
Artificial Intelligence I

Dr Sean Holden

Computer Laboratory, Room FC06

Telephone extension 63725

Email: sbh11@cl.cam.ac.uk

www.cl.cam.ac.uk/∼sbh11/

Copyright c© Sean Holden 2002-2012.

1

Introduction: what’s AI for?

What is the purpose of Artificial Intelligence (AI)? If you’re aphilosopheror a
psychologistthen perhaps it’s:

• To understand intelligence.

• To understandourselves.

Philosophers have worked on this for at least2000 years. They’ve also wondered
about:

• Canwe do AI?Shouldwe do AI?

• Is AI impossible? (Note: I didn’t writepossiblehere, for a good reason...)

Despite2000 years of work, there’s essentiallydiddly-squatin the way of results.

2

Introduction: what’s AI for?

Luckily, we were sensible enough not to pursue degrees in philosophy—we’re
scientists/engineers, so while we might havesomeinterest in such pursuits, our
perspective is different:

• Brains are small (true) and apparently slow (not quite so clear-cut), but incred-
ibly good at some tasks—we want to understand a specific form of computa-
tion.

• It would be nice to be able toconstructintelligent systems.

• It is also nice tomake and sell cool stuff.

This viewseems to be the more successful. . .

AI is entering our lives almost without us being aware of it.

3

Introduction: now is a fantastic time to investigate AI

In many ways this is a young field, having only really got underway in 1956 with
theDartmouth Conference.

www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

• This means we can actuallydo things. It’s as if we were physicists before
anyone thought about atoms, or gravity, or. . . .

• Also, we know what we’re trying to do ispossible. (Unless we think humans
don’t exist.NOW STEP AWAY FROM THE PHILOSOPHYbeforeSOMEONE
GETS HURT!!!!)

Perhaps I’m being too hard on them; there was some good groundwork: Socrateswanted an algorithm for“piety” ,
leading toSyllogisms. Ramon Lull’sconcept wheelsand other attempts at mechanical calculators. Rene Descartes’
Dualism and the idea of mind as aphysical system. Wilhelm Leibnitz’s opposing position ofMaterialism. (The
intermediate position: mind isphysicalbutunknowable.) The origin ofknowledge: Francis Bacon’sEmpiricism, John
Locke: “Nothing is in the understanding, which was not first in the senses”. David Hume: we obtain rules by repeated
exposure:Induction. Further developed by Bertrand Russel and in theConfirmation Theoryof Carnap and Hempel.

More recently: the connection betweenknowledgeandaction? How are actionsjustified? If to achieve the end you
need to achieve something intermediate, consider how to achieve that, and so on. This approach was implemented in
Newell and Simon’s 1957General Problem Solver (GPS).

4

Is AI possible?

Many philosophers are particularly keen to argue that AI isimpossible? Why is
this? We have:

• Perception (vision, speech processing...)

• Logical reasoning (prolog, expert systems, CYC...)

• Playing games (chess, backgammon, go...)

• Diagnosis of illness (in various contexts...)

• Theorem proving (Robbin’s conjecture...)

• Literature and music (automated writing and composition...)

• And many more...

What’s made the difference? In a nutshell:we’re the first lucky bunch to get our
hands on computers, and that allows us tobuild things.

The simple ability totry things outhas led to huge advances in a relatively short
time. So: don’t believe the critics...

5

Further reading

Why do people dislike the idea that humanity might not bespecial.

An excellent article on why this view is much more problematic than it might
seem is:

“Why people think computers can’t,”Marvin Minsky. AI Magazine, volume 3
number 4, 1982.

6

Aside: when something is understood it stops being AI

To have AI, you need a means ofimplementingthe intelligence. Computers are (at
present) the only devices in the race. (Althoughquantum computationis looking
interesting...)

AI has had a major effect on computer science:

• Time sharing

• Interactive interpreters

• Linked lists

• Storage management

• Some fundamental ideas in object-oriented programming

• and so on...

When AI has a success, the ideas in question tend tostop being called AI.

Similarly: do you consider the fact thatyour phone can do speech recognitionto
be a form of AI?

7

The nature of the pursuit

What is AI?This is not necessarily a straightforward question.

It depends on who you ask...

We can find many definitions and a rough categorisation can be made depending
on whether we are interested in:

• The way in which a systemactsor the way in which itthinks.

• Whether we want it to do this in ahumanway or arational way.

Here, the wordrational has a special meaning: it meansdoing the correct thing
in given circumstances.

8

Acting like a human

What is AI, version one: acting like a human

Alan Turingproposed what is now known as theTuring Test.

• A human judge is allowed to interact with an AI program via a terminal.

• This is theonly method of interaction.

• If the judge can’t decide whether the interaction is produced by a machine or
another human then the program passes the test.

In theunrestrictedTuring test the AI program may also have a camera attached,
so that objects can be shown to it, and so on.

9

Acting like a human

The Turing test is informative, and (very!) hard to pass.

• It requires many abilities that seem necessary for AI, such as learning.BUT:
a human child would probably not pass the test.

• Sometimes an AI system needs human-like acting abilities—for exampleex-
pert systemsoften have to produce explanations—butnot always.

See theLoebner Prize in Artificial Intelligence:

www.loebner.net/Prizef/loebner-prize.html

10

Thinking like a human

What is AI, version two: thinking like a human

There is always the possibility that a machineacting like a human does not actu-
ally think. Thecognitive modellingapproach to AI has tried to:

• Deducehow humans think—for example byintrospectionor psychological
experiments.

• Copy the process by mimicking it within a program.

An early example of this approach is theGeneral Problem Solverproduced by
Newell and Simon in 1957. They were concerned with whether ornot the program
reasoned in the same manner that a human did.

Computer Science+ Psychology= Cognitive Science

11

Thinking rationally: the “laws of thought”

What is AI, version three: thinking rationally

The idea that intelligence reduces torational thinkingis a very old one, going at
least as far back as Aristotle as we’ve already seen.

The general field oflogic made major progress in the 19th and 20th centuries,
allowing it to be applied to AI.

• We canrepresentandreasonabout many different things.

• The logicist approach to AI.

This is a very appealing idea.However...

12

Thinking rationally: the “laws of thought”

Unfortunately there are obstacles to any naive applicationof logic. It is hard to:

• Representcommonsense knowledge.

• Deal withuncertainty.

• Reason without being tripped up bycomputational complexity.

These will be recurring themes in this course, and in AI II.

Logic alone also falls short because:

• Sometimes it’s necessary to act when there’sno logical course of action.

• Sometimes inference isunnecessary(reflex actions).

13

Further reading

The Fifth Generation Computer Systemproject has most certainly earned the
badge of“heroic failure” .

It is an example of how much harder the logicist approach is than you might think:

“Overview of the Fifth Generation Computer Project,”Tohru Moto-oka. ACM
SIGARCH Computer Architecture News, volume 11, number 3, 1983.

14

Acting rationally

What is AI, version four: acting rationally

Basing AI on the idea ofacting rationallymeans attempting to design systems
that act toachieve their goalsgiven theirbeliefs.

Thinking about this in engineering terms, it seemsalmost inevitablyto lead us
towards the usual subfields of AI. What might be needed?

• To makegood decisionsin manydifferent situationswe need torepresentand
reasonwith knowledge.

• We need to deal withnatural language.

• We need to be able toplan.

• We needvision.

• We needlearning.

And so on, so all the usual AI bases seem to be covered.

15

Acting rationally

The idea ofacting rationallyhas several advantages:

• The concepts ofaction, goal andbelief can be defined precisely making the
field suitable for scientific study.

This is important: if we try to model AI systems on humans, we can’t even propose
anysensible definition ofwhat a belief or goal is.

In addition, humans are a system that is still changing and adapted to a very spe-
cific environment.

Rational actingdoes not have these limitations.

16

Acting rationally

Rational actingalso seems toincludetwo of the alternative approaches:

• All of the things needed to pass a Turing test seem necessary for rational act-
ing, so this seems preferable to theacting like a humanapproach.

• The logicist approach can clearly formpart of what’s required to act rationally,
so this seems preferable to thethinking rationallyapproach alone.

As a result, we will focus on the idea of designing systems that act rationally.

17

Other fields that have contributed to AI

Artificial Intelligence

Experimental Psychology

Hermann von Helmholtz: visual system.

Wilhelm Wundt: introspection. (Experimentally dubious.)

Watson and Thorndike: Behaviourism

Learned a lot about pigeons and rats.

Stimulus and response/objective measures.

Craik: "The Nature of Explanation"

Brain as an information processing device.

Reasoning, beliefs, goals etc.

System has a model of how the world works.

Mathematics I: logic

Aristotle's material turned into mathematics by Boole

Frege: first order logic.

Tarski: relationship between real and logical objects.

al-Khowarazmi: concept of algorithm.

Hilbert: limits of algorithms.

Intractability and complexity.

Godel: incompleteness theorem.

Mathematics II: probability

Gambling outcomes: Cardano, Fermat, Pascal, Bernoulli, Laplace.

Bernoulli: degree of belief.

Bayes: updating beliefs using evidence.

Modern representation of uncertainty.

Von Neumann and Morgenstern: combine uncertainty with

action: decision theory.

Linguistics

Skinner's "Verbal Behaviour".

Noam Chomsky: behaviourisn can't account for understanding or

production of things not previously heard.

A central AI concept: "Time flies like an arrow. Fruit flies like a banana". Economics

How should I act, in the presence of adversaries, to obtain nice

stuff in the future?

How do I measure the degree of niceness?

Probability + Utility = Decision Theory.

Small economies: game theory - sometimes it's rational to act (apparently)

randomly.

Belman: Operations research. Markov decision processes. Future gains

resulting from a series of actions.

Rational action is intractable. Herbert Simon: Satisficing is a better description

of what humans do.

Neuroscience

Nasty bumps on the head - we know brains

and consciousness are related.

Paul Broca: localised regions have different tasks.

Presence of neurons, although even storage of a memory

not really understood.

Recently: EEG, MRI etc.

Cybernetics

250BC: first machine able to modify its own behaviour.

James Watt: governor for steam engines.

Drebbel: thermostat.

Norbert Weiner and others: control theory as a mathematical subject.

Minimisation of difference between current situation and goal.

Stochastic optimal control: minimisation over time of an objective function.

----AI moves away from linear and continuous scenarios.

18

What’s in this course?

This course introduces some of the fundamental areas that make up AI:

• An outline of the background to the subject.

• An introduction to the idea of anagent.

• Solving problems in an intelligent way bysearch.

• Solving problems represented asconstraint satisfactionproblems.

• Playinggames.

• Knowledge representation, and reasoning.

• Planning.

• Learningusingneural networks.

Strictly speaking, AI I covers what is often referred to as“Good Old-Fashioned
AI” . (Although “Old-Fashioned” is a misleading term.)

The nature of the subject changed a great deal when the importance ofuncertainty
became fully appreciated. AI II covers this more recent material.

19

What’snot in this course?

• The classical AI programming languagesprolog andlisp.

• A great deal of all the areas on the last slide!

• Perception:vision, hearingandspeech processing, touch(force sensing, know-
ing where your limbs are, knowing when something is bad),taste, smell.

• Natural language processing.

• Acting on and in the world:robotics (effectors, locomotion, manipulation),
control engineering, mechanical engineering, navigation.

• Areas such asgenetic algorithms/programming, swarm intelligence, artificial
immune systemsandfuzzy logic, for reasons that I will expand upon during the
lectures.

• Uncertaintyand much further probabilistic material. (You’ll have to wait until
next year.)

20

Text book

The course is based on the relevant parts of:

Artificial Intelligence: A Modern Approach, Third Edition (2010). Stuart Russell
and Peter Norvig, Prentice Hall International Editions.

NOTE:This is also the main recommended text for AI2.

21

Interesting things on the web

A few interesting web starting points:

The Honda Asimo robot:world.honda.com/ASIMO

AI at Nasa Ames:www.nasa.gov/centers/ames/research/exploringtheuniverse/spiffy.html

DARPA Grand Challenge:http://www.darpagrandchallenge.com/

2007 DARPA Urban Challenge:cs.stanford.edu/group/roadrunner

The Cyc project:www.cyc.com

Human-like robots:www.ai.mit.edu/projects/humanoid-robotics-group

Sony robots:support.sony-europe.com/aibo

NEC “PaPeRo”:www.nec.co.jp/products/robot/en

22

Prerequisites

The prerequisites for the course are: first order logic, somealgorithms and data
structures, discrete and continuous mathematics, basic computational complexity.

DIRE WARNING:

In the lectures onmachine learningI will be talking aboutneural networks.

This means you will need to be able todifferentiateand also handlevectors and
matrices.

If you’ve forgotten how to do thisyou WILL get lost—I guarantee it!!!

23

Prerequisites

Self test:

1. Let

f(x1, . . . , xn) =
n
∑

i=1

aix
2
i

where theai are constants. Can you compute∂f/∂xj where1 ≤ j ≤ n?

2. Letf(x1, . . . , xn) be a function. Now assumexi = gi(y1, . . . , ym) for eachxi
and some collection of functionsgi. Assuming all requirements for differentia-
bility and so on are met, can you write down an expression for∂f/∂yj where
1 ≤ j ≤ m?

