?

Pr(zly) =

Whenevidence: Is involved this can be written

pr(0|R.e) — PHURIQ.0) Pr(Qle)

Pr(R|e)
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Bayes theorem

Taking another simple medical diagnhosis examplees a patient with a fever
have malaria?A doctor might know that

Pr(f ever |mal ari a) = 0.99

1
10000

|
Pr(f ever ) = T

Consequently we can try to obtain(nel ari a|f ever ) by direct application
of Bayes theorem

Pr(mal ari a) =

. 0.99 x 0.0001
Pr(mal ari alf ever ) = e = 0.00198

or using the alternative technique
Pr(mal ari a|f ever ) = aPr(f ever |mal ari a)Pr(mal ari a)

If the relevant further quantity/r(f ever |[-nmal ari a) is known.
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Bayes theorem

e Sometimes the first possiblility is easier, sometimes not.
e Causal knowledgsuch as
Pr(f ever |mal ari a)
might well be available whediagnostic knowledgsuch as
Pr(mal ari a|f ever)

IS not.

e Say the incidence of malaria, modelled by Mal ar i a), suddenly changes.
Bayes theorem tells us what to do.

e The gquantity
Pr(f ever |mal ari a)

would not be affected by such a change.
Causal knowledgean be more robust.
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Conditional independence

What happens if we havaultiple pieces of eviden®@e
We have seen that to compute
Pr(HD|CP, HBP)
directly might well run into problems.
We could try using Bayes theorem to obtain
Pr(HD|CP, HBP) = o Pr(CP, HBP|HD) Pr(HD)

However whileHD is probably manageable, a quantity such’asCP, HBP|HD)
might well still be problematic especially in more realstiases.
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Conditional independence

However although in this case we might not be able to exphoiependence di-
rectly wecansay that

Pr(CP, HBP|HD) = Pr(CP|HD) Pr(HBP|HD)
which simplifies matters.
Conditional independence
e Pr(A, B|C) = Pr(A|C) Pr(B|C).
e If we know thatC' is the case theAd and B are independent.

Although CP and HBP are not independent, they do not directly influence one
anothein a patient known to have heart disease

This iIs much nicer!
Pr(HD|CP, HBP) = « Pr(CP|HD) Pr(HBP|HD) Pr(HD)
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Naive Bayes

Conditional independence is often assumed even when itrodwmld.

Naive Bayes

Pr(A, By, By, ..., By) = Pr(A) | | Pr(Bi|A)
=l

Also known addiot’'s Bayes

Despite this, it is often surprisingly effective.
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Uncertainty Il - Bayesian Networks

Having seen that in principle, if not in practice, the fulljodistribution alone
can be used to perform any inference of interest, we now examipractical
technique.

e We introduce thdBayesian Network (BNas a compact representation of the
full joint distribution.

¢ \We examine the way in which a BN can benstructed

¢ \We examine theemanticof BNs.

e \We look briefly at hownferencecan be performed.

Reading:Russell and Norvig, chapter 14.
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Bayesian networks

Also calledprobabillistic/belief/causal networl@ knowledge maps

e Each node is aandom variable (RV)

e Each nodeV; has a distribution
Pr(N;|par ent s(N;))

e A Bayesian network is directed acyclic graph

e Roughly speaking, an arrow frorsi to A/ means/V directly affects)\/.
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Bayesian networks

After aregrettable incideninvolving aninflatable gorilla, a famous College has
decided to install an alarm for the detection of roof clinter

e The alarm isvrerygood at detecting climbers.

e Unfortunately, it is also sometimes triggered when one efakiremely fat
geesdhat lives in the College lands on the roof.

e One porter’s lodge is near the alarm, and inhabited by a chtmpexcellent
hearing and apathological hatredof roof climbers: healwaysreports an
alarm. His hearing is so good that he sometimes thinks heslaaalarm,
even when there isn’t one

e Another porter’s lodge is a good distance away and inhalmyeanold chap
with dodgy hearingwho likes to listen to his collection dDEATH METAL
with the sound turned up.
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Bayesian networks

105



Bayesian networks

Note that:

e In the present example all RVs aitescrete(in fact Boolean) and so in all cases
Pr(V;|parentslV;)) can be represented asadole of numbers

e Cl | mber andGoose have onlyprior probabilities.

e All RVs here are Boolean, so a node witlparents requires’ numbers.

A BN with n nodes represents the full joint probability distribution fhose nodes
as

Pr(Ny = ni, Ny = ng, ..., Ny, HPr — n,|parentsN;))  (2)

For example

Pr(—C,—~G A, L1,L2) = Pr(L1|A) Pr(L2|A) Pr(A|~C, =G) Pr(~C) Pr(—G)
= 0.99 x 0.6 x 0.08 x 0.95 x 0.8
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Semantics

IngeneraPr(A, B) = Pr(A|B) Pr(B) so abbreviatingr( Ny = ny, No = noy, ..., N, =
n,) to Pr(ny, no, ..., n,) we have

Pr(ny,...,n,) = Pr(ng|n,_1,...,n1) Pr(n,_1,...,nq)
Repeating this gives
Pr(ny,...,n,) = Pr(ng|n,_1,...,n1) Pr(n,_1|n,_2,...,nq) - Pr(nq)

— H Pr(n;|n;_1,...,n1) (3)
i=1

Now compare equations (2) and (3). We see that BNs make thenasisn
PI’(NZ"NL'_l, Cee N1> = Pr(Ni\parent$NZ-))
for each node, assuming tharentsN,) C {N; 1,..., Ni}.

Each; is conditionally independent of its predecessors givepatents
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Semantics

e \When constructing a BN we want to make sure the precedingepiywpolds.
e This means we need to take care ovetering

¢ In generaktauses should directly precede effects

parentsh;)

Here,parents/V,) contains all preceding nodes havingieect influenceon /V,.
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Semantics

Deviation from this rule can have major effects on the comxiptef the network.

That’s bad!We want to keep the network simple:

e If each node has at mogtparents and there areBoolean nodes, we need to
specify at most2” numbers...

e ...whereas the full joint distribution requires us to specifjnumbers.

So: there is a trade-off attached to the inclusiont@huousalthoughstrictly-
speaking correcedges.
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Semantics

As a rule, we should include theost basic causefirst, thenthe things they
Influence directletc

What happens if you get this wrong?
Example:add nodes in the ordér2,L1,GCA.

110



Semantics

In this example:

e Increased connectivity.

e Many of the probabilities here will be quite unnatural anddiarspecify.

Once againcausal knowledges preferred taliagnostic knowledge
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Semantics

As an alternative we can say directly what conditional irefefence assumptions
a graph should be interpreted as expressing. There are twwmon ways of doing
this.

Any nodeA is conditionally independent of th&,—its non-descendantsgiven
the P—Iits parents.
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Semantics

Any node A is conditionally independent of all other nodes given kharkov
blanketM,—that is, itsparents its childrenand itschildren’s parents
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More complex nodes

How do we represent
Pr(V;|parentslV;))

when nodes can denageneral discrete and/or continuous RVs

e BNs containing both kinds of RV are call&égbrid BNs

e Naive discretisationof continuous RVs tends to result in both a reduction in
accuracy and large tables.

e O(27) might still be large enough to be unwieldy.

e \We can instead attempt to uséandard and well-understoodistributions,
such as thé&aussian

e This will typically require only a small number of paramest¢o be specified.
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More complex nodes

Example: functionarelationships are easy to deal with.
N; = f(parentsN;))

1 if n; = f(parentsh;))

Pr(N; = n;|parentgV;)) = { 0 otherwise

115



More complex nodes

Example:a continuous RV with one continuous and one discrete parent.
Pr(Speed of car|Throttle position,Tuned engi ne)

whereSC and TP are continuous and@dE is Boolean.

e For a specific setting oET = t r ue it might be the case th&C increases
with TP, but that some uncertainty is involved

Pr(SC[TP,et ) = N(get TP + cet , 0% )

e For an un-tuned engine we might have a similar relationship a different
behaviour
Pr(SC|TP, —et ) = N(g-et TP+ C-et , 02 )

There is a set of parametelrg, ¢, o} for each possible value of the discrete RV.
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More complex nodes

Example:a discrete RV with a continuous parent
Pr(Go roof clinbing|Si ze of fine)

We could for example use theobit distribution

. . t—size
Pr(Go roof cli nbi ng:true15|ze):<1>< IZ)
S

where )
o) = [ Ny

and N (x) is the Gaussian distribution wittero mean and variance
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More complex nodes

The probit distribution

—~
W
~
Q
N
e
R
+
~—
A
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More complex nodes

Alternatively, for this example we could use tlgit distribution
1

Pr(Go roofclinmbing=true|si ze) = |5 o(2—size)/5)
e S

which has a similar shape.

e Tails are longer for the logit distribution.
e The logit distribution tends to be easier to use...

e ...but the probit distribution is often more accurate.
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Basic inference

We saw earlier that the full joint distribution can be usegé¢oformall inference
tasks

Pr(@\e)%PrQ/\ ZPrQeu
where

e () Is the query variable
e ¢ IS the evidence
e 1, are the unobserved variables

e 1 /7 normalises the distribution.
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Basic inference

As the BN fully describes the full joint distribution

Pr(Q,u,e) = | | Pr(Vi|parents;))

i=1
It can be used to perform inference in thigvziousway

1

Pr(Qle) = ~ Z H Pr(N;|parents$N;))

u  1=1

but as we’ll see this i81 practice problematic

e More sophisticated algorithms aim to achieve thisre efficiently

e For complex BNs we resort tmpproximation techniques
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Other approaches to uncertainty: Default reasoning

One criticism made of probability is that it isimericalwhereas human argument
seems fundamentally different in nature:

e On the one hand this seems quite defensible. | certainly dravrare of doing
logical thoughtthrough directmanipulation of probabilitiesbut. . .

e ...0n the other hand, neither am | awaresofving differential equationm
order towalk!

Default reasoning:

e Does not maintainlegrees of belief

e Allows something to be believaahtil a reason is found not to
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Other approaches to uncertainty: rule-based systems

Rule-based systems have some desirable properties:

e Locality: If we establish the evidenc& and we have a rul&’ — Y thenY
can be concluded regardless of any other rules.

e Detachment once anyY has been established it can then be assumed. (It’s
justification is irrelevant.)

e Truth-functionality truth of a complex formula is a function of the truth of its
components.

These are not in general shared by probabilistic systemst Wappens if:

e \We try to attach measures of belief to rules and propositions

e We try to make a truth-functional system by, for example, mgloelief in
X A'Y afunction of beliefs inX andY ?
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Other approaches to uncertainty: rule-based systems

Problems that can arise:

1. Say | have the causal rule

Heart disease€ Chest pain

and the diagnostic rule

Chest pain% Heart disease

Without taking very great care to keep track of the reasopmugess, these
can form aoop.

2. If in addition | have
Chest painﬂ Recent physical exertion

then it is quite possible to form the conclusion that with samegree of cer-
tainty heart disease is explained by exertigrhich may well be incorrect.
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Other approaches to uncertainty: rule-based systems

In addition, we might argue that because heart disease spanation for chest
pain the belief in physical exertion shouldcrease

In general when such systems have been successful it hashbeegh very care-
ful control in setting up the rules.
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Other approaches to uncertainty: Dempster-Shafer theory

Dempster-Shafer theory attempts to distinguish betweasrertaintyand igno-
rance

Whereas the probabilistic approach looks atghebability of X', we instead look
at theprobability that theavailable evidence supporfs.

This is denoted by thielief functionBel(.X).

Example given a coin but no information as to whether it is fair | hanereason
to think one outcome should be preferred to another

Bel(outcome= head = Bel(outcome= tail) = 0

These beliefs can be updated when new evidence is availklaa.expert tells
us there i3, percent certainty that it’s a fair coin then
n

Bel(outcome= head = Bel(outcome= tail) = TR

DO | —

We may still have a@japin that
Bel(outcome= head + Bel(outcome= tail) # 1.

Dempster-Shafer theory provides a coherent system fomdealth belief func-
tions.
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Other approaches to uncertainty: Dempster-Shafer theory

Problems
e The Bayesian approach deals more effectively with the gfication of how
belief changesvhennew evidence is availahle

e The Bayesian approach has a better connection to the casfaepity, whereas
the latter is not well-understood for use in conjunctionhwitempster-Shafer
theory.
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Uncertainty Ill: exact inference in Bayesian networks

We now examine:
e The basic equation for inference in Bayesian networks,atierlbeing hard to
achieve if approached in the obvious way.

e The way in which matters can be improved a little by a small iincation to
the way in which the calculation is done.

e The way in which much better improvements might be possiblegua still
more informed approach, although not in all cases.