If the answer to either of these questions is “no” then it’s time for some revision.
(You have about three weeks notice, so I’ll assume you know it!)

24

And finally. . .

There are some important points to be made regardingcomputational complexity.

First, you might well hear the termAI-completebeing used a lot. What does it
mean?

AI-complete: only solvable if you can solve AI in its entirety.

For example: high-quality automatic translation from one language to another.

To produce a genuinely good translation ofMoby Dickfrom English to Cantonese
is likely to be AI complete.

25

And finally. . .

More practically, you will often hear me make the claim thateverything that’s at
all interesting in AI is at least NP-complete.

There are two ways to interpret this:

1. The wrong way: “It’s all a waste of time.1” OK, so it’s a partly understandable
interpretation.BUT the fact that the travelling salesman problem is intractable
does notmean there’s no such thing as a satnav. . .

2. The right way: “It’s an opportunity to design nice approximation algorithms.”
In reality, the algorithms that aregood in practiceare ones that try tooftenfind
agoodbut not necessarilyoptimalsolution, in areasonableamount of time.

1In essence, a comment on a course assessment a couple of yearsback to the effect of: “Why do you teach us this stuff if it’s all futile?”

26

Artificial Intelligence I

Dr Sean Holden

An introduction toAgents

Copyright c© Sean Holden 2002-2012.

27

Agents

There are many different definitions for the termagentwithin AI.

Allow me to introduceEVIL ROBOT.

ENVIRONMENT

Act

Sense

GLORIOUS LEADER!!!!
DR HOLDEN WILL BE OUR

MUST ENSLAVE EARTH!!!

We will use the following simple definition:an agent is any device that can sense
and act upon its environment.

28

Agents

This definition can be very widely applied: to humans, robots, pieces of software,
and so on.

We are taking quite anappliedperspective. We want tomake thingsrather than
copy humans, so to be scientific there are some issues to be addressed:

• How can we judge an agent’s performance?

• How can an agent’senvironmentaffect its design?

• Are there sensible ways in which to think about thestructureof an agent?

Recall that we are interested in devices thatact rationally, where ‘rational’ means
doing thecorrect thingundergiven circumstances.

Reading:Russell and Norvig, chapter 2.

29

Measuring performance

How can we judge an agent’s performance? Any measure of performance is likely
to beproblem-specific.

Example:For a chess playing agent, we might use its rating.

Example: For a mail-filtering agent, we might devise a measure of how well it
blocks spam, but allows interesting email to be read.

Example:For a car driving agent the measure needs considerable sophistication:
we need to take account of comfort, journey time, safetyetc.

So: the choice of a performance measure is itself worthy of careful consideration.

30

Measuring performance

We’re usually interested inexpected, long-term performance.

• Expectedperformance because usually agents are notomniscient—they don’t
infallibly know the outcome of their actions.

• It is rational for you to enter this lecture theatre even if the roof falls intoday.

An agent capable of detecting and protecting itself from a falling roof might be
moresuccessfulthan you, butnot morerational.

• Long-term performancebecause it tends to lead to better approximations to
what we’d consider rational behaviour.

• We probably don’t want our car driving agent to be outstandingly smooth and
safe for most of the time, but have episodes ofdriving through the local or-
phanage at 150 mph.

31

Environments

How can an agent’senvironmentaffect its design?Example:the environment for
a chess programis vastly different to that for anautonomous deep-space vehi-
cle. Some common attributes of an environment have a considerable influence on
agent design.

• Accessible/inaccessible:do percepts tell youeverythingyou need to know
about the world?

• Deterministic/non-deterministic:does the future dependpredictablyon the
present and your actions?

• Episodic/non-episodicis the agent run in independent episodes.

• Static/dynamic:can the world change while the agent is deciding what to do?

• Discrete/continuous:an environment is discrete if the sets of allowable per-
cepts and actions are finite.

32

Environments

All of this assumes there is only one agent.

When multiple agents are involved we need to consider:

• Whether the situation iscompetitiveor cooperative.

• Whethercommunicationrequired?

An example of multiple agents:

news.bbc.co.uk/1/hi/technology/3486335.stm

33

Basic structures for intelligent agents

Are there sensible ways in which to think about thestructureof an agent? Again,
this is likely to beproblem-specific, although perhaps to a lesser extent.

So far, an agent is based on percepts, actions and goals.

Example:Aircraft piloting agent.

Percepts:sensor information regarding height, speed, enginesetc, audio and video
inputs, and so on.

Actions:manipulation of the aircraft’s controls.

Also, perhaps talking to the passengersetc.

Goals:get to the necessary destination as quickly as possible withminimal use of
fuel, without crashingetc.

34

Programming agents

A basic agent can be thought of as working on a straightforward underlying pro-
cess:

• Gather perceptions.

• Updateworking memoryto take account of them.

• On the basis of what’s in the working memory,choose an actionto perform.

• Updatethe working memory to take account of this action.

• Do the chosen action.

Obviously, this hides a great deal of complexity.

Also, it ignores subtleties such as the fact that a percept might arrive while an
action is being chosen.

35

Programming agents

We’ll initially look at two hopelessly limited approaches,because they do suggest
a couple of important points.

Hopelessly limited approach number 1:use a table to map percept sequences to
actions. This can quickly be rejected.

• The table will behugefor any problem of interest. About35100 entries for a
chess player.

• We don’t usually know how to fill the table.

• Even if we allow table entries to belearnedit will take too long.

• The system would have noautonomy.

We can attempt to overcome these problems by allowing agentsto reason.

Autonomyis an interesting issue though...

36

Autonomy

If an agent’s behaviour depends in some manner on itsown experience of the
world via its percept sequence, we say it isautonomous.

• An agent using only built-in knowledge would seem not to be successful at AI
in any meaningful sense: its behaviour is predefined by its designer.

• On the other handsomebuilt-in knowledge seems essential, even to humans.

Not all animals are entirely autonomous.

For example:dung beetles.

37

Reflex agents

Hopelessly limited approach number 2:try extractingpertinent information and
usingrulesbased on this.

Condition-action rules:if a certainstateis observedthen perform someaction

Some points immediately present themselves regardingwhyreflex agents are un-
satisfactory:

• We can’t always decide what to do based on thecurrent percept.

• However storingall past percepts might be undesirable (for example requiring
too much memory) or just unnecessary.

• Reflex agents don’t maintain a description of thestate of their environment...

• ...however this seems necessary for any meaningful AI. (Consider automating
the task of driving.)

This is all the more important as usually percepts don’t tellyou everything about
the state.

38

Keeping track of the environment

It seems reasonable that an agent should maintain:

• A description of the current state of its environment.

• Knowledge of how the environmentchanges independently of the agent.

• Knowledge of how the agent’sactions affect its environment.

This requires us to doknowledge representationandreasoning.

39

Goal-based agents

It seems reasonable that an agent should choose a rational course of action de-
pending on itsgoal.

• If an agent has knowledge of how its actions affect the environment, then it
has a basis for choosing actions to achieve goals.

• To obtain asequenceof actions we need to be able tosearchand toplan.

This is fundamentally differentfrom a reflex agent.

For example:by changing the goal you can change the entire behaviour.

40

Goal-based agents

We now have a basic design that looks something like this:

Description of Goal

Infer

Update

Percept

Description: current environment

Description: effect of actions

Description: behaviour of environment

Update

Action/Action sequence

41

Utility-based agents

Introducing goals is still not the end of the story.

There may bemanysequences of actions that lead to a given goal, andsome may
be preferable to others.

A utility function maps a state to a number representing the desirability of that
state.

• We can trade-offconflicting goals, for example speed and safety.

• If an agent has several goals and is not certain of achieving any of them, then
it can trade-off likelihood of reaching a goal against the desirability of getting
there.

Maximising expected utilityover time forms a fundamental model for the design
of agents. However we don’t get as far as that until AI II.

42

Learning agents

It seems reasonable that an agent shouldlearn from experience.

Learner

Description of Goal

Feedback

Infer

Update

Percept

Description: current environment

Description: effect of actions

Description: behaviour of environment

Update

Action/Action sequence

Update

43

Learning agents

This requires two additions:

• The learner needs some form offeedbackon the agent’s performance. This
can come in several different forms.

• In general, we also need a means ofgenerating new behaviourin order to find
out about the world.

This in turn implies a trade-off: should the agent spend timeexploitingwhat it’s
learned so far, orexploringthe environment on the basis that it might learn some-
thing really useful?

44

What have we learned? (No pun intended...)

Thecrucial things that should be taken away from this lecture are:

• The nature of an agent depends on itsenvironmentandperformance measure.

• We’re usually interested inexpected, long-term performance.

• Autonomy requires that an agent in some way behavesdepending on its expe-
rience of the world.

• There is anatural basic structureon which agent design can be based.

• Consideration of that structure leads naturally to the basic areas covered in this
course.

Those basic areas are:knowledge representation and reasoning, search, planning
and learning. Oh, and finally, we’ve learned NOT TO MESS WITHEVIL ROBOT... he’s a VERY BAD ROBOT!

45

Artificial Intelligence I

Dr Sean Holden

Notes onproblem solving by search

Copyright c© Sean Holden 2002-2012.

46

Problem solving by search

We begin with what is perhaps the simplest collection of AI techniques: those al-
lowing anagentexisting within anenvironmentto searchfor asequence of actions
thatachieves a goal.

The algorithms can, crudely, be divided into two kinds:uninformedandinformed.

Not surprisingly, the latter are more effective and so we’lllook at those in more
detail.

Reading:Russell and Norvig, chapters 3 and 4.

47

Problem solving by search

As with any area of computer science, some degree ofabstractionis necessary
when designing AI algorithms.

Search algorithmsapply to a particularly simple class of problems—we need to
identify:

• An initial state: what is the agent’s situation to start with?

• A set of actions: these are modelled by specifying what state will result on
performing any available action from any known state.

• A goal test: we can tell whether or not the state we’re in corresponds to agoal.

Note that the goal may be described by a property rather than an explicit state or
set of states, for examplecheckmate.

48

Problem solving by search

A simple example:the 8-puzzle.

3 5

1 4 2

7 8 6

3 5

4 2

7 8 6

1

3 5

2

7 8 6

1

4

7 8

4 5 6

2 31

−→

−→

−→ · · · −→

Action

Action

Start State

Goal State

Further actions

(A good way of keeping kids quiet...)

49

Problem solving by search

Start state:a randomly-selected configuration of the numbers1 to 8 arranged on
a3× 3 square grid, with one square empty.

Goal state:the numbers in ascending order with the bottom right square empty.

Actions: left, right, up, down. We can move any square adjacent to the
empty square into the empty square. (It’s not always possible to choose from all
four actions.)

Path cost:1 per move.

The 8-puzzle is very simple. However general sliding block puzzles are a good
test case. The general problem is NP-complete. The5× 5 version has about1025

states, and a random instance is in fact quite a challenge.

50

Problem solving by basic search

EVIL ROBOT has found himself in an unfamiliar building:

ODIN

Evil Robot

Teleport

He wants theODIN (Oblivion Device of Indescribable Nastiness).

51

Problem solving by search

Start state:EVIL ROBOT is in the top left corner.

Goal state:EVIL ROBOT is in the area containing the ODIN.

Actions: left, right, up, down. We can move as long as there’s no wall in
the way. (Again, it’s not always possible to choose from all four actions.)

Path cost:1 per move. If you step on a teleport then you move to the other one
with a cost of0.

52

Problem solving by search

Problems of this kind are very simple, but a surprisingly large number of applica-
tions have appeared:

• Route-finding/tour-finding.

• Layout of VLSI systems.

• Navigation systems for robots.

• Sequencing for automatic assembly.

• Searching the internet.

• Design of proteins.

and many others...

Problems of this kind continue to form an active research area.

53

Problem solving by search

It’s worth emphasising that a lot of abstraction has taken place here:

• Can the agent know it’s current state in full?

• Can the agent know the outcome of its actions in full?

Single-state problems:the state is always known precisely, as is the effect of any
action. There is therefore a single outcome state.

Multiple-state problems:The effects of actions are known, but the state can not
reliably be inferred, or the state is known but not the effects of the actions.

Both single and multiple state problems can be handled usingthese search tech-
niques. In the latter, we must reason about the set of states that we could be in:

• In this case we have an initialsetof states.

• Each action leads to a furthersetof states.

• The goal is a set of statesall of which are valid goals.

54

Problem solving by search

Contingency problems

In some situations it is necessary to perform sensingwhile the actions are being
carried out in order to guarantee reaching a goal.

(It’s good to keep your eyes open while you cross the road!)

This kind of problem requiresplanningand will be dealt with later.

55

Problem solving by search

Sometimes it is actively beneficial to act and see what happens, rather than to try
to consider all possibilities in advance in order to obtain aperfect plan.

Exploration problems

Sometimes you haveno knowledge of the effect that your actions have on the
environment.

Babies in particular have this experience.

This means you need to experiment to find out what happens whenyou act.

This kind of problem requiresreinforcement learningfor a solution. We will not
cover reinforcement learning in this course. (Although it is in AI II.)

56

Search trees

The basic idea should be familiar from yourAlgorithms Icourse, and also from
Foundations of Computer Science.

• We build atreewith the start state as root node.

• A node isexpandedby applying actions to it to generate new states.

• A path is asequence of actionsthat lead from state to state.

• The aim is to find agoal statewithin the tree.

• A solutionis a path beginning with the initial state and ending in a goalstate.

We may also be interested in thepath costas some solutions might be better than
others.

Path cost will be denoted byp.

57

2 58

6

7 3 4

1 7

2 58

6

3 4

1

2 58

6

7 3 4

1

5

6

3

18

7 4

2

7

3

2 58

6

4

1 7

2 58

6

3 4

1

6

2 58

7 3 4

1

6

6

6

2

1

3

2 5

6

7 3 4

18

Start State

2 58

7 4

1

2 58

7 3 4

1

58

7 3 4

1

2 58

7 3 4

6

Further states

Up

Down

Left

Down

Left

Up

Left

Down

Right

Up

Left

58

Search trees versus search graphs

We need to make an important distinction betweensearch treesandsearch graphs.
For the time being we assume that it’s atree as opposed to agraph that we’re
dealing with.

as opposed to

(There is a good reason for this, which we’ll get to in a moment...)

In a treeonly one pathcan lead to a given state. In agraphastatecan be reached
via possiblymultiple paths.

59

Search trees

Basic approach:

• Test the root to see if it is a goal.

• If not thenexpandit by generating all possible successor states according to
the available actions.

• If there is only one outcome state then move to it. Otherwise choose one of
the outcomes and expand it.

• The way in which this choice is made defines asearch strategy.

• Repeat until you find a goal.

The collection of states generated but not yet expanded is called the fringe or
frontier and is generally stored as aqueue.

60

The basic tree-search algorithm

In pseudo-code, the algorithm looks like this:

function treeSearch {
fringe = queue containing only the start state;
while() {
if (empty(fringe))
return fail;

node = head(fringe);
if (goal(node))
return solution(node);

fringe = insert(expand(node), fringe);
}

}

Thesearch strategyis set by using apriority queue.

The definition ofpriority then sets the way in which the tree is searched.

61

The basic tree-search algorithm

Not yet investigated

In the fringe, but not expanded

Expanded

62

The basic tree-search algorithm

We can immediately define some familiar tree search algorithms:

• New nodes are added to thehead of the queue. This isdepth-first search.

• New nodes are added to thetail of the queue. This isbreadth-first search.

We will not dwell on these, as they are bothcompletely hopelessin practice.

Why is that?

63

The performance of search techniques

How might we judge the performance of a search technique?

We are interested in:

• Whether a solution is found.

• Whether the solution found is a good one in terms of path cost.

• The cost of the search in terms of time and memory.

So
the total cost= path cost+ search cost

If a problem is highly complex it may be worth settling for asub-optimal solution
obtained in ashort time.

We are also interested in:

Completeness:does the strategyguaranteea solution is found?

Optimality: does the strategy guarantee that thebestsolution is found?

Once we start to consider these, things get a lot more interesting...

64

Breadth-first search

Why is breadth-first search hopeless?

• The procedure iscomplete: it is guaranteed to find a solution if one exists.

• The procedure isoptimalif the path cost is a non-decreasing function of node-
depth.

• The procedure hasexponential complexity for both memory and time. A branch-
ing factorb requires

1 + b + b2 + b3 + · · · + bd =
bd+1 − 1

b− 1

nodes if the shortest path has depthd.

In practice it is thememoryrequirement that is problematic.

65

Depth-first search

With depth-first search: for a given branching factorb and depthd the memory
requirement isO(bd).

· · · · · ·

· · ·

· · ·

· · ·

· · ·

−→ −→

This is because we need to storenodes on the current pathand the other unex-
panded nodes.

The time complexity isO(bd). Despite this, if there aremany solutionswe stand a
chance of finding one quickly, compared with breadth-first search.

66

Backtracking search

We can sometimes improve on depth-first search by usingbacktracking search.

• If each node knows how togenerate the next possibilitythen memory is im-
proved toO(d).

• Even better, if we can work bymaking modificationsto astate descriptionthen
the memory requirement is:

– One full state description, plus...

– ... O(d) actions (in order to be able toundoactions).

How does this work?

67

2 58

7 3 4

1

2 58

6

3 4

17

6

Trying: up, down, left, right:

No backtracking

+ [up, up]

we can undo this to obtain

+ [up]

and applydown to get

+ [up, down]

and so on...

up

2 58

6

7 3 4

1

2 5

6

7 3 4

18

2 58

6

3 4

17

up
down

left

With backtracking

If we have:

2 5

6

7 3 4

18

2 58

7 3 4

1

2 58

6

3 4

17

6

68

Depth-first, depth-limited, and iterative deepening search

Depth-first search is clearly dangerous if the tree isvery deep or infinite.

Depth-limited searchsimply imposes a limit on depth. For example if we’re
searching for a route on a map withn cities we know that the maximum depth
will be n. However:

• We still risk finding a suboptimal solution.

• The procedure becomes problematic if we impose a depth limitthat is too
small.

Usually we do not know a reasonable depth limit in advance.

Iterative deepening searchrepeatedly runs depth-limited search for increasing
depth limits0, 1, 2, . . .

69

Iterative deepening search

Iterative deepening search:

• Essentially combines the advantages of depth-first and breadth-first search.

• It is complete and optimal.

• It has a memory requirement similar to that of depth-first search.

Importantly, the fact that you’re repeating a search process several times is less
significant than it might seem.

It’s still not a good practical method, but it does point us in the direction of one...

70

Iterative deepening search

Iterative deepening depends on the fact thatthe vast majority of the nodes in a tree
are in the bottom level:

• In a tree with branching factorb and depthd the number of nodes is

f1(b, d) = 1 + b + b2 + b3 + · · · + bd =
bd+1 − 1

b− 1

• A complete iterative deepening search of this tree generates the final layer
once, the penultimate layer twice, and so on down to the root,which is gener-
atedd + 1 times. The total number of nodes generated is therefore

f2(b, d) = (d + 1) + db + (d− 1)b2 + (d− 2)b3 + · · · + 2bd−1 + bd

71

Iterative deepening search

Example:

• For b = 20 andd = 5 we have

f1(b, d) = 3, 368, 421

f2(b, d) = 3, 545, 706

which represents a5 percent increase with iterative deepening search.

• The overhead getssmallerasb increases. However the time complexity is still
exponential.

72

Iterative deepening search

Further insight can be gained if we note that

f2(b, d) = f1(b, 0) + f1(b, 1) + · · · + f1(b, d)

as we generate the root, then the tree to depth1, and so on. Thus

f2(b, d) =
d
∑

i=0

f1(b, i) =
d
∑

i=0

bi+1 − 1

b− 1

=
1

b− 1

d
∑

i=0

bi+1 − 1 =
1

b− 1

[(

d
∑

i=0

bi+1

)

− (d + 1)

]

Noting that

bf1(b, d) = b + b2 + · · · + bd+1 =
d
∑

i=0

bi+1

we have

f2(b, d) =
b

b− 1
f1(b, d)−

d + 1

b− 1
sof2(b, d) is about equal tof1(b, d) for largeb.

73

Bidirectional search

In some problems we can simultaneously search:

forward from thestart state

backwardfrom thegoalstate

until the searches meet.

This is potentially a very good idea:

• If the search methods have complexityO(bd) then...

• ...we are converting this toO(2bd/2) = O(bd/2).

(Here, we are assuming the branching factor isb in both directions.)

74

Bidirectional search - beware!

• It is not always possible to generate efficientlypredecessorsas well as succes-
sors.

• If we only have thedescriptionof a goal, not anexplicit goal, then generating
predecessors can be hard. (For example, consider the concept of checkmate.)

• We need a way of checking whether or not a node appears in theother search...

• ... and the figure ofO(bd/2) hides the assumption that we can doconstant time
checking for intersection of the frontiers. (This may be possible using a hash
table).

• We need to decide what kind of search to use in each half. For example, would
depth-first searchbe sensible? Possibly not...

• ...to guarantee that the searches meet, we need to store all the nodes of at least
one of the searches. Consequently the memory requirement isO(bd/2).

75

Uniform-cost search

Breadth-first search finds theshallowestsolution, but this is not necessarily the
bestone.

Uniform-cost searchis a variant. It uses thepath costp(n) as the priority for the
priority queue.

Thus, the paths that are apparently best are explored first, and the best solution
will always be found if

∀n (∀n′ ∈ successors(n) . p(n′) ≥ p(n))

Although this is still not a good practical algorithm, it does point the way forward
to informed search...

76

Repeated states

With many problems it is easy to waste time by expanding nodesthat have ap-
peared elsewhere in the tree. For example:

.

.

.

.

.

.
.

.

.
.

.

.
.

.

.

A

B

C

D

A

B B

C C CC

The sliding blocks puzzle for example suffers this way.

77

Repeated states

For example, in a problem such as finding a route in a map, whereall of the
operators arereversible, this is inevitable.

There are three basic ways to avoid this, depending on how youtrade off effec-
tiveness against overhead.

• Never return tothe state you came from.

• Avoid cycles: never proceed toa state identical to one of your ancestors.

• Do not expandany state that has previously appeared.

Graph searchis a standard approach to dealing with the situation. It usesthe last
of these possibilities.

78

Graph search

In pseudocode:

function graphSearch() {
closed = {};
fringe = queue containing only the start state;
while () {

if (empty(fringe))
return fail;

node = head(fringe);
if goal(node)
return solution(node);

if (node not a member of closed) {
closed = closed + node;
fringe = insert(expand(node), fringe); // See note...

}
}

}

Note: if node is in closed then it must already have been expanded.

79

Graph search

There are several points to note regarding graph search:

1. Theclosed listcontains all the expanded nodes.

2. The closed list can be implemented using a hash table.

3. Both worst case time and space are now proportional to the size of the state
space.

4. Memory:depth first and iterative deepening search are no longer linear space
as we need to store the closed list.

5. Optimality: when a repeat is found we are discarding the new possibility even
if it is better than the first one.

• This never happens for uniform-cost or breadth-first searchwith constant
step costs, so these remain optimal.

• Iterative deepening search needs to check which solution isbetter and if
necessary modify path costs and depths for descendants of the repeated
state.

80

Search trees

Everything we’ve seen so far is an example ofuninformedor blind search—we
only distinguish goal states from non-goal states.

(Uniform cost search is a slight anomaly as it uses the path cost as a guide.)

To perform well in practice we need to employinformedor heuristicsearch.

This involves exploiting knowledge of thedistance between the current state and
a goal.

81

Problem solving by informed search

Basic search methods make limited use of anyproblem-specific knowledgewe
might have.

• We have already seen the concept ofpath costp(n)

p(n) = cost of path (sequence of actions) from the start state ton

• We can now introduce anevaluation function. This is a function that attempts
to measure thedesirability of each node.

The evaluation function will clearly not be perfect. (If it is, there is no need to
search.)

Best-first searchsimply expands nodes using the ordering given by the evaluation
function.

82

Greedy search

We’ve already seenpath costused for this purpose.

• This is misguided as path cost is not in generaldirectedin any sensetoward
the goal.

• A heuristic function, usually denotedh(n) is one thatestimatesthe cost of the
best path from any noden to a goal.

• If n is a goal thenh(n) = 0.

Using a heuristic function along with best-first search gives us thegreedy search
algorithm.

83

Example: route-finding

Example:for route finding a reasonable heuristic function is

h(n) = straight line distance fromn to the nearest goal

n3

Goal

n1 n21 1

h(n3) = 1

h(n1) =
√
5

h(n2) =
√
2

n3

Goal

n1 n2

Accuracy here obviously depends on what the roads are reallylike.

84

Example: route-finding

Greedy search suffers from some problems:

• Its time complexity isO(bd).

• Its space-complexity isO(bd).

• It is not optimal or complete.

BUT: greedy searchcanbe effective, provided we have a goodh(n).

Wouldn’t it be nice if we could improve it to make it optimal and complete?

85

A⋆ search

Well, we can.

A⋆ searchcombines the good points of:

• Greedy search—by making use ofh(n).

• Uniform-cost search—by being optimal and complete.

It does this in a very simple manner: it uses path costp(n) and also the heuristic
functionh(n) by forming

f(n) = p(n) + h(n)

where
p(n) = cost of pathto n

and
h(n) = estimated cost of best pathfromn

So:f(n) is the estimated cost of a paththroughn.

86

A⋆ search

A⋆ search:

• A best-first search usingf(n).

• It is both complete and optimal...

• ...provided thath obeys some simple conditions.

Definition: an admissible heuristich(n) is one thatnever overestimatesthe cost
of the best path fromn to a goal. So ifh′(n) denotes theactualdistance fromn to
the goal we have

∀n.h(n) ≤ h′(n).

If h(n) is admissible thentree-searchA⋆ is optimal.

87

A⋆ tree-search is optimal for admissibleh(n)

To see thatA⋆ search is optimal we reason as follows.

Let Goalopt be an optimal goal state with

f(Goalopt) = p(Goalopt) = fopt

(becauseh(Goalopt) = 0). Let Goal2 be a suboptimal goal state with

f(Goal2) = p(Goal2) = f2 > fopt

We need to demonstrate that the search can never selectGoal2.