Reading:Russell and Norvig, chapter 14, section 14.4.
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Performing exact inference

We know that in principle any query can be answered by the calculation
1
Pr(Qle) = - zu: Pr(Q, e, u)

where() denotes the query, denotes the evidence,denotes unobserved vari-
ables and /Z normalises the distribution.

The naive implementation of this approach yields Emimerate-Joint-Asalgo-
rithm, which unfortunately requireS(2") time and space for Boolean random
variables (RVS).
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Performing exact inference

In what follows we will make use of some abbreviations.

e (' denote<]l | nber
e (- denoteg>00se
o A denotesAl ar m
e /.1 denoted. odgel
e /.2 denoted. odge?

Instead of writing ouPr(C' = T), Pr(C' = 1) etcwe will write Pr(c), Pr(—c) and
So on.
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Performing exact inference

Also Pr(Q), e, u) has a particular form expressing conditional independence

Pr(d i nber)
Yes: 0.05
No: 0.95

Pr(C,G, A, L1, L2) = Pr(C)Pr(G)Pr(A|C, G)Pr(L1|A)Pr(L2|A)
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Performing exact inference

Consider the computation of the quéty C'|/1, [2)

We have

Pr(C|i1,12) ZZ Pr(C)Pr(G)PK(A|C, G)Pr(11| A)Pr(i2| A)

Here there aré multlpllcatlons for each set of values that appears for satron,
and there ard such values.
In general this gives time complexity(n2") for n Boolean RVs.

Looking more closely we see that

Pr(C|i1,12) Z Z Pr(C)PH(G)PI(A|C, G)Pr(11|A)Pr(i2| A)

— Pr(l1|A)Pr(i2|A) PrG)PrA|C, G
(4)

E
1
P ZPr ZPrA\C, G)Pr(I1]A)Pr(I2|A)

So for example...
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Performing exact inference

1 Pr(alc, g)Pr(l1]|a)Pr(i2|a)
Pr(c|l1,12) :EPF(C) (Pr(g) { +pr(_,a‘07i(g])Pr(ll]—.a)Pr(lQ\ﬂa) }

Priale, ~g)Pr(i1]a)Pr(i2|a)
+Pr(—g) { +Pr(—alc, ﬂf])Pr(“ha)Pr(mﬁa) }>

with a similar calculation foPr(—c¢|l1, [2).

Basically straightforward3UT optimisations can be made.
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Performing exact inference

Pr(i1]|—a)

Repeated
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Optimisation 1: Enumeration-Ask

The enumeration-aslalgorithm improves matters t0(2") time andO(n) space
by performing the computatiomepth-first

However matters can be improved further by avoidingdhplication of compu-
tationsthat clearly appears in the example tree.
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Optimisation 2: variable elimination

Looking again at the fundamental equation (4)

—Pr Z Pr(G) ) Pr(AIC, G)Pr1A)Pri2|A)
A A I1 L2
whereC, (7, A, L1, L2 denote the relevaréctors

The basic idea Is to evaluate (4) from right to left (or in teraf the tree, bottom
up) storing resultsas we progress and-using thenwhen necessary.

Pr(l1]A) depends on the value of. We store it as a tabl®';;(A). Similarly for

Pr(i2|A). o e
Fra(4) = ( 0.08 ) Fro(4) = ( 0.001 )

asPr(/1]|a) = 0.99, Pr(l1|-a) = 0.08 and so on.
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Optimisation 2: variable elimination

Similarly for Pr(A|C', ), which is dependent oA, C' andG

A C G FulAC,G)
T T T 0.98
T T L 0.96
T L T 0.2
FA(A,C.,G)=|T L 1| 0.08
1 T T 0.02
1 T 1 0.04
1 1 T 0.8
1 1 1 0.92
Can we write
Pr(A|C, G)Pr(I1|A)Pr(I2]|A) (5)
as
FA(A, C,G)F1(A)F12(A) (6)

In a reasonable way?
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Optimisation 2: variable elimination

The answer is “yes” providechultiplication of factoras defined correctly. Look-
Ing at (4)

—Pr Z PH(G) Y Pr(A|C, G)Pr(I1|A)Pr(i2| A)
note that the values of the product (5) in the summation dépearthe values of

(" and( external to it, and the values of themselves. So (6) should be a table
collecting values for (5) where correspondences betweend® maintained.

This leads to a definition for multiplication of factors bgsten by example.
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where

Optimisation 2: variable elimination

F(A, B)F(B,C) = F(4, B, C)

A B|F(A,B)|B C|F(B,C)|A B C|F(A, B,C)
T T| 03 |T T| 01 |T T T| 03x0.1
T L 09 |T 1| 08 |T T L| 03x0.8
L T| 04 |L T| 08 |T L T| 09x0.8
L 1| 01 |L 1| 03 |T L L] 09x0.3
L T T 04x0.1
L T L] 04x%08
L L T|01x08
L L 1] 01x0.3
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Optimisation 2: variable elimination

This process gives us

FA(A,C,G)F1(A)F5(A) =

R

el el SR e

e e A I S| o

0.98 x 0.99 x 0.6
0.96 x 0.99 x 0.6
0.2 x 0.99 x 0.6
0.08 x 0.99 x 0.6
0.02 x 0.08 x 0.001
0.04 x 0.08 x 0.001
0.8 x 0.08 x 0.001
0.92 x 0.08 x 0.001
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Optimisation 2: variable elimination

How about
FZ,Ll,LQ(Cv G) — Z FA(Aa C, G)FLl(A)FL2<A)
A

To denote the fact thati has been summed out we place a bar over it in the
notation.

Y Fu(A,C,G)F1(A)F 12(A) =F 4(a, C, G)F 11(a)F 1»(a)
A

+ Fa(—a,C,G)F 1(—a)Fo(—a)

where

GE

T 11098

Fula,C,G)=|T L10.96| Fri(a) =0.99 Frs(a) = 0.6
1 T10.2

1 1170.08

and similarly forF 4(—a, C, G), Fri(—a) andF o(—a).
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Optimisation 2: variable elimination

0.98 x 0.99 x 0.6
0.96 x 0.99 x 0.6
0.2 x 0.99 x 0.6
0.08 x 0.99 x 0.6

Fa(a,C,G)Fr1(a)Fa(a) =

- = Q
- Q@

0.02 x 0.08 x 0.001
0.04 x 0.08 x 0.001
0.8 x 0.08 x 0.001
0.92 x 0.08 x 0.001

FA(—a,C,G)F1(—a)Fo(—-a) =

- - == Q
— =

(0.98 x 0.99 x 0.6)
(0.96 x 0.99 x 0.6)
(0.2 x 0.99 x 0.6)
(0.08 x 0.99 x 0.6)

(0.02 x 0.08 x 0.001)
(0.04 x 0.08 x 0.001)
(0.8 x 0.08 x 0.001)

(0.92 x 0.08 x 0.001)

FZ,L1,L2(C> G) —

[
- HQ
+ 4+ +
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Optimisation 2: variable elimination

Now, say for example we have:, g. Then doing the calculation explicitly would
give

Y " Pr(Al=c, g)Pr(i1]|A))Pr(i2] A)
A

= Pr(a|—c, g)Pr(l1|a)Pr(i2|a) + Pr—a|—c, g)Pri1|—a)Pri2|—a)
= (0.2 % 0.99 x 0.6) + (0.8 x 0.08 x 0.001)

which matches!
Continuing in this manner form
FG,Z,LLLQ(C» G) = FG(G)FZ,L1,LQ(Ca G)
sum outG: to obtainF s 1 1, 1,(C) = > Fa(G)F7 1 1-(C, G), form

FC,E,Z,LLM — FC<C>F6,Z,L1,L2<C)
and normalise.
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Optimisation 2: variable elimination

What's the computational complexity now?

e For Bayesian networks with suitable structure we can perfmiference in
linear time and space.

e However in the worst case it #§°-hard, which isworse thanV P-hard.

Consequently, we may need to resoraifproximate inference

Uncertainty IV: Simple Decision-Making

We now examine:

e The concept of altility function

e The way in which such functions can be related to reasonadtens about
preferences

¢ A generalization of the Bayesian network, known akeaision network

e How to measure thealue of informationand how to use such measurements
to design agents that caisk questions
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Reading:Russell and Norvig, chapter 16.
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Simple decision-making

We now look at choosing an action by maximisigpected utility
A utility functionU(s) measures thdesirability of a state

If we can express a probability distribution for the statsuiting from alternative
actions, then we can act in order to maximise expectedyutilit

For an actiony, letResul t (a) = {s1, ..., s,} be a set of states that might be the
result of performing action. Then the expected utility of is

EUalE)= Y Prsla, E)U(s)

seResul t (a)

Note that this applies tondividual actions Sequences of actions will not be
covered in this course.
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Simple decision-making: all of Al?

Much as this looks like a complete and highly attractive meétfor an agent to
decide how to act, it hides a great deal of complexity:

1. It may be hard to computé(s). You generallydon’t know how good a state
IS until you know where it might lead on:tplanningetc..
2. Knowing what state you're currently in involvesost of Al

3. Dealing withPr(s|a, £') involvesBayesian networks
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Utility in more detalil

Overall, we now want to expregseferencepetween different things.

Let’s use the following notation:

X >Y : X Is preferred ta
X =Y : we are indifferent regardingg andY’
X > Y : X is preferred, or we're indifferent

X, Y and so on arétteries A lottery has the form
X = [ph Ol‘pQ; 02‘ o ‘pTw On}

where O, are the outcomes of the lottery apdtheir respective probabilities.
Outcomes can bether lotteriesor actual states.
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Axioms for utility theory

Given we are dealing with preferences it seems that thersoane clear properties
that such things should exhibit:

Transitivity. if X > Y andY > Z thenX > ~Z.

Orderability: eitherX > Y orY > XorX =Y.

Continuity iIf X > Y > Z then there is a probability such that
p, X|(1—=p),Z] =Y

Substitutability if X =Y then
p, X|(1—p), L] = [p,Y|(1 - p), L]
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Axioms for utility theory

Monotonicity if X > Y then for probabilitie®; andp,, p; > p- if and only if
[ph X’(l B p1)7 Y] Z {p27 X|<1 I pQ)? Y]

Decomposability

1, X|(1 = p1), [p2, Y|(1 = p2), Z]] = [p1, X|(1 = p1)p2, Y|(1 — p1)(1 — p2), Z]

If an agent’s preferences conform to the utility theory axge—and note that
we areonly considering preferences, not numbers—then it is possoodiefine a
utility function U|(s) for states such that:

1. U(Sl) > U(SQ) «—— S§1 > S9
2. U(Sl) — U(SQ) < S1 = 59
3. U([pla 31|p27 32‘ C ‘pnv SWD — Zyzl piU(S?ﬁ)'

We therefore have a justification for the suggested approach
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Designing utility functions

There is complete freedom in how a utility function is definledt clearly it will
pay to define them carefully.

Example the utility of money (for most people) exhibitsr@onotonic preference
That is, wepreferto havemore of it

But we need to talk about preferences betweé&rries

Say you've wonl00, 000 pounds in a quiz and you're offered a coin flip:

e For heads: you win a total af 000, 000 pounds.
e For tails: you walk away with nothing!

Would you take the offer?
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Designing utility functions

Theexpected monetary val(EMV) of this lottery is

(0.5 x 1,000, 000) + (0.5 x 0) = 500, 000
whereas the EMV of the initial amount 180, 000.
BUT: most of us would probably refuse to take the coin flip.

The story is not quite as simple as this though: our attitudégbly depends on
how much money we have to start wikhl have M/ pounds to start with then | am
In fact choosing between expected utility of

U(M + 100, 000)
and expected utility of
(0.5 x U(M)) + (0.5 x U(M + 1,000, 000))
If A is 50,000,000 my attitude is much different to if it i$0, 000.

152



Designing utility functions

In fact, research shows that the utility 6f pounds is for most people almost
exactly proportional tdog M for M > 0...

The utility U(M) of M pounds

...and follows a similar shape far < 0.
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Decision networks

Decision networks-also known asnfluence diagrams.

Site of landfill

Road traffic \

Legal action ‘ Cost to taxpayer

Build cost Road conjestio

... allow us to workactionsandutilities into the formalism oBayesian networks

A decision network has three types of node. ..
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Decision networks

A decision network has three types of node:

Chance nodesare denoted by ovals. These are random variables (RV3-repr
sented by a distribution conditional on their parents, aBayesian networks.
Parents can be other chance nodes or a decision node.