88

A⋆ tree-search is optimal for admissibleh(n)

Goalopt

n

Goal2

At some point Goal2 is in the fringe.

Can it be selected beforen?

89

A⋆ tree-search is optimal for admissibleh(n)

Let n be a leaf node in the fringe on an optimal path toGoalopt. So

fopt≥ p(n) + h(n) = f(n)

becauseh is admissible.

Now sayGoal2 is chosen for expansionbeforen. This means that

f(n) ≥ f2

so we’ve established that

fopt≥ f2 = p(Goal2).

But this means thatGoalopt is not optimal: a contradiction.

90

A⋆ graph search

Of course, we will generally be dealing withgraph search.

Unfortunately the proof breaks in this case.

• Graph search candiscard an optimalroute if that route is not the first one
generated.

• We could keeponly the least expensive path. This means updating, which is
extra work, not to mention messy, but sufficient to insure optimality.

• Alternatively, we can impose a further condition onh(n) which forces the best
path to a repeated state to be generated first.

The required condition is calledmonotonicity. As

monotonicity−→ admissibility

this is an important property.

91

Monotonicity

Assumeh is admissible. Remember thatf(n) = p(n) + h(n) so if n′ follows n

p(n′) ≥ p(n)

and we expect thath(n′) ≤ h(n) although this does not have to be the case.

n

n′

h(n) = 4

p(n′) = 6

h(n′) = 1

p(n) = 5

Heref(n) = 9 andf(n′) = 7 sof(n′) < f(n).

92

Monotonicity

Monotonicity:

• If it is always the case thatf(n′) ≥ f(n) thenh(n) is calledmonotonic.

• h(n) is monotonic if and only if it obeys thetriangle inequality.

h(n) ≤ cost(n
a−→ n′) + h(n′)

If h(n) is not monotonic we can make a simple alteration and use

f(n′) = max{f(n), p(n′) + h(n′)}
This is called thepathmaxequation.

93

The pathmax equation

Why does the pathmax equation make sense?

n

n′

h(n) = 4

p(n′) = 6

h(n′) = 1

p(n) = 5

The fact thatf(n) = 9 tells us the cost of a path throughn is at least9 (because
h(n) is admissible).

But n′ is on a path throughn. So to say thatf(n′) = 7 makes no sense.

94

A⋆ graph search is optimal for monotonic heuristics

A⋆ graph search is optimal for monotonic heuristics.

The crucial fact from which optimality follows is that ifh(n) is monotonic then
the values off(n) along any path are non-decreasing.

Assume we move fromn to n′ using actiona. Then

∀a . p(n′) = p(n) + cost(n
a−→ n′)

and using the triangle inequality

h(n) ≤ cost(n
a−→ n′) + h(n′) (1)

Thus
f(n′) = p(n′) + h(n′)

= p(n) + cost(n
a−→ n′) + h(n′)

≥ p(n) + h(n)

= f(n)

where the inequality follows from equation 1.

95

A⋆ graph search is optimal for monotonic heuristics

We therefore have the following situation:

f(n)
f(n′′) < f(n′) has been dealt with.

f(n′)

You can’t deal withn′ until everything with

Consequently everything withf(n′′) < fopt gets explored. Then one or more
things withfopt get found (not necessarily all goals).

96

A⋆ search is complete

A⋆ search is complete provided:

1. The graph has finite branching factor.

2. There is a finite, positive constantc such that each operator has cost at leastc.

Why is this? The search expands nodes according to increasing f(n). So: the
only way it can fail to find a goal is if there are infinitely manynodes withf(n) <
f(Goal).

There are two ways this can happen:

1. There is a node with an infinite number of descendants.

2. There is a path with an infinite number of nodes but a finite path cost.

97

Complexity

• A⋆ search has a further desirable property: it isoptimally efficient.

• This means that no other optimal algorithm that works by constructing paths
from the root can guarantee to examine fewer nodes.

• BUT: despite its good properties we’re not done yet...

• ...A⋆ search unfortunately still has exponential time complexity in most cases
unlessh(n) satisfies a very stringent condition that is generally unrealistic:

|h(n)− h′(n)| ≤ O(log h′(n))

whereh′(n) denotes thereal cost fromn to the goal.

• As A⋆ search also stores all the nodes it generates, once again it is generally
memory that becomes a problem before time.

98

IDA ⋆ - iterative deepeningA⋆ search

How might we improve the way in whichA⋆ search uses memory?

• Iterative deepening search used depth-first search with a limit on depth that is
gradually increased.

• IDA⋆ does the same thingwith a limit onf cost.

ActionSequence ida() {
root = root node for problem;
float fLimit = f(root);
while() {

(sequence, fLimit) = contour(root,fLimit,emptySequence);
if (sequence != emptySequence)
return sequence;

if (fLimit == infinity)
return emptySequence;

}
}

99

IDA ⋆ - iterative deepeningA⋆ search

The functioncontour searches from a given node,as far as the specifiedf limit.
It returns either a solution, or thenext biggestvalue off to try.

(ActionSequence,float) contour(Node node, float fLimit, ActionSequence s)
float nextF = infinity;
if (f(node) > fLimit)

return (emptySequence,f(node));
ActionSequence s’ = addToSequence(node,s);
if (goalTest(node))

return (s’,fLimit);
for (each successor n’ of node) {

(sequence,newF) = contour(n’,fLimit,s’);
if (sequence != emptySequence)

return (sequence,fLimit);
nextF = minimum(nextF,newF);

}
return (emptySequence,nextF);

}

100

IDA ⋆ - iterative deepeningA⋆ search

This is a little tricky to unravel, so here is an example:

3

7 4 5

Initially, the algorithm looks ahead and finds thesmallestf cost that isgreater
than its currentf cost limit. The new limit is4.

101

IDA ⋆ - iterative deepeningA⋆ search

It now does the same again:

3

7 4 5

5 9 10

Anything with f cost at mostequal to the current limit gets explored, and the
algorithm keeps track of thesmallestf cost that isgreater thanits current limit.
The new limit is5.

102

IDA ⋆ - iterative deepeningA⋆ search

And again:

3

7 4 5

5 9 10 19 12 7

8 12 7

The new limit is7, so at the next iteration the three arrowed nodes will be explored.

103

IDA ⋆ - iterative deepeningA⋆ search

Properties of IDA⋆:

• It is complete and optimal under the same conditions asA⋆.

• It is often good if we have step costs equal to1.

• It does not require us to maintain a sorted queue of nodes.

• It only requiresspace proportional to the longest path.

• The time taken depends on the number of valuesh can take.

If h takes enough values to be problematic we can increasef by a fixedǫ at each
stage, guaranteeing a solution at mostǫ worse than the optimum.

104

Recursive best-first search (RBFS)

Another method by which we can attempt to overcome memory limitations is the
Recursive best-first search (RBFS).

Idea: try to do a best-first search, but only uselinear spaceby doing a depth-first
search with a few modifications:

1. We remember thef(n′) for the best alternative noden′ we’ve seen so far on
the way to the noden we’re currently considering.

2. If n hasf(n) > f(n′):

• We go back and explore the best alternative...

• ...and as we retrace our steps we replace thef cost of every node we’ve
seen in the current path withf(n).

The replacement off values as we retrace our steps provides a means of remem-
bering how good a discarded path might be, so that we can easily return to it later.

105

Recursive best-first search (RBFS)

Note: for simplicity a parameter for the path has been omitted.

function RBFS(Node n, Float fLimit) {
if (goaltest(n))

return n;
if (n has no successors)

return (fail, infinity);
for (each successor n’ of n)

f(n’) = maximum(f(n’), f(n));
while() {

best = successor of n that has the smallest f(n’);
if (f(best) > fLimit)
return (fail, f(best));

nextBest = second smallest f(n’) value for successors of n;
(result, f’) = RBFS(best, minimum(fLimit, nextBest));
f(best) = f’;
if (result != fail)
return result;

}
}

IMPORTANT:f(best) is modifiedwhenRBFS produces a result.

106

Recursive best-first search (RBFS): an example

This function is called usingRBFS(startState, infinity) to begin the
process.

Function call number1:

3

7 4 5best1

fLimit 1 =∞

nextBest1 = 5

Now perform the recursive function call(result2, f ′) = RBFS(best1, 5)

sof(best1) takes the returned valuef ′

107

Recursive best-first search (RBFS): an example

Function call number2:

3

7 4 5best1
nextBest1 = 5

fLimit 2 = 5
fLimit 1 =∞

5 9 10
best2

nextBest2 = 9

Now perform the recursive function call(result3, f ′) = RBFS(best2, 5)

sof(best2) takes the returned valuef ′

108

Recursive best-first search (RBFS): an example

Function call number3:

3

7 4 5best1
nextBest1 = 5

fLimit 2 = 5
fLimit 1 =∞

5 9 10
best2

11 12 10

best3

5 replaced by10
nextBest2 = 9

fLimit 3 = 5

nextBest3 = 11

Now f(best3) > fLimit 3 so the function call returns(fail, 10) into (result3, f ′) and
f(best2) = 10.

109

Recursive best-first search (RBFS): an example

The while loop for function call2 now repeats:

3

7 4 5best1
nextBest1 = 5

fLimit 2 = 5
fLimit 1 =∞

5 9 10

11 12 10

5 replaced by10

best2

4 replaced by9

Now f(best2) > fLimit 2 so the function call returns(fail, 9) into (result2, f ′) and
f(best1) = 9.

110

Recursive best-first search (RBFS): an example

The while loop for function call1 now repeats:

3

7 4 5

fLimit 1 =∞

5 9 10

11 12 10

5 replaced by10

4 replaced by9

best1nextBest1 = 7

We do a further function call to expand the new best node, and so on...

111

Recursive best-first search (RBFS)

Some nice properties:

• If h is admissible then RBFS is optimal.

• Memory requirement isO(bd)

• Generally more efficient than IDA⋆.

And some less nice ones:

• Time complexity is hard to analyse, but can be exponential.

• Can spend a lot of timere-generating nodes.

112

Other methods for getting around the memory problem

To some extent IDA⋆ and RBFS throw the baby out with the bathwater.

• They limit memory too harshly, so...

• ...we can try to useall available memory.

MA ⋆ and SMA⋆ will not be covered in this course...

113

Local search

Sometimes, it’s only thegoal that we’re interested in. Thepathneeded to get there
is irrelevant.

• For example: VLSI layout, factory design, vehicle routing,automatic pro-
gramming...

• We are now simply searching for a node that is in some sensethe best.

• This is also known asoptimisation.

This leads to the remarkably simple concept oflocal search.

114

Local search

Instead of trying to find a path from start state to goal, we explore thelocal area
of the graph, meaning those nodes one edge away from the one we’re at.

f(n) = 29

f(n) = 1

f(n) = 24

f(n) = 52

f(n) = 24

We assume that we have a functionf(n) such thatf(n′) > f(n) indicatesn′ is
preferable ton.

115

Then-queens problem

You may be familiar with then-queens problem.

Find an arrangement ofn queens on ann by n board such that no queen is attack-
ing another.

In the Prolog course you may have been tempted to generate permutations of row
numbers and test for attacks.

This is ahopeless strategyfor largen. (Imaginen ≃ 1, 000, 000.)

116

Then-queens problem

We might however consider the following:

• A state (node)n is a permutation of{1, . . . , n}, denoting the rows that the
queens appear on.

• We move from one node to another by moving asingle queento anyalternative
row.

• We definef(n) to be the number of pairs of queens attacking one-another in
the new position2. (Regardless of whether or not the attack is direct.)

2Note that we actually want tominimizef here. This is equivalent to maximizing−f , and I will generally use whichever seems more appropriate.

117

Then-queens problem

Here, n = {4, 3, ?, 8, 6, 2, 4, 1} and thef values for the undecided queen are
shown.

7

5

7

5

8

5

7

5

As we can choose which queen to move, each node in fact has56 neighbours in
the graph.

118

Hill-climbing search

Hill-climbing searchis remarkably simple:

Generate a start state n.
while () {
Generate the N neighbours {n_1,...,n_N} of n;
if (max(f(n_i)) <= f(n)) return n;
n = n_i maximizing f(n_i);

}

In fact, that looks so simple that it’s amazing the algorithmis at all useful.

In this version we stop when we get to a node with no better neighbour. We might
alternatively allowsideways movesby changing the stopping condition:

if (max(f(n_i)) < f(n)) return n;

Why would we consider doing this?

119

Hill-climbing search: the reality

In reality, nature has a number of ways of shapingf to complicate the search
process.

Global maximum Local maxima

Plateau

Shoulder

f(n)

n

Sidewaysmoves allow us to move acrossplateausandshoulders.

However, should we ever find alocal maximumthen we’ll return it: we won’t
keep searching to find aglobal maximum.

120

Hill-climbing search: the reality

Of course, the fact that we’re dealing with ageneral graphmeans we need to think
of something like the preceding figure, but in avery large number of dimensions,
and this makes the problemmuch harder.

There is a body of techniques for trying to overcome such problems. For example:

• Stochastic hill-climbing:Choose a neighbour at random, perhaps with a prob-
ability depending on itsf value. For example: letN(n) denote the neighbours
of n. Define

N+(n) = {n′ ∈ N(n)|f(n′) ≥ f(n)}
N−(n) = {n′ ∈ N(n)|f(n′) < f(n)}.

Then

Pr(n′) =

{

0 if n′ ∈ N−(n)
1
Z
(f(n′)− f(n)) otherwise.

121

Hill-climbing search: the reality

• First choice:Generate neighbours at random. Select the first one that is better
than the current one. (Particularly good if nodes havemany neighbours.)

• Random restarts:Run a procedurek times with a limit on the time allowed for
each run.

Note: generating a start state at random may itself not be straightforward.

• Simulated annealing:Similar to stochastic hill-climbing, but start with lots of
random variation andreduce it over time.

Note: in some cases this isprovablyan effective procedure, although the time
taken may be excessive if we want the proof to hold.

• Beam search:Maintaink nodes at any given time. At each search step, find
the successors of each, and retain the bestk from all the successors.

Note: this isnot the same as random restarts.

122

Gradient ascent and related methods

For some problems3—we do not have a search graph, but acontinuous search
space.

0 1 2 3 4 5 6
−30

−20

−10

0

10

20

30

x

f
(x

)

Typically, we have a functionf(x) : Rn → R and we want to find

xopt = argmax
x

f(x)

3For the purposes of this course, thetraining of neural networksis a notable example.

123

Gradient ascent and related methods

In a single dimension we can clearly try to solve
df(x)

dx
= 0

to find thestationary points, and use
d2f(x)

dx2

to find a globalmaximum. In multiple dimensionsthe equivalent is to solve

∇f(x) = ∂f(x)

∂x
= 0

where
∂f(x)

∂x
=
[

∂f(x)
∂x1

∂f(x)
∂x2
· · · ∂f(x)

∂xn

]

.

and the equivalent of the second derivative is theHessianmatrix

H =

∂f2(x)

∂x21

∂f2(x)
∂x1∂x2

· · · ∂f2(x)
∂x1∂xn

∂f2(x)
∂x2∂x1

∂f2(x)

∂x22
· · · ∂f2(x)

∂x2∂xn
...

∂f2(x)
∂xn∂x1

∂f2(x)
∂xn∂x2

· · · ∂f2(x)

∂x2n

.

124

Gradient ascent and related methods

However this approach is usuallynot analytically tractableregardless of dimen-
sionality.

The simplest way around this is to employgradient ascent:

• Start with a randomly chosen pointx0.

• Using a smallstep sizeǫ, iterate using the equation

xi+1 = xi + ǫ∇f(xi).

This can be understood as follows:

• At the current pointxi the gradient∇f(xi) tells us thedirectionandmagnitude
of the slope atxi.

• Adding ǫ∇f(xi) therefore moves us asmall distance upward.

This is perhaps more easily seen graphically. . .

125

Gradient ascent and related methods

Here we have a simpleparabolic surface:

−50

0

50

−50

0

50
−6000

−4000

−2000

0

2000

x1
x2

f
(x

)

x1

x
2

ǫ = 0.1

−50 0 50
−50

0

50

With ǫ = 0.1 the procedure is clearly effective at finding the maximum.

Note however thatthe steps are small, and in a more realistic problemit might
take some time. . .

126

Gradient ascent and related methods

Simply increasing the step sizeǫ can lead to a different problem:

x1

x
2

ǫ = 1.5

−50 0 50
−50

0

50

x1

x
2

ǫ = 1.9

−50 0 50
−50

0

50

x1

x
2

ǫ = 2.0

−50 0 50
−50

0

50

x1

x
2

ǫ = 2.25

−50 0 50
−50

0

50

We can easily jump too far. . .

127

Gradient ascent and related methods

There is a large collection of more sophisticated methods. For example:

• Line search:increaseǫ until f increasesand minimise in the resulting interval.
Then choose a new direction to move in.Conjugate gradients, theFletcher-
ReevesandPolak-Ribieremethods etc.

• UseH to exploit knowledge of the local shape off . For example theNewton-
RaphsonandBroyden-Fletcher-Goldfarb-Shanno (BFGS)methods etc.

128

Artificial Intelligence I

Dr Sean Holden

Notes ongames (adversarial search)

Copyright c© Sean Holden 2002-2012.

129

Solving problems by search: playing games

How might an agent act whenthe outcomes of its actions are not knownbecause
anadversary is trying to hinder it?

• This is essentially a more realistic kind of search problem because we do not
know the exact outcome of an action.

• This is a common situation whenplaying games: in chess, draughts, and so on
an opponentrespondsto our moves.

• We don’t know what their response will be, and so the outcome of our moves
is not clear.

Game playing has been of interest in AI because it provides anidealisationof a
world in which two agents act toreduceeach other’s well-being.

130

Playing games: search against an adversary

Despite the fact that games are an idealisation, game playing can be an excellent
source of hard problems. For instance with chess:

• The average branching factor is roughly35.

• Games can reach50 moves per player.

• So a rough calculation gives the search tree35100 nodes.

• Even if only different, legal positions are considered it’sabout1040.

So: in additionto the uncertainty due to the opponent:

• We can’t make a complete search to find the best move...

• ... so we have to act even though we’re not sure about the best thing to do.

131

Playing games: search against an adversary

And chess isn’t even very hard:

• Go is muchharder than chess.

• The branching factor is about360.

Until very recently it has resisted all attempts to produce agood AI player.

See:
senseis.xmp.net/?MoGo

and others.

132

Playing games: search against an adversary

It seems that games are a step closer to the complexities inherent in the world
around us than are the standard search problems considered so far.

The study of games has led to some of the most celebrated applications and tech-
niques in AI.

We now look at:

• How game-playing can be modelled assearch.

• Theminimax algorithmfor game-playing.

• Some problems inherent in the use of minimax.

• The concept ofα− β pruning.

Reading:Russell and Norvig chapter 6.

133

Perfect decisions in a two-person game

Say we have two players. Traditionally, they are calledMax andMin for reasons
that will become clear.

• We’ll usenoughts and crossesas an initial example.

• Max moves first.

• The players alternate until the game ends.

• At the end of the game, prizes are awarded. (Or punishments administered—
EVIL ROBOT is starting up his favourite chainsaw...)

This is exactly the same game format as chess, Go, draughts and so on.

134

Perfect decisions in a two-person game

Games like this can be modelled as search problems as follows:

• There is aninitial state.

Max to move

• There is a set ofoperators. Here, Max can place a cross in any empty square,
or Min a nought.

• There is aterminal test. Here, the game ends when three noughts or three
crosses are in a row, or there are no unused spaces.

• There is autility or payoff function. This tells us, numerically, what the out-
come of the game is.

This is enough to model the entire game.

135

Perfect decisions in a two-person game

We canconstruct a treeto represent a game. From the initial state Max can make
nine possible moves:

. . .

Then it’s Min’s turn...

136

Perfect decisions in a two-person game

For each of Max’s opening moves Min has eight replies:

. . .

. . .

And so on...

This can be continued to representall possibilities for the game.

137

Perfect decisions in a two-person game

. . .

. . .

+1
0

−1

At the leaves a player has won or there are no spaces. Leaves are labelledusing
the utility function.

138

Perfect decisions in a two-person game

How can Max use this tree to decide on a move? Consider a much simpler tree:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

Labels on the leaves denote utility.

High values are preferred by Max.

Low values are preferred by Min.

If Max is rational he will play to reach a position with thebiggest utility possible

But if Min is rational she will play tominimisethe utility available to Max.

139

The minimax algorithm

There are two moves: Max then Min. Game theorists would call this one move,
or two ply deep.

The minimax algorithmallows us to infer the best move that the current player
can make, given the utility function, by working backward from the leaves.

4 5 20 20 15 7 4 10 9 5 8 52

2

6

6

1

1

4

4

As Min plays the last move, sheminimisesthe utility available to Max.

140

The minimax algorithm

Min takes the final move:

• If Min is in game position1, her best choice is move3. So from Max’s point
of view this node has a utility of2.

• If Min is in game position2, her best choice is move3. So from Max’s point
of view this node has a utility of6.

• If Min is in game position3, her best choice is move1. So from Max’s point
of view this node has a utility of1.

• If Min is in game position4, her best choice is move4. So from Max’s point
of view this node has a utility of4.

141

The minimax algorithm

Moving one further step up the tree:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

1 42 6

6

We can see that Max’s best opening move is move2, as this leads to the node with
highest utility.

142

The minimax algorithm

In general:

• Generate the complete tree and label the leaves according tothe utility func-
tion.

• Working from the leaves of the tree upward, label the nodes depending on
whether Max or Min is to move.

• If Min is to move label the current node with theminimumutility of any de-
scendant.

• If Max is to move label the current node with themaximumutility of any
descendant.

If the game isp ply and at each point there areq available moves then this process
has (surprise, surprise)O(qp) time complexity and space complexity linear inp
andq.

143

Making imperfect decisions

We need to avoid searching all the way to the end of the tree.So:

• We generate only part of the tree: instead of testing whethera node is a leaf
we introduce acut-off test telling us when to stop.

• Instead of a utility function we introduce anevaluation functionfor the evalu-
ation of positions for an incomplete game.

The evaluation function attempts to measure the expected utility of the current
game position.

144

Making imperfect decisions

How can this be justified?

• This is a strategy that humans clearly sometimes make use of.

• For example, when using the concept ofmaterial valuein chess.

• The effectiveness of the evaluation function iscritical...

• ... but it must be computable in a reasonable time.

• (In principle it could just be done using minimax.)

The importance of the evaluation function can not be understated—it is probably
the most important part of the design.

145

The evaluation function

Designing a good evaluation function can be extremely tricky:

• Let’s say we want to design one for chess by giving each piece its material
value: pawn =1, knight/bishop =3, rook =5 and so on.

• Define the evaluation of a position to be the difference between the material
value of black’s and white’s pieces

eval(position) =
∑

black’s piecespi

value ofpi −
∑

white’s piecesqi

value ofqi

This seems like a reasonable first attempt. Why might it go wrong?

146

The evaluation function

Consider what happens at the start of a game:

• Until the first capture the evaluation function gives0, so in fact we have acat-
egorycontaining many different game positions with equal estimated utility.

• For example, all positions where white is one pawn ahead.

• The evaluation function for such a category should perhaps represent the prob-
ability that a position chosen at random from it leads to a win.

So in fact this seems highly naive...

147

The evaluation function

Ideally, we should considerindividual positions.

If on the basis of past experience a position has50% chance of winning,10%
chance of losing and40%chance of reaching a draw, we might give it an evalua-
tion of

eval(position) = (0.5× 1) + (0.1×−1) + (0.4× 0) = 0.4.

Extending this to the evaluation of categories, we should then weight the positions
in the category according to their likelihood of occurring.

Of course, wedon’t knowwhat any of these likelihoods are...

148

The evaluation function

Using material value can be thought of as giving us aweighted linear evaluation
function

eval(position) =
n
∑

i=1

wifi

where thewi are weightsand thefi representfeaturesof the position. In this
example

fi = value of theith piece

wi = number ofith pieces on the board

where black and white pieces are regarded as different and the fi are positive for
one and negative for the other.

149

The evaluation function

Evaluation functions of this type are very common in game playing.

There is no systematic method for their design.

Weights can be chosen by allowing the game to play itself and using learning
techniques to adjust the weights to improve performance.

By using more carefully crafted features we can givedifferent evaluationsto indi-
vidual positions.

150

α− β pruning

Even with a good evaluation function and cut-off test, the time complexity of the
minimax algorithm makes it impossible to write a good chess program without
some further improvement.

• Assuming we have 150 seconds to make each move, for chess we would be
limited to a search of about3 to 4 ply whereas...

• ...even an average human player can manage6 to 8.

Luckily, it is possible to prune the search treewithout affecting the outcomeand
without having to examine all of it.

151

α− β pruning

Returning for a moment to the earlier, simplified example:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

The search is depth-first and left to right.

152

α− β pruning

The search continues as previously for the first8 leaves.

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

2 6 ≤ 1

Then we note: ifMax plays move3 thenMin can reach a leaf with utility at most
1.

So: we don’t need to search any further under Max’s opening move3. This is
because the search hasalready establishedthat Max can do better by making
opening move2.

153

α− β pruning in general

Remember that this search isdepth-first. We’re only going to use knowledge of
nodes on the current path.

While searching under this node
we find that the opponent can force
a score ofn.

If n < m we can stop. There is a
better choice earlier in the game.

If n < m′ we can stop. The player
maximises and will never move here.

of m′.
the opponent can force a score
Searching here establishes that

The value ofα is updated as
the search progresses.

α = m tells us that the
value of this node is≥ m.

m′

= Player

= Opponent
value≥ m

value≥ m′

So:once you’ve established thatn is sufficiently small, you don’t need to explore
any more of the corresponding node’s children.

154

α− β pruning in general

The situation is exactly analogous if weswap player and opponentin the previous
diagram.

The search is depth-first, so we’re only ever looking atone path through the tree.

We need to keep track of the valuesα andβ where

α = thehighestutility seen so far on the path forMax

β = the lowestutility seen so far on the path forMin

AssumeMax begins. Initial values forα andβ are

α = −∞
and

β = +∞.