Decision nodesare denoted by squares. They describe possible outconties of
decision of interest. Here we deal only wihngledecisions: multiple decisions
require alternative techniques.

Utility nodes are denoted by diamonds. They describe the utility fumatebevant
to the problem, as a function of the values of the node’s piaren
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Decision networks

Sometimes such diagrams are simplified by leaving out the d@ésribing the
new state and converting current state and decision directltility:

Air quality, cost to taxpayer and

Site of landfil road conjestion describe future state

and so never appear as evidence.
Road traffic
This gives us fewer nodes to deal with BUT

potentially less flexibility in exploring alternative

descriptions of the problem.

Legal action
EU(a|E) = 3~ cresul t (a) PT(8la, E)U(s)
Build cost

This Is anaction-utility table The utility no longer depends on a state but is the
expected utility for a given action.
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Evaluation of decision networks

Once aspecificaction is selected for a decision node it acts like a chande far
which a specific value is being usedeasdence

1. Set the current state chance nodes to their evidencesvalue

2. For each potential action

e Fix the decision node.
e Compute the probabilities for the utility node’s parents.
e Compute the expected utility.

3. Return the action that maximisétl(a|F).
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The value of information

We have been assuming that a decision is to be madealiévidence available
beforehand This is unlikely to be the case.

Knowingwhat questions one should aska central, and important part of making
decisionsExample

e Doctors do not diagnose by first obtaining results for allgiaie tests on their
patients.
e They ask questions to decide what tests to do.

e They are informed in formulating which tests to perform byphmbilities of

test outcomes, and by the manner in which knowing an outcorgatnm-
prove treatment.

e Tests can have associated costs.
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The value of perfect information

Information value theoryrovides a formal way in which we can reason about
what further information to gather usisgnsing actions

Say we have evidencg, so

EU(acti on|E) = max Z Pr(s|a, E)U(s)

seResul t (a)

denotes how valuable the best action based onust be.
How valuable would it be to learn aboutather piece of eviden@e

If we examined another RV’ and found thatt” = ¢’ then thebest action might
be alterecas we’d be computing

EUaction|E,E') =max Y Pis|a, E, E")U(s)

seResul t (a)

BUT: becausé”’ is a RV, and in advance of testing we don’t know its value, we
need toaverageover itspossible valueasing ourcurrent knowledge
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The value of perfect information

This leads to the definition of thealue of perfect informatio(VPI)
VPI z(E {Z Pr(E' = ¢/|E)EU(acti on'|E, E' = e)} — EU(act i on|E)

VPI has the following properties:

o VPI (E') >0
e It is not necessarily additive, that is, it is possible that
VPI g(E', E") # VPl g(E") + VPI g(E")

e It is Independent of ordering

VPI 5(E', E") = VP g(E') + VPl g p(E")
— VPl 5(E") + VPl g p(E)
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Agents that can gather information

In constructing an agent with the ability to ask questions,would hope that it
would:

e Use a good order in which to ask the questions.

e Avoid asking irrelevant questions.

e Trade off thecostof obtaining information against thealue of that informa-
tion.

e Choose a good time &topasking questions.

We now have the means with which to approach such a design.
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Agents that can gather information

Assuming we can associate a cost~’) with obtaining the knowledge that’ =
¢/ an agent can act as follows:

e Given a decision network and current percept.
e Find the piece of evidenceé’ maximisingVPI »(E") — C(E').

o If VPI p(E') — C'(E') is positive then find the value df’, else take the action
Indicated by the decision network.

This is known as anyopicagent as it requests a single piece of evidence at once.

Uncertainty V: probabillistic reasoning through time

We now examine:

e How an agent might operate by keeping track of the state @fims&onment
In an uncertain world, and how alterations in world state andertainty in
observing the world can be modelled using probability dstrons.

e How Inferences can be performed regarding the current, gpatt state and
future states.
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e TheViterbi algorithmfor computing the most likely sequence.

e A slightly simplified system within this framework calledradden Markov
model(HMM), and the way in which some inference tasks can be simglifie
In the HMM case.

Reading:Russell and Norvig, chapter 15.
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Probabilistic reasoning through time

A fundamental idea throughout the Al courses has been thagamt should keep
track of thestate of the environment

e The environment’s statehanges over time
e The knowledge ohow the state changesay beuncertain

e The agent’'yperceptionof the state of the environmentay be uncertain

For all the usual reasons relateduocertainty we need to move beyond logic,
situation calculugtc
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States and evidence

We model the (unobservable) state of the environment asisl

e \We use asequence
(So, S1, 59, - - )

of setsof random variablegRVS).

e EachsS, is asetof RVs
1 n

denoting the state of the environment at timevheret =0, 1,2, .. ..

Think of the state as changing over time.

S()H;S&HSQH"'
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States and evidence

At each timef there Is also anbservableset
E, ={EY, . .. E™

of random variables denoting teeidence that an agent obtains about the sé&dte
timet.

As usual capitals denote RVs and lower case denotes actlugsvaSo actual
values for the assorted RVs are denoted

St = {S§1)7 R Sz(fn)} = 5t
IS {6§1)7 R egm)} = €
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Stationary and Markov processes

As t can in principle increase without bound we now need somelgymy as-
sumptions.

Assumption 1 We deal withstationary processeprobability distributions do not
change over time.

Assumption 2 We deal withMarkov processes
Pf(St|S();t_1) = PI’(St‘St_1> (7)
WhereS():t_l — (S(), Sl, Ce ey St_1>.

(Strictly speaking this is &rst order Markov Processand we’ll only consider
these.)

Pr(S;|S;_1) is called theransition model
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Stationary and Markov processes

Assumption 3We assume that evidence only depends on the current state
Pr(E:|Sot, Eii—1) = P E:|St) )

Then

Pr(E;|S;) is called thesensor model

Pr(.Sy) is theprior probability of the starting state. We need this as there has to be
some way of getting the process started.
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The full joint distribution

Given:

1. The priorPr(S)).
2. The transition mode®r(S;|S; 1).
3. The sensor modéir( E;|S;).

along with the assumptions of stationarity and the assumgtof independence
In equations 7 and 8 we have

t
PK(So, St, - -, Sk, By, B, ..., By) = Pr(Sp) | | PH(Si|Si—1)PHE|S;) |

1=1

This follows from basic probability theory as for example

PI’(S(), Sl, SQ, El, EQ) = PI’(EQ‘SQ;Q, El)Pr(SQ‘SO:l, El)PI’(E1|SQ;1)PI’(Sl’SQ)PI‘(SQ)
= Pr(EQ‘SQ)Pr(SQ‘Sl)Pr(El|Sl>P|’<Sl‘SQ)Pr<So)
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Example: two biased coins

Here’s a simple example with ontyo statesandtwo observations
| havetwo biased coins

| flip oneandtell you the outcome

| then eitherstaywith the same coin, oswapthem.

This continues, producing a succession of outcomes:
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Example: two biased coins

We’'ll use the following numbers:

e The priorPr(Sy = coi nl) = 0.5.
e The transition model

Pr(S; = coi n1|S;_; = coi nl)
Pr(S; = coi n1|S,_; = coi n2)

Pr(.S; = coi n2|S;_; =coi n2) =0.8
Pr(S; = coi n2|S;_; =coi nl) =0.2

e The sensor model

Pr(E; = head|S; = coi nl) =0.1
Pr(E; = head|S; = coi n2) = 0.9
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Example: two biased coins

This is straightforward to simulate.

Here’s an example of what happens:

[CZ7QI IC21 7C21C21C27C2!C2’C27C27C21C21C27C21C21C27Q!C21C27C27C21C2]

[ Hd, TI, , Hd, , Hd, Hd, Hd, Hd, Hd, Hd, Hd, Hd, Tl , Hd, Hd, Hd, Hd, Hd, Hd, Hd, Hd, Tl , Hd]

As expected, we tend to see runs of a single coin, and migl#oexp be able to
guess which is being used as one favours heads and the akher ta
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Example: 2008, paper 9, guestion 5

A friend of mine likes to climb on the roofs of Cambridge. Tokea good start to
the coming week, he climbs on a Sunday with probabilify. Being concerned
for his own safety, he is less likely to climb today if he clietbyesterday, so

Pricl i b today|clinb yesterday)=04
If he did not climb yesterday then he is very unlikely to clinololay, so
Pricl i mb today|-clinb yesterday)=0.1

Unfortunately, he is not a very good climber, and is quitelikto injure himself
If he goes climbing, so

Pr(injury|clinb today)=0.8

whereas
Pr(i nj ury|—cl i nb today)=0.1
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Example: 2008, paper 9, guestion 5

This has a similar corresponding diagram:

injury i njury

We’'ll look at the rest of this exam guestion later.
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Performing inference

There are four basic inference tasks that we might want tmper
In each of the following cases, assume that we have obsdmeezl/tdence
Ery = ey

Task 1:filtering

Deduce what state we might now be in by computing

Pr(St|€1;t).
In the coin tossing questiorilf you've seen all the outcomes so far, infer which
coin was used last”

In the exam question’lf you observed all the injuries so far, infer whether my
friend climbed today’
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Performing inference

Task 2:prediction

Deduce what state we might be in some time in the future by cdimgp
Pr(S;.r|ei.;) for someTl > 0.

In the coin tossing questiorilf you've seen all the outcomes so far, infer which

coin will be tossed’ steps in the future”

In the exam questiorfif you've observed all the injuries so far, infer whether my
friend will go climbing?” nights from now’
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Performing inference

Task 3:Smoothing

Deduce what state we might have been in at some point in thdpasmputing
Pr(Siler.r) for0 <t < T.

In the coin tossing questiorilf you've seen all the outcomes so far, infer which

coin was tossed at timean the past”.

In the exam questiorfif you've observed all the injuries so far, infer whether my
friend climbed on night in the past”.
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Performing inference

Task 4:Find the most likely explanation
Deduce the most likely sequence of states so far by computing

argmax Pr(sy.¢|e1)
S1:¢t

In the coin tossing questioritf you've seen all the outcomes so far, infer the most
probable sequence of coins used”

In the exam question’lf you've observed all the injuries so far, infer the most
probable collection of nights on which my friend climbed”
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Filtering

We want to computé’r(S;|e;.;). This is often called théorward messagand
denoted

fl:t — Pr(‘st‘el:t)
for reasons that are about to become cleatr.

Remember that, is an RV and sof,.; is aprobability distributioncontaining a
probability for each possible value 6f.

It turns out that this can be done in a simple manner withcarsive estimation
Obtain the result at time-+ 1:

1. using the result from timeand...

2. ...Incorporating new evideneeg, ;.

free1 = g(es41, f14)
for a suitable functiory that we’ll now derive.
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Filtering

Step 1:

Project the current state distribution forward
Pr(Siti1lers+1) = Pr(Seyiler, erv1)
= cPrei+1]Sit1, €1:4)P(Sis]eit)
= cPr(es 11| Se1)Pr(Sty1lers)

NV NV
Sensor model Needs more work

where as usual is a constant that normalises the distribution. Here,

e The first line does nothing but sptit; | into ¢, ., ande, ;.
e The second line is an application of Bayes’ theorem.

e The third line usesissumption 3egarding sensor models.
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Filtering

Step 2:
To obtainPr(S,, 1 |e.)

Pr(S;1le1t) = Z Pr(Sit1, stle1)

St

— Z PI‘(SHﬂSt, €1zt)Pr(5t‘€1:t>

St
= S: Pr(Sii1]st) Pr(si|e1.)

st Transition model Available from previous step

Here,

e The first line uses marginalisation.
e The second line uses the basic equaion, B) = Pr(A|B)Pr(B).

e The third line usesissumption 2egarding transition models.
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Filtering

Pulling it all together

Pr(Sit1lers+1) = CP"(BHHSHQSI Pr(st+1’3t2 Pr<3t’€1:tl 9)

Sensor model St Transition model From previous step

This will be shortened to
fi.t+1 = cFORWARD(e; 1, f1:¢)

Here

e 1 is a shorthand foPr(.S;|e1 ).
e {1, Is often interpreted asraessag®eing passed forward.

e The process is started using tmeor.
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Prediction

Prediction is somewhat simpler as

Pr<st+T+1’€1:t2 — Z Pr(Si 141, St47l€1:4)

- . V
Prediction at+7"+1 St+T

— Z Pr(Siipi1|St+r, €1:4)Pr(Serr|er:)

St+T

= S:Pr(SHTH\3t+TZ\Pr(St+T‘€1:t2

St+7  Transition model Prediction at+7

However we do not get to make accurate predictions arldytran into the future!
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Smoothing

For smoothing, we want to calcula®e(S;|e;.;) for 0 < ¢ < 7.

Again, we can do this in two steps.

Step 1.
Pr(Stlei.r) = Pr(Stlerr, er1.7)
= cPr(Si|e1.+)Priess1.7]St, e1)
= cPr(S;|e1.t)Presi1.7|St)
= cf1:tbi+1.7
Here

e /1., Is the forward message defined earlier.

e b, 1.7 IS ashorthand foPr(e; . 1.7|S;) to be regarded asmessage being passed
backward
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Smoothing

Step 2:

bir1r | = Pr(€t+1:T\St) — Z Pr<€t+1:Ta 5t+1|St)

St+1
— Z Pr<€t+1;T‘St—i—1)Pr<St+1‘St>
St+1
— Z Pr(€t+1, 6t—|—2:T‘St—i—1)Pr<St+1‘St) (10)
St+1
= S:Pr<€t+1|St+1lf)r(et+2:T‘SHQ\Pr(St“‘S’i
St+1 Sens?)?model b;;T Transit?(;n model

= | BACKWARD (ét4 1.7, brio.7)

This process is initialised with
bi+1:t = Prers1.r|S) = (1,...,1)
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The forward-backward algorithm

So:our original aim of computing’r(S;|e1.;) can be achieved using:

e A recursive process working from timeto timet (equation 9).

e A recursive process working from timeto timet + 1 (equation 10).

This results in a process thatdg7") given the evidence,., and smooths for a
singlepoint at timet.

To smooth agll points1 : 7" we can easily repeat the process obtairing”).

Alternatively a very simple example df/namic programmingllows us to smooth
at all points inO(7") time.
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The forward-backward algorithm

Recursively compute all values fgr.; and store results

T TN /\QO

Done \/C>

Recursively compute all valuég, ;.. and combine with stored values fér;,.
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Computing the most likely sequence: the Viterbi algorithm

In computing the most likely sequence the aim is to obtain

argmax Pr(sy.|e1)
S1:t

Earlier we derived the joint distribution for all relevardnables

t
PK(So, St, - - -, St B, Ba, . .., Ey) = Pr(Sy) | | P(Si| Si—1)PHE;| S:)

1=1
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Computing the most likely sequence: the Viterbi algorithm

We therefore have

HfslaX Pr(Su, St+1\€1:t+1)
1:t

= cmlax Pries1|Sta1)PN(Sa1|s:)Pr(s1.tlers)
S1:t

:cPr(et+1]St+1)rI£aX Pr(Sii1]s) gla}iipr(su—hst‘@l:t)
t U—

This looksa bit fierce despite the fact that:

e The second line is just Bayes’ theorem applied to the joistirghution.

e The last line is just a re-arrangement of the second line.
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Computing the most likely sequence: the Viterbi algorithm

There is however a way to visualise it that leads to a dynamugnamming algo-
rithm called theviterbi algorithm

Step 1:Simplify the notation.

e Assume there are statess,, . . ., s, andm possible observations. .. ., ¢, at
any given time.

° DenOtePr<St = Sj‘St—l = Si) bypi’j(t).
e DenotePr(e;|S; = s;) by ¢;(t).

It's important to remember in what follows that théservations are knowbut
that we'remaximising over all possible state sequences
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Computing the most likely sequence: the Viterbi algorithm

The equation we're interested in is now of the form

T
P =]]piit)a()
t=1

(The priorPr(S,) has been dropped out for the sake of clarity, but is easy to put
back in in what follows.)

The equation” will be referred to in what follows.

It is In fact afunctionof any given sequence of states
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Computing the most likely sequence: the Viterbi algorithm

Step 2:Make a grid: columns denote time and rows denote state.
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Computing the most likely sequence: the Viterbi algorithm

Step 3:Label the nodes:

e Say at timet the actual observation was. Then label the node fof; In
columnt with the valuey; ().

e Any sequence of states through time is now a path throughriie$p for any
transition froms; at timet — 1 to s; at timet label the transition with the value

In the following diagrams we can often just write; and¢; because the time is
clear from the diagram.

So for instance...
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Computing the most likely sequence: the Viterbi algorithm

qn—l(k’ + 1)

pn,'n—l (A + 1)
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Computing the most likely sequence: the Viterbi algorithm

e The value of P = [[,_, p.,(t)q:(t) for any path through the grid is just the
product of the corresponding labels that have been added.

e But we don’t want to find the maximum by looking at all the pa$sipaths
because this would be time-consuming.

e TheViterbi algorithmcomputes the maximum by moving from one column to
the next updating as it goes.

e Say you're at columnr: andfor each noden in that column you know the
highest valudor the product to this point ovemy possible pathCall this:

— maXHpu QZ

S1:k
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Computing the most likely sequence: the Viterbi algorithm

pn,'n—l (A + 1)
[
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Computing the most likely sequence: the Viterbi algorithm

Here is the key point: you only need to know

e The valuedV;(k) for: =1,... n attimek.
e The numbers, ;(k + 1).
e The numbers;(k + 1).

to compute the valueld/;(k + 1) for the next columni + 1.

This I1s because

Wik + 1) = max Wi(k)p;i(k + 1)gi(k + 1)
J
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Computing the most likely sequence: the Viterbi algorithm

Once you get to the column for time

e The node with the largest value folr;(¢) tells you the largest possible value
of P.

e Provided you storethe path taken to get theypou canwork backward4o
find the corresponding sequence of states

This is theViterbi algorithm
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Computing the most likely sequence: the Viterbi algorithm

Ws(t) maximum
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Hidden Markov models

Now for a specific case: hidden Markov models (HMMs). Here we laesiagle
discretestate variableS; taking valuess . so, . . ., s,,. For example, withh = 3 we
might have

Pr(St+1’St = Sl) Pr(St+1‘Sf = 82)
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Hidden Markov models

In this simplified case the conditional probabilities S; . |.S;) can be represented
using the matrix

Sij = PI(St11 = 5;|S: = s;)
or for the example on the previous slide

03 0.1 06\ — PrS]s)
S=[ 020602 — PrS|sy)
02 0.3 0.5 ) — Pr(S|sy)
PI’(Sl 81> Pr(52 81) 0o Pr(Sn 81)
Pf(Sl 82> Pr(Sg 82) K Pr(Sn 82)

Pr(si1|s,) Pr(sals,) -+ Pr(s,|s,)

To save space, | am abbreviatiRg .S, = s;|5; = s;) to Pr(s;|s;).
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Hidden Markov models

The computations we're making are always conditional onesagtual observa-
tionse;.r.

For eacht we can therefore use the sensor model to define a furthenmiatri

e |, is square and diagonal (all off-diagonal elements)qre

e Theith element of the diagonal Br(e;|.S; = s,).

So in our present example withstates, there will be a matrix

Pf(@t‘Sl) 0 0
Et = 0 Pf(@t’82> 0
0 0 Pl’(et]33)

foreacht =1,....7T.
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Hidden Markov models

In the general case the equation for filtering was

Pr(Sii1ler.t+1) = cPrles1|Si1) Z Pr(Sii1]s:)Pr(s¢|er)

St

and the messagg.; was introduced as a representationPgfS;|e; ;).

In the present case we can defifie to be the vector

Pf(Sl 61;,5)
Pf(SQ 61;15)

fl:t —

Pr(Sn 61:75)
Key point: the filtering equation now reduces to nothing but matrix mplidation.
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What does matrix multiplication do?

What does matrix multiplication do? computes weighted summations

m

ay1 ar2 -+ Aim by Zz:1 al,ibi
m

Ab = a2-71 a2.,2 a2.,m b.2 _ Zi:1.a2,z'bz'
m

Ap1 Ap2 **° Anpm bm Zizl an,ibi

So the point at the end of the last slide shouldn’t come as albjgyise!
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Hidden Markov models

Now, note that if we have states

Pr(si]s1) -+ Pr(si|s,) Pr(si|e1)
ST, — Pr(ss|sy) --- Pr(ss|sy) Pr(ss|eq.)
Pr(s,|s1) -+ Pr(sy|sn) Pr(s,|e1)

PI’(Sl‘Sl)Pr(Sllel;Q + -0+ Pr(SllSn)Pr(Sn’€1:t>
PI’(SQ‘Sl)Pr(Sl’eLt) =+ o+ Pf(SQ’Sn)Pr(Snyel;ﬂ

Pr(s,|s1)Pr(si|ers) + -« - + Pr(s,|s,)Pr(s,|e1)

> Pri(si|s)Pr(s|er)
D s Pr(82\§)Pr(5\€1:t)

> Pr(sy|s)Pr(s|er.)
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Hidden Markov models

And taking things one step further

D5 Pr(s1|s)Pr(s|e.)
(p«etﬂsn o ) 3. Pr(sufs)Pr(sfer)

> Pr(sn\s)Pr(s\elzt)

Ei 1S fii = :
0 Pr(etJrl’Sn)

Presi1|s1) >, Pr(si|s)Pr(s|eis)
Pricioifs2) 35, Prsals Pl

Preii1|sn) D, Pr(s,|s)Pr(s|ei)
Compare this with the equation for filtering

Pr(S;i1|e114+1) = cPres1]Si+1) Z Pr(Sii1]s:)Pr(s¢|er)

St
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Hidden Markov models

Comparing the expression fat,. S’ f,., with the equation for filtering we see
that

fl:t+1 — CEt+1STf1:t

and a similar equation can be found for

bri1+ = SEr1b719:+

Exercise: derive this.

The fact that these can be expressed simply using only mcitin of vectors
and matrices allows us to make an improvement to the fonwaafkward algo-
rithm.
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Hidden Markov models

Theforward-backwardalgorithm works by:

e Moving up the sequence fromto 7', computing and storing values fgr

e Moving down the sequence froimto 1 computing values fok andcombining
them with the stored values fgrusing the equation

Pr(St‘elzT) — Cfl:tbt+1:T

Now in our simplified HMM case we have

Jrar1 = CEtHSTfl:t
or multiplying through by(E,.;S’)~! and re-arranging

Jit = %(ST)l(EtH)lfl:tH
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Hidden Markov models

So as long as:

e \We know thefinal value for f.
e S’ has an inverse.

e Every observation has non-zero probability in every state.

We don't have to stord different values forf—we just work through, discarding
Intermediate values, to obtain the last value and then wack\Wward.

209



Example: 2008, paper 9, guestion 5

A friend of mine likes to climb on the roofs of Cambridge. Tokea good start to
the coming week, he climbs on a Sunday with probabilify. Being concerned
for his own safety, he is less likely to climb today if he clietbyesterday, so

Pricl i b today|clinb yesterday)=04
If he did not climb yesterday then he is very unlikely to clinololay, so
Pricl i mb today|-clinb yesterday)=0.1

Unfortunately, he is not a very good climber, and is quitelikto injure himself
If he goes climbing, so

Pr(injury|clinb today)=0.8

whereas
Pr(i nj ury|—cl i nb today)=0.1
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Example: 2008, paper 9, question 5

You learn that on Monday and Tuesday evening he obtains amyjniput on
Wednesday evening he does not. Use the filtering algoritroartgoute the prob-
ability that he climbed on Wednesday.

0.98
f:() (002)
0.4 0.6
° (0109)
0.8 0
(0 01)

0.2 0
0 0.9

NIENY

E
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Example: 2008, paper 9, guestion 5

The update equation is
fre+1 = cB1S” fi

fo__C (8O (A1) (98 _ (083874
10000\ 01/ 69\ 2 )~ \ 016126

Repeating this twice more using rather thanZ the final time gives

fr 0.81268
1271 0.18732

f 0.10429
37\ 0.89571

so the answer i8.1.
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Example: 2008, paper 9, guestion 5

Over the course of the week, you also learn that he does natrolh injury on
Thursday or Friday. Use the smoothing algorithm to complaéerobability that
he climbed on Thursday.

The S, £/ and £’ matrices are the same. The backward message starts as

()

ber = SEbii1.

and the update equation is

Then working backwards

w=15(19) (69) (1) = (o)
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Example: 2008, paper 9, guestion 5

We also need one more forward step, which gives
i = 0.03249
B 00.96751

Foabos — 0.03249 x 0.62 [ 0.02447
CJ14%:5 =€\ 096751 x 0.83 | ~ \ 0.97553

giving the answen.02447.

Finally

214



Online smoothing

Say we want to smooth atfaxed number of time step3Me can also obtain a
simple algorithm for updating the result each time a rgw appears.