155

α− β pruning in general

So: we start with the function call

player(−∞,+∞, root)

The following function implements the procedure suggestedby the previous dia-
gram:

player(α, β, n){
if (n is at the cut-off point) return evaluation(n);
value= −∞;
for(each successorn′ of n){

value= max(value, opponent(α, β, n′));
if (value> β) return value;
if (value> α) α = value;

}
return value;
}

156

α− β pruning in general

The functionopponent is exactly analogous:

opponent(α, β, n){
if (n is at the cut-off point) return evaluation(n);
value= +∞;
for(each successorn′ of n){

value= min(value,player(α, β, n′));
if (value< α) return value;
if (value< β) β = value;

}
return value;
}

Note: the semantics here is that parameters are passed to functions by value.

157

α− β pruning in general

Applying this to the earlier example and keeping track of thevalues forα andβ
you should obtain:

4 5 2 20 20 15 6 7 1

2 6

Return2

α = −∞ = 2 = 6

β = +∞

Return6

α = 2

β = +∞ = 6

α = −∞

β = +∞ = 2

α = 6

Return1

158

How effective isα− β pruning?

(Warning: the theoretical results that follow are somewhatidealised.)

A quick inspection should convince you that theorder in which moves are ar-
ranged in the tree is critical.

So, it seems sensible to try good moves first:

• If you were to have a perfect move-ordering technique thenα − β pruning
would beO(qp/2) as opposed toO(qp).

• so the branching factor would effectively be
√
q instead ofq.

• We would therefore expect to be able to search aheadtwice as many moves as
before.

However, this is not realistic: if you had such an ordering technique you’d be able
to play perfect games!

159

How effective isα− β pruning?

If moves are arranged at random thenα− β pruning is:

• O((q/ log q)p) asymptotically whenq > 1000 or...

• ...aboutO(q3p/4) for reasonable values ofq.

In practice simple ordering techniques can get close to the best case. For example,
if we try captures, then threats, then moves forwardetc.

Alternatively, we can implement an iterative deepening approach and use the order
obtained at one iteration to drive the next.

160

A further optimisation: the transposition table

Finally, note that many games correspond tographsrather thantreesbecause the
same state can be arrived at in different ways.

• This is essentially the same effect we saw in heuristic search: recall graph
searchversustree search.

• It can be addressed in a similar way: store a state with its evaluation in a hash
table—generally called atransposition table—the first time it is seen.

The transposition table is essentially equivalent to theclosed listintroduced as
part of graph search.

This can vastly increase the effectiveness of the search process, because we don’t
have to evaluate a single state multiple times.

161

Artificial Intelligence I

Dr Sean Holden

Notes onconstraint satisfaction problems (CSPs)

Copyright c© Sean Holden 2002-2012.

162

Constraint satisfaction problems (CSPs)

The search scenarios examined so far seem in some ways unsatisfactory.

• States were represented using anarbitrary andproblem-specificdata structure.

• Heuristics were alsoproblem-specific.

• It would be nice to be able totransformgeneral search problems into astan-
dard format.

CSPsstandardisethe manner in which states and goal tests are represented...

163

Constraint satisfaction problems (CSPs)

By standardising like this we benefit in several ways:

• We can devisegeneral purposealgorithms and heuristics.

• We can look at general methods for exploring thestructureof the problem.

• Consequently it is possible to introduce techniques fordecomposingproblems.

• We can try to understand the relationship between thestructureof a problem
and thedifficulty of solving it.

Note:another method of interest in AI that allows us to do similar things involves
transforming to apropositional satisfiabilityproblem. We’ll see an example of
this in AI II.

164

Introduction to constraint satisfaction problems

We now return to the idea of problem solving by search and examine it from this
new perspective.

Aims:

• To introduce the idea of a constraint satisfaction problem (CSP) as a general
means of representing and solving problems by search.

• To look at abacktracking algorithmfor solving CSPs.

• To look at somegeneral heuristicsfor solving CSPs.

• To look atmore intelligent ways of backtracking.

Reading:Russell and Norvig, chapter 5.

165

Constraint satisfaction problems

We have:

• A set ofn variablesV1, V2, . . . , Vn.

• For eachVi a domainDi specifying the values thatVi can take.

• A set ofm constraintsC1, C2, . . . , Cm.

Each constraintCi involves a set of variables and specifies anallowable collection
of values.

• A stateis an assignment of specific values to some or all of the variables.

• An assignment isconsistentif it violates no constraints.

• An assignment iscompleteif it gives a value to every variable.

A solutionis a consistent and complete assignment.

166

Example

We will use the problem ofcolouring the nodes of a graphas a running example.

1

2

8

6
5

3
4

7 7

5
6

4
3

1

2

8

Each node corresponds to avariable. We have three colours and directly con-
nected nodes should have different colours.

167

Example

This translates easily to a CSP formulation:

• The variables are the nodes
Vi = nodei

• The domain for each variable contains the values black, red and cyan

Di = {B,R,C}

• The constraints enforce the idea that directly connected nodes must have dif-
ferent colours. For example, for variablesV1 andV2 the constraints specify

(B,R), (B,C), (R,B), (R,C), (C,B), (C,R)

• VariableV8 is unconstrained.

168

Different kinds of CSP

This is an example of the simplest kind of CSP: it isdiscretewith finite domains.
We will concentrate on these.

We will also concentrate onbinary constraints; that is, constraints betweenpairs
of variables.

• Constraints on single variables—unary constraints—can be handled by ad-
justing the variable’s domain. For example, if we don’t wantVi to bered, then
we just remove that possibility fromDi.

• Higher-order constraintsapplying to three or more variables can certainly be
considered, but...

• ...when dealing with finite domains they can always be converted to sets of
binary constraints by introducing extraauxiliary variables.

How does that work?

169

Auxiliary variables

Example:three variables each with domain{B,R,C}.
A single constraint

(C,C,C), (R,B,B), (B,R,B), (B,B,R)

V1 V1V2

V3

The original constraint connects all
three variables.

V2

V3

A = 3

New, binary constraints:

(A = 1, V1 = C), (A = 1, V2 = C), (A = 1, V3 = C)
(A = 2, V1 = R), (A = 2, V2 = B), (A = 2, V3 = B)
(A = 3, V1 = B), (A = 3, V2 = R), (A = 3, V3 = B)
(A = 4, V1 = B), (A = 4, V2 = B), (A = 4, V3 = R)

Introducing auxiliary variableA with domain{1, 2, 3, 4} allows us to convert this
to a set of binary constraints.

170

Backtracking search

Consider what happens if we try to solve a CSP using a simple technique such as
breadth-first search.

The branching factor isnd at the first step, forn variables each withd possible
values.

Step 2: (n− 1)d
Step 3: (n− 2)d

...
Stepn: d

Number of leaves= nd× (n− 1)d× · · · × 1

= n!dn

BUT: only dn assignments are possible.

The order of assignment doesn’t matter, and we should assignto one variable at a
time.

171

Backtracking search

Using the graph colouring example:

The search now looks something like this...

1=B1=B1=B
2=R 2=R2=R

3=B 3=R 3=C

1=B 1= R 1=C

1=B 1=B 1=B
2=B 2=R 2=C

...and new possibilities appear.

172

Backtracking search

Backtracking search searches depth-first, assigning a single variable at a time, and
backtracking if no valid assignment is available.

1

2

3
4

5
6

7

8

1=B
2=R
3=C
4=B
5=R

6=B

Nothing is available for 7, so
either assign 8 or backtrack

Rather than using problem-specific heuristics to try to improve searching, we can
now explore heuristics applicable togeneralCSPs.

173

Backtracking search

Result backTrack(problem) {
return bt ([], problem);

}

Result bt(assignmentList, problem) {
if (assignmentList is complete)

return assignmentList;
nextVar = getNextVar(assignmentList, problem);
for (all v in orderVariables(nextVar, assignmentList, problem))

if (v is consistent with assignmentList) {
add "nextVar = v" to assignmentList;
solution = bt(assignmentList, problem);
if (solution is not "fail")
return solution;

remove "nextVar = v" from assignmentList;
}

}
return "fail";

}

174

Backtracking search: possible heuristics

There are several points we can examine in an attempt to obtain general CSP-
based heuristics:

• In what order should we try toassign variables?

• In what order should we try toassign possible valuesto a variable?

Or being a little more subtle:

• What effect might the values assigned so far have on later attempted assign-
ments?

• When forced to backtrack, is it possible to avoid the same failure later on?

175

Heuristics I: Choosing the order of variable assignments and values

Say we have1 = B and2 = R

1

2

3
4

5
6

8

?

7

At this point there isonly one possible assignment
for 3, whereas the others have more flexibility.

Assigning such variablesfirst is called theminimum remaining values (MRV)
heuristic.

(Alternatively, themost constrained variableor fail first heuristic.)

176

Heuristics I: Choosing the order of variable assignments and values

How do we choose a variable to begin with?

Thedegree heuristicchooses the variable involved in the most constraints on as
yet unassigned variables.

1

2

3
4

5
6

8

Start with 3, 5 or 7.

7

MRV is usually better but the degree heuristic is a good tie breaker.

177

Heuristics I: Choosing the order of variable assignments and values

Once a variable is chosen, inwhat order should values be assigned?

1

2

3
4

5
6

8

?
The heuristic prefers 1=B

7

Choosing1 = C is bad as it removes
the final possibility for3.

The least constraining valueheuristic chooses first the value that leaves the max-
imum possible freedom in choosing assignments for the variable’s neighbours.

178

Heuristics II: forward checking and constraint propagation

Continuing the previous slide’s progress, now add1 = C.

3
4

5
6

8

2 and 3.

7

C is ruled out as an assignment to

2

1

Each time we assign a value to a variable, it makes sense to delete that value from
the collection ofpossible assignments to its neighbours.

This is calledforward checking. It works nicely in conjunction with MRV.

179

Heuristics II: forward checking and constraint propagation

We can visualise this process as follows:

1 2 3 4 5 6 7 8
Start BRC BRC BRC BRC BRC BRC BRC BRC
2 = B RC = B RC RC BRC BRC BRC BRC

3 = R C = B = R RC BC BRC BC BRC
6 = B C = B = R RC C = B C BRC

5 = C C = B = R R = C = B ! BRC

At the fourth step7 hasno possible assignments left.

However, we could have detected a problem a little earlier...

180

Heuristics II: forward checking and constraint propagation

...by looking at step three.

1 2 3 4 5 6 7 8
Start BRC BRC BRC BRC BRC BRC BRC BRC
2 = B RC = B RC RC BRC BRC BRC BRC

3 = R C = B = R RC BC BRC BC BRC
6 = B C = B = R RC C = B C BRC

5 = C C = B = R R = C = B ! BRC

• At step three,5 can beC only and7 can beC only.

• But 5 and7 are connected.

• So we can’t progress, but this hasn’t been detected.

• Ideally we want to doconstraint propagation.

Trade-off: time to do the search, against time to explore constraints.

181

Constraint propagation

Arc consistency:

Consider a constraint as beingdirected. For example4→ 5.

In general, say we have a constrainti→ j and currently the domain ofi isDi and
the domain ofj is Dj.

i→ j is consistentif

∀d ∈ Di,∃d′ ∈ Dj such thati→ j is valid

182

Constraint propagation

Example:

In step three of the table,D4 = {R,C} andD5 = {C}.

• 5→ 4 in step three of the tableis consistent.

• 4→ 5 in step three of the tableis not consistent.

4→ 5 can be made consistent by deletingC from D4.

Or in other words, regardless of what you assign toi you’ll be able to find some-
thing valid to assign toj.

183

Enforcing arc consistency

We can enforce arc consistency each time a variablei is assigned.

• We need to maintain acollection of arcs to be checked.

• Each time we alter a domain, we may have to include further arcs in the col-
lection.

This is because ifi→ j is inconsistent resulting in a deletion fromDi we may as
a consequence make some arck → i inconsistent.

Why is this?

184

Enforcing arc consistency

with i = R.

{R} kK → i is no longer consistent

i→ j is now consistent.

i→ j is not consistent so
deleteB from the domain
of i.

{R} kK → i is consistent but
kK = R can only be paired
with i = B.

becausekK = R can not be paired

{B}{R}{R,B} {B}
ji

...

k1

k2

kK

ji
...

k1

k2

kK

• i→ j inconsistent means removing a value fromDi.

• ∃d ∈ Di such that there is no validd′ ∈ Dj so deleted ∈ Di.

However somed′′ ∈ Dk may only have been pairable withd.

We need to continue until all consequences are taken care of.

185

The AC-3 algorithm

NewDomains AC-3 (problem) {
Queue toCheck = all arcs i->j;
while (toCheck is not empty) {
i->j = next(toCheck);
if (removeInconsistencies(Di,Dj)) {
for (each k that is a neighbour of i)
add k->i to toCheck;

}
}

}

Bool removeInconsistencies (domain1, domain2) {
Bool result = false;
for (each d in domain1) {
if (no d’ in domain2 valid with d) {
remove d from domain1;
result = true;

}
}
return result;

}

186

Enforcing arc consistency

Complexity:

• A binary CSP withn variables can haveO(n2) directional constraintsi→ j.