Smooth here

T—lagT —lag+ 1

Update to here
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Online smoothing

As usual we need to calculate

cf1.7—laghT—lag+1:T

to smooth at time’]" — lag) if we've progressed to timé'. So: assume.;_jaq
andby_jag. 1.7 are known.

What can we now do when,; arrives to obtairy,.;_jagr1 andbr_jagro.7417?

f 1s easy to update because as usual

T
f1:T—|ag+1 — CET—Iag+1S fl:T—Iag

Known
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Online smoothing

b 1s more tricky.

We know that
br—tag+1:7 = SET_lag+107—1ag+2.T
and continuing this recursion up to the end of the sequenfegates

: 1
br—lag+1:7 = H SE; x | |
i=T—lag+1 '
1
Define b
Buy = | | SE:
SO -
1
1

bT—IagH:T — /BT—IagH:T X
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Online smoothing

Now whene,_; arrives we have

G
br—tag+o:r+1 = H SE; x| |
i=T—lag+2 )
1
1
1
= Br_jagioT+1 X :
1
1
1

e —1 —1
_ ET—IagﬂS /BT—Iangl:TSETJrl X
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Online smoothing

This leads to an easy way to update

/Ba+1:b+1 — Egls_llga:bSEb—H

Using this gives the required update for

Supervised learning Il: the Bayesian approach

We now place supervised learning into a probabilistic sgttly examining:

e The application of Bayes’ theorem to teepervised learning problem
e Priors, the likelihood, and the posterior probabiliya hypothesis

e The maximum likelihoodand maximum a posteriorhypotheses, and some
examples.

e Bayesian decision thearminimising the error rate.
e Application of the approach toeural networksusing approximation tech-
niques.
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Reading

There is some relevant material to be foundRimssell and Norvighapters 18 to
20 although the intersection between that material and Wwhditcover is small.

Almost all of what | cover can be found in:

e Machine Learning Tom Mitchell, McGraw Hill 1997, chapter 6.

e Pattern Recognition and Machine Learnir@hristopher M. Bishop, Springer,
2006.
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Supervised learning: a quick reminder

We want to design alassifie; denoted(x)

Classifier

Attribute vector

X

It should take an attribute vector

XT:($1 Xy -+ ZCn)

and label it.

What we mean byabel depends on whether we're dointassificationor regres-
sion
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Supervised learning: a quick reminder

In classificatiorwe’re assigningk to one of a sefw, ..., w.} of c classes

For example, ifk contains measurements taken from a patient then there beght
three classes:

wy = patient has disease
wy = patient doesn’t have disease
w3 = don’t ask me buddy, I'm just a computer!

We’'ll often specialise to the case of two classes, denGteandC’.
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Supervised learning: a quick reminder

In regressiorwe’re assigningk to areal numberh(x) € R.

For example, ifk contains measurements taken regarding today’s weathenwthe
might have

h(x) = estimate of amount of rainfall expected tomorrow

For the two-class classification problem we will also refea situation somewhat

between the two, where
h(x) = Pr(xisin C)
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Supervised learning: a quick reminder

We don’t want to design explicitly.

) Classifier
Attribute vector

X

Learner
L

Training sequence
S

So we use &arner L to infer it on the basis of a sequencef training examples
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Supervised learning: a quick reminder

Thetraining sequence is a sequence of: labelled examples

(x1, Y1)

< — <X2’. y2)

(Xm, Ym)
That is, examples of attribute vectorsvith their correct label attached.

So a learner only gets to see the labels for a—most probaldil-sraubset of the
possible inputs:.

Regardless, we aim that the hypothesis- L(s) will usually be successful at
predicting the label of an input it hasn’t seen before.

This abllity is calledgeneralization
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Supervised learning: a quick reminder

There is generally a sét of hypotheses from which is allowed to select
L(s)=heH
‘H is called thehypothesis space

The learner can output a hypothesis explicitly or—as in #eecf a multilayer
perceptron—it can output a vector

W:<w1 wy - - ww)

of weightswhich in turn specifyh

wherew = L(s).

226



Supervised learning: a quick reminder

In Al | you saw thebackpropagation algorithnfior training multilayer percep-
trons, in the case okgression

This worked by minimising a function of the weights reprdsentheerror cur-
rently being made:
1 m
B(w) =53 (f(wixi) — )
1=1
The summation here is over the training examples. The esjores the summa-
tion grows asf’s prediction forx; diverges from the known label.

Backpropagation tries to find & that minimisest(w) by performinggradient

descent
OE(w)

ow

Wil = Wy — &

Wi
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Difficulties with classical neural networks

There are some well-known difficulties associated with aboetwork training of
this kind.

BEWARE!!!
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Sources of uncertainty

So we have to be careful. But let’s press on with this apprdach little while
longer...

The model used above suggests two sources of uncertairityvéhanight treat
with probabilities.
e Let'sassumave've selected afi{ to useand it’'s the same one nature is using

e We don’t know how nature choosésfrom . We therefore model our uncer-
tainty by introducing therior distributionPr(/) onH.

e There is noise on the training examples.

It's worth emphasising at this point that in modelling notsethe training exam-
pleswe’ll only consider noise on the label¥he input vectors are not modelled

using a probability distribution.
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The likelihood

We model our uncertainty in the training examples by spewjfalikelinood:
PrY|h, x)

Translation the probability of seeing a given labgl, when the input vector is
and the underlying hypothesis/is

Example two-class classification. A common likelihood is
PrY = Ci|h,x) = o(h(x))

where
1

o(2) = 1 + exp(—2)
(Note strictly speakingk should not appear in these probabilities because it's not
a random variable. It is included for clarity.)
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The likelihood

1

The logistic function o(z) = Trewd Logistic o(z) applied to the output of a linear function

—
=7
O
=
=
0
o
o
~
=
o}
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The likelihood

So: if we're given a training sequencehat is the probability that it was generated
using some?

For an examplex, y), y can beC; or C,. It's helpful here to rename the classes
as justl and0 respectively because this leads to a nice simple expreddmm

o(h(x)) ify =1
PrY |, x) = { 1 — o(h(x)) ifY =0

Consequentlyvhen y has a known valwee can write
Priylh, x) = [o(h(x))]” [L — o(h(x))]"

If we assume that the examples are independent then thelylirpbaf seeing the
labels in a training sequeneas straightforward.
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The likelihood

Collecting the inputs and outputsdrtogether into separate matrices, so

y o =(vi v2 - Yn)

and
X:<X1 Xo - Xm)

we have thaikelihood of the training sequence

Priy|h, X) = | | Pr(yilh, ;)

—.

1

7

[0<h<X¢)>]% [1 — U(h(xi))](l_yi)

|

1

7
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The likelihood

Another exampleregression. A common likelihood in the regression casesvor

by assuming that examples are corrupted by Gaussian ndisewarn) and some
specified variance*

y = h(x) + ¢, wheree ~ N (0, 0?)
As usual, the density fok/ (i, 0°) is

p(Z) = \/%exp <—<22_05>2)

by addingh(x) to € we just shift its mean, so

plylh, x) = m%p (_<y —Qggx»?)
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The likelihood

Consequently if the examples are independent then thehdaed of a training
sequence is

where we've used the fact that

exp(a) exp(b) = exp(a + b)
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Bayes’ theorem appears once more...

Right we've take care of the uncertainty by introducing thvér p(/) and the
likelihood of the training sequenggy|h, X).

By this point you hopefully want to apply Bayes’ theorem andtev

p(y|h)p(h)
p(y)

p(hly) =

where

ply) =Y plh,y) =Y plylh)p(h)
he'H he'H
and to simplify the expression we have now dropped the mermifoX as the

iInputs are fixedp(h|y) is called theposterior distribution

The denominator” = p(y) is called theevidenceand leads on to fascinating
Issues of its own. Unfortunately we won’t have time to expltrem.
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Bayes’ theorem appears once more...

The boxed equation on the last slide has a very simple irg&fpon: what'’s the

probability that this specifi¢: was used to generate the training sequence I've
been given?

Two natural learning algorithms now present themselves:
1. Themaximum likelihood hypothesis

hmi = argmax p(y|h)
heH

2. Themaximum a posteriori hypothesis
hvap = argmax p(hly)
heH

= argmax p(y|h)p(h)
heH

Obviouslyhy corresponds to the case where the ppidr) is uniform.
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Example: maximum likelihood learning

We derived an exact expression for the likelihood in theesgjion case above:

p(ylh) = (27ml2)m/2 exp (2}‘2 > (yi— h(Xi))2>

=

Proposition under the assumptions uset)y learning algorithm that works by
minimising the sum of squared errors ©finds i .

This is clearly of interest: the notable example is ltlaekpropagation algorithm

We now prove the proposition...
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Example: maximum likelihood learning

The proposition holds because:

hme = argmax p(y|h)
he'H

= argmax log p(y|h)
heH

] | ! L h(
= argmax 1o — — Xz
%EH ; (2mo 2>m/ 2 02

1

1 . 2
= ar}%giax log _(2#02)m/2] T 52 Z(yz — h(x;))

= argmax —=— Z(?Jz — h(x;))*

heH 20

m

= argmin Z(yz - h(Xi>)2

heH 4
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Example: maximum likelihood learning

Note:

e If the distribution of the noise isot Gaussiara different result is obtained.
e The use ofog above to simplify a maximisation problem is a standard trick

e The Gaussian assumption is sometimes, but not always a dmockec (Be-
ware the Central Limit Theorem!)
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The next step...

We have so far concentrated throughout our coverage of madbarning on
choosing asingle hypothesis

Are we asking the right question though?

Ultimately, we want to generalise.

That means being presented with a nevand asking the questionwhat is the
most probable classification af?

Is it reasonable to expect a single hypothesis to provideptienal answer?

We need to look at what the optimal solution to this kind obpgo might be...
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Bayesian decision theory

What is theoptimalapproach to this problem?

Put another way: how should we make decisions in such a wayhtbautcome
obtained is, on average, the best possible? Say we have:

e Attribute vectorsx € R
e A set ofclasseqwy, ..., w.}.

e Several possiblaections{ay, ..., a,}.

The actions can be thought of as sayiagsign the vector to class 1and so on.
There is also é0ss\(«;, w;) associated with taking action when the class is;.

The loss will sometimes be abbreviated\toy;, w;) = \;;.
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Bayesian decision theory

Say we can alsanodelthe world as follows:

e Classes have probabiliti€s(w) of occurring.
e The probability of seeing when the class is has density)(x|w).

Think of nature choosing classes at random (although n&ateg them) and
showing us a vector selected at random usingw).

As usual Bayes rule tells us that
X|w)Pr(w)
p(x)

Pr(wlx) = !

and now the denominator is

C

p(x) = 3 p(xlwr)Priw).

1=1

243



Bayesian decision theory

Say nature shows usand we take action;.
If we alwaystake actiony; when we see: then theaverageloss on seeing is

R(0s]x) = Eypope i1 X] = ) Aoy, wy)Pr{w;|x).

j=1
The quantityR(«;|x) is called theconditional risk

Note that this particulax is fixed
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Bayesian decision theory

Now say we have decision rulea : R — {ay, ..., «a,} telling us what action to
take on seeingnyx € R,

The average loss, oSk, IS
R = Ex,

2] 1)

where we have used the standard result from probabilityryrbat
E[E[X|Y]] =E|[X].

(See the supplementary notes for a proof.)
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Bayesian decision theory

Clearly the risk is minimised for the decision rule defineda®ws:
o outputs the actiomy; that minimises?(«;|x), for all x € R,

The provides us with the minimum possible risk Bayes riskR*.

The rule specified is called thi#ayes decision rule
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Example: minimum error rate classification

In supervised learning our aim is often to work in such a wat the minimise
the probabillity of error

What loss should we consider in these circumstances? Frem peobability
theory

where
1 if A happens

M) = { 0 otherwise
(See the supplementary notes for a proof.)
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Example: minimum error rate classification

So if we are addressing a supervised learning problemanthsseqw,, . .., w.}
and we interpret action; as meaning ‘the input is in class’, then a loss

/\ij_{l If £

0 otherwise

means that the risk is
R =E [\ = Prla(x) is in errom

and the Bayes decision rule minimises the probability abrerr
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Example: minimum error rate classification

Now, what is the Bayes decision rule?
R(os|x) = ) Ao, w;)Pr{w;|x)

j=l

= ) Prw;lx)
7]

= 1 — Pr{w;|x)

soa(x) should behe class that maximiséa(w;|x).

THE IMPORTANT SUMMARYGIven a newk to classify, choosing the class that
maximisesr(w;|x) is the best strategy if your aim is to obtain the minimum error
rate!
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Bayesian learning |l

Bayes decision theory tells us that in this context we shoailtsider the quantity
Pr(w;|s, x) where the involvement of the training sequence has been exaudieit.

Pr(w;|s, x) ZPrw“Ms X
heH

= ) Prwih,s,x)Pr(hs,x)

= ) Prwi|h,x)Pr(A]s).

Here we have re-introducefd using marginalisation. In moving from line 2 to
line 3 we are assuming some independence properties.
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Bayesian learning |l

So our classification should be
w = argmax ZPr(w\h,X)Pr(Ms)

we{wi,...,we} heH
If H is infinite the sum becomes an integral. So for example foruaat@etwork
o~ aramax / Pr{w|w, x)Prw]s) dw
we{wy,...,we} JRW

wherell” is the number of weights iw.
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Bayesian learning |l

Why might this make any difference? (Aside from the fact tmathow know it's
optimal!)

Example 1 Say|H| = 3 andh(x) = Pr(x is in classC) for a2 class problem.

Pr(|s) = 0.4
Pr(hs|s) = Pr(hs|s) = 0.3

Now, say we have ar for which

x) = 1
() hs(x) =

S0 hmap Says thaik is in classC.
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Bayesian learning |l

However,

Pr(class 1s,x) =1 x 0440 x 0.3+ 0 x 0.3
= 0.4

Pr(class 2s,x) =0 x 0.4+ 1x0.34+1 x 0.3
= 0.6

so clasg’ is the more probable!

In this casdhe Bayes optimal approach in fact leads to a different amswe
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A more in-depth example

Let’s take this a step further and work through somethingtla Inore complex in
detail. For a two-class classification problem withx) denotingPr(C' |/, x) and
r € R:

HypothesesWe have three hypotheses
exp(—(z — 1)7)

ho(z) = exp(—(2z — 2)?)
exp(—(1/10)(z — 3)°)

Prior. The prior isPr(h,) = 0.1, Pr(hs) = 0.05 andPr(h3) = 0.85.
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A more in-depth example

We see the examples.5, (1), (0.9, C4), (3.1,Cy) and(3.4, C).

Likelihood: For the individual hypotheses the likelihoods are given by
Pr(s|h) = h(x1)h(x2)[1 — h(x3)|h(x4)

Which in this case tells us
Pr(s
Pr(s
Pr(s

h1) = 0.0024001365
hs) = 0.0031069836
h3) = 0.0003387476

Posterior Multiplying by the priors and normalising gives

Pr(hy|s) = 0.3512575000
Pr(hs|s) = 0.2273519164
Pr(hs|s) = 0.4213905836
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A more in-depth example

Now let’s classify the point’ = 2.5.

We need
Pr(Cy|s, z") = Pr(C1|h1)Pr(hy|s) + Pr(C1|ho)Pr(hs|s) + Pr(Cy|hs)Pr(hs|s)
= (0.6250705317

So: it's most likely to be in clas§’;, but not with great certainty.
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The Bayesian approach to neural networks

Let’s now see how this can be appliedteural networksWe have:

e A neural network computing a functionw; x).

e A training sequence = ((x1,v1), .- -, (X, Ym)), SPlitinto

y=(y1 ¥v2 - Yn)

and
X =(X1 Xg -+ Xp )

Theprior distribution p(w) is now on the weight vectors and Bayes’ theorem tells

us that
p(y|w, X)p(w|X)
p(y|X)

p(wls) = p(w|X,y) =

Nothing new so far...
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The Bayesian approach to neural networks

As usual, we don’t consider uncertaintyxnand soX will be omitted. Conse-
guently

p(y|w)p(w)
p(y)

p(wly) =
where

py) = [ plylwip(w)dw

p(y|w) is a model of the noise corrupting the labels and as prewasshelike-
lihood function
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The Bayesian approach to neural networks

p(w) is typically abroad distributionto reflect the fact that in the absence of any
data we have little idea of what might be.

When we see some data the above equation tells us how to gbtaln). This
will typically be more localised

To put this into practice we need expressionsfer) andp(y|w).
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Reminder: the general Gaussian density

Reminder we're going to be making a lot of use of the gendralussian density
N (p, ) in d dimensions

p(z) = (2m) P2 2 exp | = (2~ 1) S (@ )

wherep is themean vectoandX: is thecovariance matrix
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The Gaussian prior

A common choice fop(w) is theGaussian priomwith zero mean and
¥ =01

SO

202
Note thats controls the distribution of other parameters.

p(w) = (27) W26V exp [_WTW]

e Such parameters are calledperparameters

e Assume for now that they are both fixed and known.

Hyperparameters can be learnt usiniprough the application of more advanced
techniques.

261



The Bayesian approach to neural networks

Physicists like to express quantities suclpas) in terms of a measure dén-
ergy”. The expression is therefore usually re-written as

1 o 9
p(w) = s e (511w
where
1
By (w) = 5wl
2T 4/2
7 — [ ==
o (2)
|
=

This is simply a re-arranged version of the more usual equmati
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The Gaussian noise model for regression

We've already seen that for a regression problem with zeramn@aussian noise
having variance”

Y = f(%) + &

( ) 1 622
€) = exp | ——=
b 2mo? P 202

n

where f corresponds to some unknown network, the likelihood fuomcts

p(y\W)=< : exp (— : (yi_f(WQXz')>2>

D |l 202 —

Note that there are now two variances: for the prior ando? for the noise.
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The Bayesian approach to neural networks

This expression can also be rewritten in physicist-frigridim

plYIw) = 55 e (~BEy(w)
where
n27r

Here, 7 iIs a secondhyperparameter Again, we assume it is fixed and known,
although it can be learnt usirgusing more advanced techniques.
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The Bayesian approach to neural networks

Combining the two boxed equations gives

1

pwly) = 5 exp(=S(w)

where

S(w) = aly(w)+ BEy(w)

The quantity
Zs(a ) = [ | exp(=S(w))aw

normalises the density. Recall that this is calleddhielence
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Example I. gradient descent revisited...

To find Ayap (in this scenario by findingvyap) We therefore maximise
|

ZS(@v @)

p(wly) = oxp(—(aEw (w) + SEy(w)))

or equivalently find

B @ , 6 m | ,
WMAP = 31"gv1;ﬂ11’1 §HWH + 5 ;(% — f(w;x;))

This algorithm has also been used a lot in the neural netwtatature and is

called theweight decayechnique.
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Example Il: two-class classification in two dimensions

Examples

SSIESIIITISS
SIS
SIRSSS
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The Bayesian approach to neural networks

What happens as the numberof examples increases?

e The first termcorresponding to the prioremains fixed.

e The second termorresponding to the likelihoomcreases.

So for small training sequences the prior dominates, bukaige onesy Is a
good approximation téyap.
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The Bayesian approach to neural networks

Where have we got to..\We have obtained
1

ZS<047 6)
Zs(a, B) = /RW exp(—(aly (w) + SEy(W)))dw

Translating the expression for tligayes optimakolution given earlier into the
current scenario, we need to compute

p(Yly,x) = /R{/Vp(yl‘?V,X)p(W\Y) dw

Easy huh?Jnfortunately not...

p(wly) = exp(—(aEw (w) + SEy(w)))
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The Bayesian approach to neural networks

In order to make further progress it’s necessary to perfotegrals of the general
form

[, Fiwpwiy)dw
Rl
for various functions” and this is generally not possible.

There are two ways to get around this:

1. We can use aapproximate fornfor p(w|y).
2. We can usé/lonte Carlomethods.
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Method 1: approximation tp(w|y)

The first approach introduces@aussian approximatioto p(w|y) by using a
Taylor expansiorof
S(w) = afi(w) + BBy (w)

atwyap.
This allows us to use standard integral

The result will beapproximatebut we hope it’s good!

Let’s recall how Taylor series work...
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Reminder: Taylor expansion

In one dimension the Taylor expansion about a point R for a function f
R — RIS

1 / 1 2 ¢l 1 k pk
f@) % f(xo) + 35(@ = w0)f'(@0) + (@ = @0 f"(20) + - - + = = 20) (o)
What does this look like for the kinds of function we're irgeted in? We can try
to approximate

exp (—f(z))

where
1

O
f(x) :x4—§x3—7x2—§x+22

This has a form similar t¢'(w ), but in one dimension.
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Reminder: Taylor expansion

The functions of interest look like this:

By replacing— f(x) with its Taylor expansion about its maximum, which is at
Imax — 21437

we can see what the approximationete(— f()) looks like. Note that thexp
hugely emphasises peaks.
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Reminder: Taylor expansion

Here are the approximations for= 1, £ = 2 andk = 3.

Taylor expansion for k=1 Taylor expansion for k = 2 Taylor expansion for k = 3

5 -5

X X
exp(Hx)) exact exp(#x)) using Taylor expansion for k= 2
0.8

0.6

The use ofc = 2 looks promising...
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Reminder: Taylor expansion

In multiple dimensionthe Taylor expansion for = 2 is

1 1
F(36) & f(x0) + 5306 = x0)" V() + 5506 = x0) V2 f (o)., (x = x0)
whereV denotegjradient
dof(x) Of(x of(x
Vi) = (% G - )
andV* f(x) is the matrix with elements
0*f (x)
M., = L\
& 8332(9:133

(Although this looks complicated, it’s just the obviousasion of the 1-dimensional
case.)
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Method 1: approximation tp(w|y)

Applying this to S(w) and expanding arounétyap

S(W) ~ S(WMAP> -+ (W — WMAP)T VS<W>’

WMAP

1
+ Q(W — wyap)! A(W — Wyap)

notice the following:

e As wyap Minimisesthe function the first derivatives are zero and the corre-
sponding term in the Taylor expansidisappears

e The quantityA = VV.S(w)[,  can be simplified.

WMA

This I1s because
A = VV(aEw(w) + BEy(w))|

— ol + 6VVEy(W|\/|Ap)

WMAP
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Method 1: approximation tp(w|y)

Defining
AW = W — WyapP

we now have 1

S(W) ~ S(WMAP> + §AWTAAW
The vectorwyap can be obtained using any standard optimisation methodh (suc
asbackpropagatioh

The quantityVV Ey(w) can be evaluated using amtended form of backpropa-
gation
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A useful integral

Droppingfor this slide onlythe special meanings usually given to vecterand
y, here is a useful standard integral:

If A € R""Is symmetric then fob € R” andc € R
1
/ exp <_§ (XTAX +x'b + c)) dx
1 b’A~'b
= (2m)"?|A|7Y 2 exp (—5 (c i ))

At the beginning of the course, two exercises were set ivglihe evaluation of
this integral.

To make this easy to refer to, let’s call it tB&éG INTEGRAL
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Method 1: approximation tp(w|y)

We now have
1

Z(a, B)
whereAw = w — wyap and using thé&3IG INTEGRAL

Z(a, B) = 2m)" | A| 72 exp(—S(wwap))
Our earlier discussion tells us that given a new inpute should calculate

p(Yly,x) = /pr(y!WX)p(WIY)dW

p(y|w, x) is just thelikelihood so...

1
p(wly) = exp <—S(W|\/|Ap) — §AWTAAW>
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Method 1: approximation tp(w|y)

The likelihood we’re using is

and plugging it into the integral gives

pylx,y) o / exp <—é(y - f(W;X)>2> exp (—%AWTAAw) dw

RW 2
which has no solution!

We needanother approximation...
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Method 1: approximation tp(w|y)

If we assumdhatp(w|y) is narrow (this depends oft) then we can introduce a
linear approximatiorof f(w;x) atwyap:

f(w;x) = f(wmap:X) + g’ Aw
whereg = V f(w; x)[, .-

By linear approximation we just mean the Taylor expansiaorkfe: 1.

This leads to

1
p(Yly,x) o / exp (—g (y — f(wwap; x) — g7Aw)” — §AWTAAW> dw
RW

and this integral can be evaluated using Bi& INTEGRALto give THE AN-
SWER...
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Method 1: approximation tp(w|y)

Finally
p(Yly,x) = L exp (—(y - ngI\gAP;X))Z)
2o Ty
where !
(7; = B +glA g,

Hooray! But what does it mean?
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Method 1: approximation tp(w|y)

This is aGaussian densifyso we can now see that)'|y, x) peaksat f (wyap; x).
That is, theVIAP solution

Thevariancea§ can be interpreted as a measure®ftainty,

e The first term ofs; is 1/ and corresponds to the noise.

e The second term of is g’ A~'g and corresponds to the width pfw|y).