• Any i → j can be considered at mostd times whered = maxk |Dk| because
only d things can be removed fromDi.

• Checking any single arc for consistency can be done inO(d2).

So the complexity isO(n2d3).

Note: this setup includes 3SAT.

Consequence:we can’t check for consistency in polynomial time, which suggests
this doesn’t guarantee to find all inconsistencies.

187

A more powerful form of consistency

We can define a stronger notion of consistency as follows:

• Given: anyk − 1 variables and any consistent assignment to these.

• Then:We can find a consistent assignment to anykth variable.

This is known ask-consistency.

Strongk-consistencyrequires the we bek-consistent,k − 1-consistentetcas far
down as1-consistent.

If we can demonstrate strongn-consistency (where as usualn is the number of
variables) then an assignment can be found inO(nd).

Unfortunately, demonstrating strongn-consistency will beworst-case exponen-
tial.

188

Backjumping

The basic backtracking algorithm backtracks to themost recent assignment. This
is known aschronological backtracking. It is not always the best policy:

2

3
4

5
6

8

7

1

3

5

7

4

1

???

Say we’ve assigned1 = B, 3 = R, 5 = C and 4 = B and now we want to
assign something to7. This isn’t possible so we backtrack, however re-assigning
4 clearly doesn’t help.

189

Backjumping

With some careful bookkeeping it is often possible tojump back multiple levels
without sacrificing the ability to find a solution.

We need some definitions:

• When we set a variableVi to some valued ∈ Di we refer to this as theassign-
mentAi = (Vi ← d).

• A partial instantiationIk = {A1, A2, . . . , Ak} is a consistentset of assign-
ments to the firstk variables...

• ... whereconsistentmeans that no constraints are violated.

Henceforth we shall assume that variables are assigned in the orderV1, V2, . . . , Vn

when formally presenting algorithms.

190

Gaschnig’s algorithm

Gaschnig’s algorithmworks as follows. Say we have a partial instantiationIk:

• When choosing a value forVk+1 we need to check that any candidate value
d ∈ Dk+1, is consistent withIk.

• When testing potential values ford, we will generally discard one or more
possibilities, because they conflict with some member ofIk

• We keep track of themost recent assignmentAj for which this has happened.

Finally, if novalue forVk+1 is consistent withIk then we backtrack toVj.

If there are no possible values left to try forVj then we backtrackchronologically.

191

Gaschnig’s algorithm

Example:

2

3
4

5
6

8

7

1

1

3

5

4

7

Backtrack to 5

7 = 7 = 7 =

8

2

???

If there’s no value left to try for5 then backtrack to3 and so on.

192

Graph-based backjumping

This allows us to jump back multiple levelswhen we initially detect a conflict.

Can we do better than chronological backtrackingthereafter?

Some more definitions:

• We assume an orderingV1, V2, . . . , Vn for the variables.

• GivenV ′ = {V1, V2, . . . , Vk} wherek < n theancestorsof Vk+1 are the mem-
bers ofV ′ connected toVk+1 by a constraint.

• TheparentP (V) of Vk+1 is its most recent ancestor.

The ancestors for each variable can be accumulated as assignments are made.

Graph-based backjumpingbacktracks to theparentof Vk+1.

193

Graph-based backjumping

2

3
4

5
6

8

7

1

1

3

1

3

5

4

1

3

5

1

3

5

4

7

{1}

{3}

{1} {1}

{3}

{5}

{1}

{3}

{5}

{4}

{1, 3, 4, 8}

{1, 3, 5}

8

2

???

At this point, backjump to theparentfor 7, which is5.

194

Backjumping and forward checking

If we useforward checking: say we’re assigning toVk+1 by makingVk+1 = d:

• Forward checking removesd from theDi of all Vi connected toVk+1 by a
constraint.

• When doing graph-based backjumping, we’d also addVk+1 to the ancestors of
Vi.

In fact, use of forward checking can make some forms of backjumpingredundant.

Note: there are in fact many ways of combiningconstraint propagationwith back-
jumping, and we will not explore them in further detail here.

195

Backjumping and forward checking

2

3
4

5
6

8

7

1

3

5

7

4

1

8 − {}

3 − {1}

1 − {}

3

4 − { }

6 − { }
7 − {1, , }5

5
5 − { }3

5

32 − {1, , 4}

Ancestors???

1 2 3 4 5 6 7 8
Start BRC BRC BRC BRC BRC BRC BRC BRC
1 = B = B RC RC BRC BRC BRC RC BRC

3 = R = B C = R BRC BC BRC C BRC
5 = C = B C = R BR = C BR ! BRC
4 = B = B C = R BR = C BR ! BRC

Forward checking finds the problembefore backtracking does.

196

Graph-based backjumping

We’re not quite done yet though. What happens whenthere are no assignments
left for the parent we just backjumped to?

V4

V3

V2

V1

V7

V6

V5

V4

V3

V2

V1

???

???

Backjumping fromV7 to V4 is fine. However we shouldn’t then just backjump to
V2, because changingV3 could fix the problem atV7.

197

Graph-based backjumping

To describe an algorithm in this case is a little involved.

Leaf dead-end
I6.

Leaf dead-end variableV7

V4

V3

V2

V1

V6

V5

V4

V3

V2

V1

???

???

Given an instantiationIk andVk+1, if there is no consistentd ∈ Dk+1 we callIk a
leaf dead-endandVk+1 a leaf dead-end variable.

198

Graph-based backjumping

Also

Leaf dead-end

Internal dead-end
I4.

I6.

Leaf dead-end variableV7

Internal dead-end variableV4V4

V3

V2

V1

V6

V5

V4

V3

V2

V1

???

???

If Vi was backtracked to from a later leaf dead-end and there are nomore values
to try for Vi then we refer to it as aninternal dead-end variableand callIi−1 an
internal dead-end.

199

Graph-based backjumping

To keep track of exactly where to jump to we also need the definitions:

• Thesessionof a variableV begins when the search algorithm visits it and ends
when it backtracks through it to an earlier variable.

• Thecurrent sessionof a variableV is the set of all variables visiting during its
session.

• In particular, the current session for anyV containsV .

• Therelevant dead-ends for the current sessionR(V) for a variableV are:

1. If V is a leaf dead-end variable thenR(V) = {V }.
2. If V was backtracked to from a dead-endV ′ thenR(V) = R(V) ∪ R(V ′).

And we’re not done yet...

200

Graph-based backjumping

Example:

Session ofV4 = {V4, V5, V6, V7}.

Session starts

Session starts

Session ofV7 = {V7}.
R(V7) = {V7}

R(V4) = {V7}

As expected, the relevant dead-end forV4 is {V7}.

201

Graph-based backjumping

One more bunch of definitions before the pain stops. SayVk is a dead-end:

• The induced ancestorsind(Vk) of Vk are defined as

ind(Vk) = {V1, V2, . . . , Vk−1} ∩

⋃

V ∈R(Vk)

ancestors(V)

• Theculprit for Vk is the most recentV ′ ∈ ind(Vk).

Note that these definitions depend onR(Vk).

FINALLY:graph-based backjumpingbackjumps to the culprit.

202

Graph-based backjumping

Example:

Session ofV4 = {V4, V5, V6, V7}.

Backjump fromV7

to V4.

R(V4) = {V7}
ind(V4) = {V3}

Nothing left to try!

As expected, we back jump toV3 instead ofV2. Hooray!

203

Conflict-directed backjumping

Gaschnig’s algorithm and graph-based backjumping can becombinedto produce
conflict-directed backjumping.

We will not explore conflict-directed backjumping in this course.

For considerable further detail on algorithms for CSPs see:

“Constraint Processing,” Rina Dechter. Morgan Kaufmann, 2003.

204

Varieties of CSP

We have only looked atdiscreteCSPs withfinite domains. These are the simplest.
We could also consider:

1. Discrete CSPs withinfinite domains:

• We need aconstraint language. For example

V3 ≤ V10 + 5

• Algorithms are available for integer variables and linear constraints.

• There isno algorithmfor integer variables and nonlinear constraints.

2. Continuous domains—using linear constraints defining convex regions we have
linear programming. This is solvable in polynomial time inn.

3. We can introducepreference constraintsin addition toabsolute constraints,
and in some cases anobjective function.

205

Artificial Intelligence I

Dr Sean Holden

Notes onknowledge representation and reasoning using first-order logic (FOL)

Copyright c© Sean Holden 2002-2012.

206

Knowledge representation and reasoning using FOL

We now look at how an agent mightrepresentknowledge about its environment
using first order logic (FOL), andreasonwith this knowledge to achieve its goals.

Aims:

• To show how FOL can be used torepresent knowledgeabout an environment in
the form of bothbackground knowledgeandknowledge derived from percepts.

• To show how this knowledge can be used toderive non-perceived knowledge
about the environment using atheorem prover.

• To introduce thesituation calculusand demonstrate its application in a simple
environment as a means by which an agent can work out what to donext.

207

Interesting reading

Reading:Russell and Norvig, chapters 7 to 10.

Knowledge representation based on logic is a vast subject and can’t be covered in
full in the lectures.

In particular:

• Techniques for representingfurther kinds of knowledge.

• Techniques for moving beyond the idea of asituation.

• Reasoning systems based oncategories.

• Reasoning systems usingdefault information.

• Truth maintenance systems.

Happy reading :-)

208

Knowledge representation and reasoning

Earlier in the course we looked at what anagentshould be able to do.

It seems that all of us—and all intelligent agents—should use logical reasoning
to help us interact successfully with the world.

Any intelligent agent should:

• Possessknowledgeabout theenvironmentand abouthow its actions affect the
environment.

• Use some form oflogical reasoningto maintain its knowledge aspercepts
arrive.

• Use some form oflogical reasoningto deduce actionsto perform in order to
achievegoals.

209

Knowledge representation and reasoning

This raises some important questions:

• How do we describe the current state of the world?

• How do we infer from our percepts, knowledge of unseen parts of the world?

• How does the world change as time passes?

• How does the world stay the same as time passes? (Theframe problem.)

• How do we know the effects of our actions? (Thequalificationandramifica-
tion problems.)

We’ll now look at one way of answering some of these questions.

210

Logic for knowledge representation

FOL (arguably?) seems to provide a good way in which to represent the required
kinds of knowledge:

• It is expressive—anything you can program can be expressed.

• It is concise.

• It is unambiguous

• It can be adapted todifferent contexts.

• It has aninference procedure, although a semidecidable one.

In addition is has a well-definedsyntaxandsemantics.

211

Logic for knowledge representation

Problem: it’s quite easy to talk about things likeset theoryusing FOL. For exam-
ple, we can easily write axioms like

∀S . ∀S ′ . ((∀x . (x ∈ S ⇔ x ∈ S ′))⇒ S = S ′)

But how would we go about representing the proposition thatif you have a bucket
of water and throw it at your friend they will get wet, have a bump on their head
from being hit by a bucket, and the bucket will now be empty anddented?

More importantly, how could this be represented within a wider framework for
reasoning about the world?

It’s time to introduce my friend,The Wumpus...

212

Wumpus world

As a simple test scenario for a knowledge-based agent we willmake use of the
Wumpus World.

Evil Robot

Wumpus

The Wumpus World is a 4 by 4 grid-based cave.

EVIL ROBOT wants to enter the cave, find some gold, and get out again un-
scathed.

213

Wumpus world

The rules ofWumpus World:

• Unfortunately the cave contains a number of pits, whichEVIL ROBOT can
fall into. Eventually his batteries will fail, and that’s the end of him.

• The cave also contains the Wumpus, who is armed with state of the artEvil
Robot Obliteration Technology.

• The Wumpus itself knows where the pits are and never falls into one.

214

Wumpus world

EVIL ROBOT can move around the cave at will and can perceive the following:

• In a position adjacent to the Wumpus, a stench is perceived. (Wumpuses are
famed for theirlack of personal hygiene.)

• In a position adjacent to a pit, abreezeis perceived.

• In the position where the gold is, aglitter is perceived.

• On trying to move into a wall, abumpis perceived.

• On killing the Wumpus ascreamis perceived.

In addition,EVIL ROBOT has a single arrow, with which to try to kill the Wum-
pus.

“Adjacent” in the following doesnot include diagonals.

215

Wumpus world

So we have:

Percepts:stench, breeze, glitter, bump, scream.

Actions:forward, turnLeft, turnRight, grab, release, shoot, climb.

Of course, our aim now isnot just to design an agent that can perform well in a
single cave layout.

We want to design an agent that canusuallyperform wellregardlessof the layout
of the cave.

216

Some nomenclature

The choice of knowledge representation language tends to lead to two important
commitments:

• Ontological commitments: what does the world consist of?

• Epistemological commitments: what are the allowable states of knowledge?

Propositional logic is useful for introducing some fundamental ideas, but its on-
tological commitment—that the world consists of facts—sometimes makes it too
limited for further use.

FOL has a different ontological commitment—the world consists offacts, objects
andrelations.

217

Logic for knowledge representation

The fundamental aim is to construct aknowledge baseKB containing acollection
of statementsabout the world—expressed in FOL—such thatuseful things can be
derivedfrom it.

Our central aim is to generate sentences that aretrue, if the sentences in theKB
are true.