Or interpreted graphically...
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Method 1: approximation tp(w|y)

Typical behaviour of the Bayesian solution
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Method II: Markov chain Monte Carlo (MCMC) methods

The second solution to the problem of performing integrals
1= [ Fwiplwly)w
IS to useMonte Carlomethods. The basic approach is to make the approximation
1 N
[~ 21: F(w;)

where thew; have distributiorp(w|y). Unfortunately, generating; with agiven
distributioncan be non-trivial.
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MCMC methods

A simple technique is to introduce a random walk, so
W, 1 = W; + €
wheree is zero mean spherical Gaussian and has small varianceo@byithe
sequencev; does not have the required distribution. However, we canthse
Metropolis algorithm which doeshot accept all the steps in the random walk:
1. If p(w;.1|y) > p(w;|y) then accept the step.
- i1y
2. Else accept the step with probabll%.

In practice, the Metropolis algorithm has several shortom®i and a great deal
of research exists on improved methods, see:

R. Neal, “Probabilistic inference using Markov chain Mor@arlo methods,’
University of Toronto, Department of Computer Science iieeh Report
CRG-TR-93-1, 1993.
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Approximate inference for Bayesian networks

MCMC methods also provide a method for performagmproximate inferencen
Bayesian networks

Say a system can be in a stat@nd moves from state to state in discrete time steps
according to a probabillistic transition

Pr(s — ¢')

Let m,(s) be the probability distribution for the state aftesteps, so
Tip1(s') = Z Pr(s — s')m(s)

If at some point we obtain;.(s) = m(s) for all s then we have reached a
stationary distributionr. In this case

vs'n(s') =) Pris — s')n(s)

There is exactly one stationary distribution for a givers — s’) provided the
latter obeys some simple conditions.
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Approximate inference for Bayesian networks

The condition ofdetailed balance
Vs, s'n(s)Pr(s — s') = n(s")Pr(s’ — s)

Is sufficient to provide & that is a stationary distribution. To see this simply sum:
ZW(S)PI’(S —§') = ZT{' )Pr(s’ — s)
- w<s’>z Pr(s’ — )

Ve

=1

= 7(s’)
If all this is looking a little familiar, it's because we novate an excellent ap-

plication for the material ilMlathematical Methods for Computer Scienddnat
course used the alternative telmeal balance
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Approximate inference for Bayesian networks

Recalling once again the basic equation for performing gdistic inference
1
Pr(Qle) = — Pr(Q Ae) Zpr@,ue
where

e () Is the query variable.
e ¢ IS the evidence.
e 1, are the unobserved variables.

e 1 /7 normalises the distribution.

We are going to consider obtaining samples from the digiohPr(Q), U |e).
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Approximate inference for Bayesian networks

The evidence Is fixed. Let th&ateof our system be a specific set of values for
thequery variable and the unobserved variables

S = (q,u1, U,y ..., Up) = (81,59, Sp41)

and defines; to be the state vectorith s; removed

S, — (81, c o0 g Sg—1lg 5l 0o o g Sn+1)

To move froms to s’ we replace one of its elements, saywith a new values’
sampled according to
S; ~ PF(SLE“ 6)

This has detailed balance, and /ag), U|e) as its stationary distribution.
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Approximate inference for Bayesian networks

To see thaPr((@, Ule) is the stationary distribution
7(s)Pr(s — s') = Pr(s|e)Pr(sl|s;, e)

= Pr(s;, 8;|e)Pr(si|s;, €)

= Pr(s;[s;, e)Pr(s;|e)Pr(s}[s;, e)

= Pr(s;[s;, €)Pr(s;, 5l¢)

= Pr(s’ — s)n(s')
As a further simplification, sampling frofiar(S;|s;, ¢) is equivalent to sampling
S,; conditional on its parents, children and children’s pasent
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Approximate inference for Bayesian networks

Sa

e \We successively sample the query variable and the unolzbeavables, con-
ditional on their parents, children and children’s parents

e This gives us asequenges,, . . . which has been sampled according?to?), U |e).

Finally, note that as

PrQle) = > Pr(Q, ule)

we can just ignore the values obtained for the unobservadblas. This gives
usqi, go, . .. With

g ~ PriQle)
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Approximate inference for Bayesian networks

To see that the final step works, consider what happens wheastmeate the
expected value of some function ©f

E[f(Q)] =) f(qg)Prgle)
=> flg)) Prq,ule)
=> Y flq)Prig, ule)

so sampling usin@r(q, u|e) and ignoring the values far obtained works exactly
as required.
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A (very) brief introduction into how to learn hyperparanrste

So far in our coverage of the Bayesian approach to neuralankswthehyperpa-
rametersoe and s were assumed to be known and fixed.

e But this is not a good assumption because...
e ... corresponds to the width of the prior ando the noise variance.
e S0 we really want to learn these from the data as well.

e How can this be done?

We now take a look at one of several ways of addressing this¢mo
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The Bayesian approach to neural networks

Earlier we looked at the Bayesian approachdaral networksising the following
notation. We have:

e A neural network computing a functionw; x).

e A training sequence = ((x1, 1), - - -, (Xm, Ym)), Splitinto

y=(v1 % - Yn)

and
X=(x1 X3 - X )

Theprior distribution p(w) is now on the weight vectors and Bayes’ theorem tells
us that
p(y|w)p(w)

p(y)
In addition we have &aussian priorand a likelihood assumingaussian noise

p(wly) =
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The Bayesian approach to neural networks

The prior and likelihood depend am and 5 respectively so we now make this
clear and write
p(y|w, B)p(w|a)

p(yle, B)
(Don’t worry about recalling thectual expressionfor the prior and likelihood
just yet, they appear in a few slides time.)

p(wly, o, ) =

In the earlier slides we found that the Bayes classifier shmulact compute

plyx,08) = [ plylwx, Bpwly, o) dw

and we found an approximation to this integral. (Again, teeassary parts of the
result are repeated later.)
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Hierarchical Bayes and the evidence

Let’s write down directly something that might be useful twlw:

p(yle, B)pla, B)

p(y)
If we know p(«, Bly) then a straightforward approach isuee the values fou
and § that maximise it

Here is a standard trickassume that the prigy(«, 3) is flat, so that we can just
maximise

p(a, Bly) =

p(yla, B)
This is calledtype Il maximum likelihoo@nd is one common way of doing the
job.

As usual there are other ways of handlingnd, some of which are regarded as
more “correct”.
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Hierarchical Bayes and the evidence

The quantity
p(yle, B)

Is called theavidence

When we re-wrote our earlier equation for the posterior g the weights,
makinga and( explicit, we found

p(ylw, o, B)p(w|a, B)
p(yla, B)

Sothe evidence is the denominator in this equation

p(wWly, o, 3) =

This is thecommon patterrand leads to the idea dfierarchical Bayes the ev-
iIdence for the hyperparameteat one level is th&lenominator in the relevant
application of Bayes theorem
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An expression for the evidence

We have alreadgerived everything necessao/write anexplicit equation for the
evidencdor the case of regression that we've been following.

First, as we know about a lot of expressions involviagve can introduce it by
the standard trick afnarginalising

B(¥la, B) = / ply, wla, B)dw
. / p(y|w, o, B)p(wla, B)dw
. / oy |w, B)p(wla)dw

where we've made the obvious independence simplifications.

The two densities in this integrake just the likelihood and prior we've already
studied

We’'ve just conditioned on and /3, which previously were constants but are now
being treated as random variables.
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An expression for the evidence

Here are the actual expression for the prior and likelihood.

The prior is 1
p(wla) = 7 exp (—aFir(w))
where -
Zw () = (%W) and By (w) = %HWH2
and the likelihood is
1
plylw,3) = 7.8 P (—BEy(w))
where
o\ "2 1 < ,
2,00 = (%) andsyw) =53 (0~ hiwix)

1=1
Both of these equations have been copied directly fromezaslides: there is
nothing to add
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An expression for the evidence

That gives us

vions) = () () [emiston i

where
S(w) = aBy(w) + SEy(w)
This isexactly the integral we first derived an approximation. for

Specifically

/exp (—S(w)) dw ~ 2m)"V2| A2 exp(—S(Wmap))

where
A=ol+ ﬁVVEy(WMAp>

andwyap IS themaximum a posteriori solution
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An expression for the evidence

Putting all that together we get anpression for the logarithm of the evidence

4% m m
log p(y|a, B) e log ov — 5 log 21 + 5 log
1
- élog A
— aEw(wmap) — BEy(Wvap)

Again, we’re using the fact that we want toaximise the evidencand this is
equivalent tanaximising its logarithnwhich turns a product into a more friendly
sum.
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Maximising the evidence

We want to maximise this, so let’s differentiate it with resptoa and/.

Fora
Ologp(yla,3) W 10log|A]

__ _E _ Y5 A
oo 200 w(Wmap) 2 O«

How do we handle the final term? This is straightforward if vaa compute the
eigenvaluesf A.

Recall that the: eigenvalues\; andn eigenvectors/; of ann x n matrix M are

defined such that
Myv,; = )\ivifori =1,...,n

and the eigenvectors are orthonormal

11f7=79
Tre, _ J
Vi Vi = { 0 otherwise.

One standard result is théite determinant of a matrix is the product of its eigen-

values ;
WIE I BY
1=1

303



Maximising the evidence

We have
A=ol+ 6VVE},—<W|\/|AP)

Say the eigenvalues gfVV E,(wuap) are \;. (These can be computed using
standard numerical algorithms.)

Then the eigenvalues ¢f area + \; and

Jlog|A| 0 -
— ] :

= % (Z log(a + )\Z)>

1=1
_i 1 dla+\)
—Z_Zloﬂr)\i oo

This remains tricky becauske eigenvalues might be functionsoof
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Maximising the evidence

To make further progress, assufsemetimes correct, sometimes natiat the),
do notdepend onv.

In that case
|%.%

Olog |A| 1
o _ZOZ—F)\Z'

1=1

— Tracé A™)
becauséVI ' has eigenvaluek/\; and the trace of a matrix is equal to the sum of
Its eigenvalues.
Finally, equating the derivative to zero gives:
W

1
— — Ew(WMAp) — —Trace{A_l) = (
200 2

1 Yoa
p— W —_
“ 2Ew(W|\/|Ap) ( Z o+ /\L>

1=1

or

which can be used to update the valuedor
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Maximising the evidence

We can now repeat the process to obtain an updateé:for

Ologplyla,f) _m o, (Watae) — 101og |A]
3 23 Y VTMARI T oo
In this case »
dlog|A| 0
= lo Oé—|—)\z'
55 a7 <Zl g( ))
|44
1 0
;Oz+)\iaﬁ<@+>\z>
o« 1A
_ Oé—|—)\z'aﬁ

and again we haveotentially tricky derivative
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Maximising the evidence

As the )\, are the eigenvalues ofVV £, (wyap) We have

(can you see why?&o0

Equating the derivative to zero gives

1 DY
— m — !
g 2Ey(Wwmap) ( ZZ1 o+ )\i>

which can be used to update the value/for
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Maximising the evidence

Here’s why the derivative works.
Say
WY = VVEy(WMAp)
so we're interested in)\; /0 when the)\; are the eigenvalues ofM. Thus

and using the fact that the eigenvectors are orthonormal
6V7;TMVZ' = )\Z'V;FVZ' — >\2

So \
vi Mv; = =

g

and
O\

ap

Ai
ik

— ViTMVZ' =
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Maximising the evidence

Summary

Define
|7/%

A\
0, — 1
' 421: Qi + >\5
where the subscript denotes the fact that we're using thewolg equations to
periodically update our estimates@fandj.

Collecting the two update equations together we have

0,
Oé f—
Hl 2Ew (Wmap)
and
m — Qt
Bri1 = 5 Ey (WMAP)
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Maximising the evidence

This suggests method for the overall learning process

1. Choose the initial values, and 3, at random.

2. Choose an initial weight vectev according to the prior.

3. Use a standard optimisation algorithm to iterativelyneate wap.

4. While the optimisation progresses, periodically usesitpgations above to re-
estimatey and/.

Step 4 requires that we compute an eigendecomposition,hwhight well be
time-consuming. If necessary we can make a simplification.

Whenm >> IV it is reasonable to expect that~ 11/ an so we can use

%%
CV/ f—
s 2Ew (Wmap)
and
m
Bri1 = OB, (Wap)
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An alternative: integrate the hyperparameters out

While choosingy and 5 by maximising the evidence leads to an effective algo-
rithm, it might be argued that a more correct way to deal witse parameters
would be tointegrate them out

pwly) = [ [ piw.a.ply)dads.

(Recall thegeneral equation for probabilistic inferenaghere we integrate out
unobserved random variables.)

Re-arranging this we have

p(ylw, B)p(w|a)p(a)p(B)dadf

where we’re assuming andj are independent.

/]
. / / plylw, o, B)p(wla, B)p(a, B)dads
/]
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An alternative: integrate the hyperparameters out

In order to continue we need to specify priorscoand/.

On this occasion we have a good reason to choose particubas, sy and; are
scale parameters

In general, a scale parameters one that appears in a density of the form

1  rx
plalo) = =f (3)
o o2
The standard deviation of a Gaussian density is an example.

What happens to this density if veealex such thatt’ = cx?
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Standard result number 1

We need to recall how to deal witlhansformations of continuous random vari-
ables

Say we have a random variablevith probability densityp..(z).
We then transform: to y = f(x) wheref is strictly increasing.

What is the probability density function g There is a standard method for
computing this. (See NST maths, or the 1A Probability cajirse

- p(f ()
PAY) = T i)
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An alternative: integrate the hyperparameters out

Applying this when:’ = ¢z we have

f(x) =cx
) ==
fi(z) =c

and so

i-3(2) -2

Thus the transformation leaves the density essentiallgamged, and in particular
we want the densities(o) andp(c’) to be identical.

It turns out that this forces the choice

This is animproper priorand it is conventional to takeé = 1.
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Standard result number 2

Returning to the integral of interest

]%y) / / plylw, A)p(wla)p(a)p(F)dads

Taking the integral fory first we have

/p(w\oz)p(oz)doz — /OéZml/(Oé) exp(—aFEy (w))da

1 w2
[ () e (~5IwlR) do
a \27 2

and to evaluate this we use the followisgndard resultt
= [(n+1)
/0 z" exp(—ax)dx = g
wheren > —1 anda > 0. So the integral becomes

_wype D(W/2)
EW(W>W/2

(27)
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An alternative: integrate the hyperparameters out

Repeating the process férand using the same standard result we have

[ i ppas = [ 5 (2)" ety s
[(m/2)
Ey(w)m/?

— (2m)~™/2

Combining the two expression we obtain
1
— logp(wl|y) = — log (— o)~ W/2
(wly) p(y)( )
1%

k] log By (w) + %bg Ey(w) + constant

DOW/2) s T(m/2)
By (w) V2 2T /Ey<w>m/2)

andwe want to minimise thiso we need

w1 (9EW(W)+@ 1 OEy(w)
2 Byw(w) Ow 2 Ey(w) Ow
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An alternative: integrate the hyperparameters out

Theactual value for the evidengs

e (B (w) + By (w) )

= aFy(w) + SEy(w) + constant
andwe want to minimise thiso we need
a@EW(W) +ﬁaEy<W)
Oow Oow

This should make uU§ERY VERY HAPPYecause if we equate the two boxed
equations we get

~ logp(wly) =  log (

=0

B %%
T B (w)

and .
6: 2Ey<W)

and so the result fantegrating out the hyperparameteagrees with the result for
optimising the evidence

Reinforcement Learning
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We now examine;

e Some potential shortcomings of hidden Markov models, anduptsrised
learning.

e An extension know as thiglarkov Decision Process (MDP)

e The way in which we mightearn from rewardsgained as a result afcting
within an environment

e Specific, simple algorithms for performing such learningg @heir conver-
gence properties.

Reading:Russell and Norvig, chapter 21. Mitchell chapter 13.
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Reinforcement learning and HMMs

Hidden Markov Models (HMMs) are appropriate when our agent nsotied
world as follows

and only wants to infer information about th&ateof the world on the basis of
observing the availablevidence

This might be criticised as un-necessatrily restrictedvcalgh it is very effective
for the right kind of problem.
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Reinforcement learning and supervised learning

Supervised learners learn frapecifically labelled chunks of information

This might also be criticised as un-necessarily restrictiedre are other ways to
learn.

320



Reinforcement learning: the basic case

We now begin to model the world in a more realistic way as fedp

In any state:
Perform an actiom to move to a new state. (There may be many possibilities.)

Receive a reward depending on the start state and action.

The agent caperform actionsn order tochange the world’s state

If the agent performs an action in a particular state, theaiits a corresponding
reward.
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Deterministic Markov Decision Processes

Formally, we have a set of states
S = {81,82,...,Sn}

and in each state we can perform one of a set of actions

A={ay,as,...,an}.

We also have a function
S : S X A — S

such thatS(s, a) is the new state resulting from performing actiom states,
and a function
R:SxA—R

such thatk (s, a) is thereward obtained by executing actionin states.
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Deterministic Markov Decision Processes

From the point of view of the agent, there is a matter of cagrsidle importance:

The agent does not have access to the functtbasdR |.

It therefore has téearnapolicy, which is a function
p:S— A
such that(s) provides the action that should be executed in state

What might the agent use as its criterion for learning a p@lic

323



Measuring the quality of a policy

Say we start in a state at tiniedenoteds;, and we follow a policyp. At each
future step in time we get a reward. Denote the rewards. , ... and so on.

A common measure of the quality of a poligyis thediscounted cumulative re-
ward

o

i
VP(s) = E €Tt1i
i=0
2
=T+ €rgp1 + €T+ -0

wherel < € < 1 i1s a constant, which defines a trade-off for how much we value
Immediate rewards against future rewards.

The intuition for this measure is that, on the whole, we stidike our agent to
prefer rewards gained quickly.
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Measuring the quality of a policy

Other common measures are thesrage reward
T

1
fm 2 e

1=0

and thefinite horizon reward
T

E T't+i

1=0
In these notes we will only address the discounted cumelatiward.
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Two important issues

Note that in this kind of problem we need to address two paerty relevant
Issues:

e The temporal credit assignmergroblem: that is, how do we decide which
specific actions are important in obtaining a reward?

e Theexploration/exploitatiorproblem. How do we decide betweerploiting
the knowledge we already have, aaxbloringthe environment in order to
possibly obtain new (and more useful) knowledge?

We will see later how to deal with these.
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The optimal policy

Ultimately, our learner’s aim is to learn tlugtimal policy

Popt = argmax V'’ (s)
p

for all s. We will denote the optimal discounted cumulative reward as
vOpt<S) = Vpopt<3>.

How might we go about learning the optimal policy?
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Learning the optimal policy

The only information we have during learning is the indiadltewards obtained
from the environment.

We could try to learri/(s) directly, so that states can be compared:
Considers as better than’ if Vopi(s) > Vopi(s).

However we actually want to compagietions notstates LearningVqp(s) might
help as

Popt(s) = argmax [R(s,a) + €Vopd(S(s, a))]

a

butonly if we knowsS andR.

As we are interested in the case where these functionscrenown, we need
something slightly different.
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The O function

The trick is to define the following function:
A(s,a) =R(s,a)+ eVop(S(s, a))

This function specifies the discounted cumulative rewardiabd if you do ac-
tion a In states and then follow the optimal policy

AYS
Popt(s) = argmax Q(s, a)

a

then provided one can lea@ it is not necessary to have knowledgeand R
to obtain the optimal policy
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The O function

Note also that
Vopt(s) = max 9(s, )

(0%

and so

Q(s,a) = R(s,a) + emax Q(S(s,a), a)

(0%

which suggests a simple learning algorithm.
Let ()’ be our learner’s estimate of what the exactunction is.

That is, in the current scenari@’ is a table containing the estimated values of
(s, a) for all pairs(s, a).
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Q-learning

Start with all entries i)’ set to0. (In fact we will see in a moment that random
entries will do.)

Repeat the following:

1. Look at the current stateand choose an action (We will see how to do this
In a moment.)

2. Do the actior: and obtain some rewaffl(s, a).
3. Observe the new staf& s, a).
4. Perform the update

Q'(s,a) = R(s,a) + € max Q'(S(s,a), )

Note that this can be done apisodes For example, in learning to play games,
we can play multiple games, each being a single episode.
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Convergence of-learning

This looks as though it might converge!
Note that, if the rewards are at leasind we initialise?)’ to 0 then,

Vn, S, a Q;L—H(S? CL) 2 Q;%<S7 CL>

and
vn,s,a Q(s,a) > Q,(s,a) >0

However, we need to be a bit more rigorous than this...
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Convergence of-learning

If:

1. The agent is operating in an environment that is a detestrarMDP.

2. Rewards are bounded in the sense that there I1s a constansuch that
Vs,a |R(s,a)| <9

3. All possible pairss anda are visited infinitely often.

Then theOQ-learning algorithm converges, in the sense that
Va, s Q,(s,a) — Q(s,a)

asn — oQ.
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Convergence of-learning

This is straightforward to demonstrate.

Using condition3, take two stretches of time in which allanda pairs occur:

All s, a occur All s, a occur

Define
f(TL) — Hg%X ‘Q;’L<87 CL> _ Q(Sa CL)’
the maximum error id)" atn.

What happens whe@)’ (s, a) is updated t@)’ , (s, a)?

n+1
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Convergence oP-learning

We have,
Qnia(s,a) — Q(s, a)
= |(R(s,a) + € max Q' (S(s,a),a)) — (R(s,a) + €max Q(S(s,a),a))|
= € max Q (S(s,a),a) — max QA(S(s,a),a)l
< emax|Q)(S(5,0), ) — Q(S(s, ), )
< emax|@(s, a) — Q(s, a)]
= e{(n).

Convergence as described follows.
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Choosing actions to perform

We have not yet answered the question of how to choose attiquesform during
learning.

One approach is to choose actions based on our current &stjmnad-or instance

action chosen in current state= argmax Q'(s, a).

a

However we have already noted the trade-off between expporand exploita-
tion. It makes more sense to:

e Exploreduring the early stages of training.

e Exploitduring the later stages of training.

This seems particularly important in the light of conditi®of the convergence
proof.
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Choosing actions to perform

One way Iin which to choose actions that incorporates thep@rmments is to
Introduce a constant and choose actionsobabilisticallyaccording to

| 2@ (5.a)
Pr(actiona|states) = S A0

Note that:

e If )\ is smallthis promotesxploration

e If )\ Islargethis promotesxploitation

We can vary\ as training progresses.
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Improving the training process

There are two simple ways in which the process can be improved

1. If training is episodic, we can store the rewards obtaiiedng an episode
and updatéackwardsat the end.

This allows better updating at the expense of requiring magenory.

2. We can remember information about rewards and occasformbiseit by
re-training.
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Nondeterministic MDPSs

The O-learning algorithm generalises easily to a more realstigation, where
the outcomes of actions apeobabilistic

Instead of the function§ and’R we haveprobability distributions
Pr(new stat&urrent stateaction)

and
Pr(rewardcurrent stateaction.
and we now use&(s,a) andR(s, a) to denote the corresponding random vari-
ables.

We now have

VP =FE (Z eimH)
1=0
and the best policy,,: maximises/’”.
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Q-learning for nondeterministic MDPs

We now have
Q(s,a) =E(R(s,a)) + € Z Pr(o|s,a)V°Y(o)

=E(R(s,a)) + €Y _Pro]s,a) max Q(a, a)

and the rule for learning becomes

Qi = (1= O 1)Q(5,0) + Onsr [R(5, 0) + max Q) (S(s, ), 0)

with

1
1+ v,11(s, a)

6n+1 —

whereuv,, . 1(s, a) is the number of times the pairanda has been visited so far.
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Convergence of-learning for nondeterministic MDPs

If:

1. The agent is operating in an environment that is a nonuatestic MDP.

2. Rewards are bounded in the sense that there I1s a constansuch that

Vs,a |R(s,a)| <9

3. All possible pairss anda are visited infinitely often.

4.n,(s,a) is the:ith time that we do action in states.

and also...
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Convergence of-learning for nondeterministic MDPs

...we have
0<0, <1

Z Oni(s.0) = OO
=3

2
D Onis) < 00
1=1
then with probabilityl the O-learning algorithm converges, in the sense that

Va, s Qy(s,a) — Qs, a)

asn — oQ.
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Alternative representation for th' table

But there’s always a catch...

We have to store the table f¢J'":

e Even for quite straightforward problems it is HUGE!!! - cartly big enough
that it can’t be stored.

e A standard approach to this problem is, for example, to spreit as aneural
network

e One way might be to make anda the inputs to the network and train it to
producel)’(s, a) as its output.

This, of course, introduces its own problems, although s lbeen used very suc-
cessfully in practice.

It might be covered irtificial Intelligence I, which unfortunately does not yet
exist.
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