This process is based on concepts familiar from your introductory logic courses:

• Entailment:KB |= α means that theKB entailsα.

• Proof: KB ⊢i α means thatα is derived from theKB usingi. If i is soundthen
we have aproof.

• i is soundif it can generate only entailedα.

• i is completeif it can find a proof foranyentailedα.

218

Example: Prolog

You have by now learned a little about programming inProlog. For example:

concat([],L,L).
concat([H|T],L,[H|L2]) :- concat(T,L,L2).

is a program to concatenate two lists. The query

concat([1,2,3],[4,5],X).

results in

X = [1, 2, 3, 4, 5].

What’s happening here? Well, Prolog is just amore limited form of FOLso...

219

Example: Prolog

... we are in fact doing inference from aKB:

• The Prolog programme itself is theKB. It expresses someknowledge about
lists.

• The query is expressed in such a way as toderive some new knowledge.

How does this relate to full FOL? First of all the list notation is nothing butsyntac-
tic sugar. It can be removed: we define a constant calledempty and a function
calledcons.

Now[1,2,3] just means cons(1, cons(2, cons(3, empty))))which
is a term in FOL.

I will assume the use of the syntactic sugar for lists from nowon.

220

Prolog and FOL

The program when expressed in FOL, says

∀x .concat(empty, x, x)∧
∀h, t, l1, l2 .concat(t, l1, l2) =⇒ concat(cons(h, t), l1,cons(h, l2))

The rule is simple—given a Prolog program:

• Universally quantify all the unbound variables in each lineof the programand
...

• ... form the conjunction of the results.

If the universally quantified lines areL1, L2, . . . , Ln then the Prolog programme
corresponds to theKB

KB = L1 ∧ L2 ∧ · · · ∧ Ln

Now, what does the query mean?

221

Prolog and FOL

When you give the query

concat([1,2,3],[4,5],X).

to Prolog it responds bytrying to provethe following statement

KB =⇒ ∃x .concat([1, 2, 3], [4, 5], x)
So: it tries to prove that theKB implies the query, and variables in the query are
existentially quantified.

When a proof is found, it supplies avalue forx thatmakes the inference true.

222

Prolog and FOL

Prolog differs from FOL in that, amongst other things:

• It restricts you to usingHorn clauses.

• Its inference procedure is not afull-blown proof procedure.

• It does not deal withnegationcorrectly.

Howeverthe central idea also works for full-blown theorem provers.

If you want to experiment, you can obtainProver9from

http://www.cs.unm.edu/∼mccune/mace4/

We’ll see a brief example now, and a more extensive example ofits use later, time
permitting...

223

Prolog and FOL

Expressed in Prover9, the above Prolog program and query look like this:

set(prolog_style_variables).

% This is the translated Prolog program for list concatenation.
% Prover9 has its own syntactic sugar for lists.

formulas(assumptions).
concat([], L, L).
concat(T, L, L2) -> concat([H:T], L, [H:L2]).

end_of_list.

% This is the query.

formulas(goals).
exists X concat([1, 2, 3], [4, 5], X).

end_of_list.

Note: it is assumed thatunbound variables are universally quantified.

224

Prolog and FOL

You can try to infer a proof using

prover9 -f file.in

and the result is (in addition to a lot of other information):

1 concat(T,L,L2) -> concat([H:T],L,[H:L2]) # label(non_clause). [assumption].
2 (exists X concat([1,2,3],[4,5],X)) # label(non_clause) # label(goal). [goal].
3 concat([],A,A). [assumption].
4 -concat(A,B,C) | concat([D:A],B,[D:C]). [clausify(1)].
5 -concat([1,2,3],[4,5],A). [deny(2)].
6 concat([A],B,[A:B]). [ur(4,a,3,a)].
7 -concat([2,3],[4,5],A). [resolve(5,a,4,b)].
8 concat([A,B],C,[A,B:C]). [ur(4,a,6,a)].
9 $F. [resolve(8,a,7,a)].

This shows that a proof is found but doesn’t explicitly give avalue forX—we’ll
see how to extract that later...

225

The fundamental idea

So thebasic ideais: build aKB that encodesknowledge about the world, theeffects
of actionsand so on.

TheKB is a conjunction of pieces of knowledge, such that:

• A query regarding what our agent should docan be posed in the form

∃actionList .Goal(... actionList ...)

• Proving that

KB =⇒ ∃actionList .Goal(... actionList ...)

instantiatesactionList to anactual list of actionsthat will achieve a goal
represented by theGoal predicate.

We sometimes use the notationask andtell to refer toqueryingandadding to
theKB.

226

Using FOL in AI: the triumphant return of the Wumpus

We want to be able tospeculateabout the past and aboutpossible futures. So:

Evil Robot

Wumpus

• We includesituationsin the logical language used by ourKB.

• We includeaxiomsin ourKB that relate to situations.

This gives rise tosituation calculus.

227

Situation calculus

In situation calculus:

• The world consists of sequences ofsituations.

• Over time, an agent moves from one situation to another.

• Situations are changed as a result ofactions.

In Wumpus World the actions are:forward, shoot, grab, climb, release,
turnRight, turnLeft.

• A situation argumentis added to items that can change over time. For example

At(location, s)

Items that can change over time are calledfluents.

• A situation argument is not needed for things that don’t change. These are
sometimes referred to aseternalor atemporal.

228

Representing change as a result of actions

Situation calculus uses a function

result(action, s)

to denote thenewsituation arising as a result of performing the specified action in
the specified situation.

result(grab, s0) = s1
result(turnLeft, s1) = s2
result(shoot, s2) = s3
result(forward, s3) = s4

...

229

Axioms I: possibility axioms

The first kind of axiom we need in aKB specifieswhen particular actions are
possible.

We introduce a predicate
Poss(action, s)

denoting that an action can be performed in situations.

We then need apossibility axiomfor each action. For example:

At(l, s) ∧ Available(gold, l, s) =⇒ Poss(grab, s)

Remember thatunbound variables are universally quantified.

230

Axioms II: effect axioms

Given that an action results in a new situation, we can introduceeffect axiomsto
specify the properties of the new situation.

For example, to keep track of whetherEVIL ROBOT has the gold we needeffect
axiomsto describe the effect of picking it up:

Poss(grab, s) =⇒ Have(gold, result(grab, s))

Effect axioms describe the way in which the worldchanges.

We would probably also include

¬Have(gold, s0)

in theKB, wheres0 is thestarting state.

Important: we are describingwhat is truein the situation that resultsfrom per-
forming an actionin agiven situation.

231

Axioms III: frame axioms

We needframe axiomsto describethe way in which the world stays the same.

Example:

Have(o, s) ∧
¬(a = release ∧ o = gold) ∧ ¬(a = shoot ∧ o = arrow)

=⇒ Have(o, result(a, s))

describes the effect ofhaving something and not discarding it.

In a more general setting such an axiom might well look different. For example

¬Have(o, s) ∧
(a 6= grab(o) ∨ ¬(Available(o, s) ∧ Portable(o)))
=⇒ ¬Have(o, result(a, s))

describes the effect ofnot having something and not picking it up.

232

The frame problem

Theframe problemhas historically been a major issue.

Representational frame problem: a large number of frame axioms are required to
represent the many things in the world which will not change as the result of an
action.

We will see how to solve this in a moment.

Inferential frame problem: when reasoning about a sequence of situations, all the
unchanged properties still need to be carried through all the steps.

This can be alleviated usingplanning systemsthat allow us to reason efficiently
when actions change only a small part of the world. There are also other remedies,
which we will not cover.

233

Successor-state axioms

Effect axioms and frame axioms can be combined intosuccessor-state axioms.

One is needed for each predicate that can change over time.

Action a is possible=⇒
(true in new situation⇐⇒
(you did something to make it true∨
it was already true and you didn’t make it false))

For example

Poss(a, s) =⇒
(Have(o, result(a, s)) ⇐⇒ ((a = grab ∧ Available(o,s)) ∨
(Have(o, s) ∧ ¬(a = release ∧ o = gold) ∧
¬(a = shoot ∧ o = arrow))))

234

Knowing where you are

If s0 is the initial situation we know that

At((1, 1), s0)

I amassumingthat we’ve added axioms allowing us to deal with the numbers0 to
5 and pairs of such numbers.(Exercise: do this.)

We need to keep track of what way we’re facing. Say north is0, south is2, east is
1 and west is3.

facing(s0) = 0

We need to know how motion affects location

forwardResult((x, y),north) = (x, y + 1)

forwardResult((x, y),east) = (x + 1, y)
...

and
At(l, s) =⇒ goForward(s) = forwardResult(l, facing(s))

235

Knowing where you are

The concept of adjacency is very important in the Wumpus world

Adjacent(l1, l2) ⇐⇒ ∃d forwardResult(l1, d) = l2

We also know that the cave is4 by 4 and surrounded by walls

WallHere((x, y)) ⇐⇒ (x = 0 ∨ y = 0 ∨ x = 5 ∨ y = 5)

It is only possible to change location by moving, and this only works if you’re not
facing a wall. So...

...we need a successor-state axiom:

Poss(a, s) =⇒
At(l, result(a, s)) ⇐⇒ (l = goForward(s)

∧ a = forward

∧ ¬WallHere(l))
∨ (At(l, s) ∧ a 6= forward)

236

Knowing where you are

It is only possible to change orientation by turning. Again,we need a successor-
state axiom

Poss(a, s) =⇒
facing(result(a, s)) = d ⇐⇒

(a = turnRight ∧ d = mod(facing(s) + 1, 4))

∨ (a = turnLeft ∧ d = mod(facing(s)− 1, 4))

∨ (facing(s) = d ∧ a 6= turnRight ∧ a 6= turnLeft)

and so on...

237

The qualification and ramification problems

Qualification problem: we are in general never completely certain what conditions
are required for an action to be effective.

Consider for example turning the key to start your car.

This will lead to problems if important conditions are omitted from axioms.

Ramification problem: actions tend to have implicit consequences that are large in
number.

For example, if I pick up a sandwich in a dodgy sandwich shop, Iwill also be
picking up all the bugs that live in it. I don’t want to model this explicitly.

238

Solving the ramification problem

The ramification problem can be solved bymodifying successor-state axioms.

For example:

Poss(a, s) =⇒
(At(o, l, result(a, s)) ⇐⇒

(a = go(l′, l) ∧
[o = robot ∨ Has(robot, o, s)]) ∨

(At(o, l, s) ∧
[¬∃l′′ . a = go(l, l′′) ∧ l 6= l′′ ∧
{o = robot ∨ Has(robot, o, s)}]))

describes the fact that anythingEVIL ROBOT is carrying moves around with him.

239

Deducing properties of the world: causal rules

If you know where you are, then you can think aboutplacesrather than justsitu-
ations.

Synchronic rulesrelate properties shared by a single state of the world.

There are two kinds:causalanddiagnostic.

Causal rules: some properties of the world will produce percepts.

WumpusAt(l1) ∧ Adjacent(l1, l2) =⇒ StenchAt(l2)

PitAt(l1) ∧ Adjacent(l1, l2) =⇒ BreezeAt(l2)

Systems reasoning with such rules are known asmodel-basedreasoning systems.

240

Deducing properties of the world: diagnostic rules

Diagnostic rules: infer properties of the world from percepts.

For example:
At(l, s) ∧ Breeze(s) =⇒ BreezeAt(l)

At(l, s) ∧ Stench(s) =⇒ StenchAt(l)

These may not be very strong.

The difference between model-based and diagnostic reasoning can be important.
For example, medical diagnosis can be done based on symptomsor based on a
model of disease.

241

General axioms for situations and objects

Note: in FOL, if we have two constantsrobot andgold then an interpretation
is free to assign them to be the same thing.

This is not something we want to allow.

Unique names axiomsstate that each pair of distinct items in our model of the
world must be different

robot 6= gold

robot 6= arrow

robot 6= wumpus
...

wumpus 6= gold
...

242

General axioms for situations and objects

Unique actions axiomsstate that actions must share this property, so for each pair
of actions

go(l, l′) 6= grab

go(l, l′) 6= drop(o)
...

drop(o) 6= shoot
...

and in addition we need to define equality for actions, so for each action

go(l, l′) = go(l′′, l′′′) ⇐⇒ l = l′′ ∧ l′ = l′′′

drop(o) = drop(o′) ⇐⇒ o = o′

...

243

General axioms for situations and objects

The situations areorderedso

s0 6= result(a, s)

and situations aredistinctso

result(a, s) = result(a′, s′) ⇐⇒ a = a′ ∧ s = s′

Strictly speaking we should be using amany-sortedversion of FOL.

In such a system variables can be divided intosortswhich are implicitly separate
from one another.

244

The start state

Finally, we’re going to need to specifywhat’s true in the start state.

For example
At(robot, [1, 1], s0)
At(wumpus, [3, 4], s0)

Has(robot,arrow, s0)
...

and so on.

245

Sequences of situations

We know that the functionresult tells us about the situation resulting from per-
forming an action in an earlier situation.

How can this help us findsequences of actions to get things done?

Define

Sequence([], s, s′) = s′ = s

Sequence([a], s, s′) = Poss(a, s) ∧ s′ = result(a, s)
Sequence(a :: as, s, s′) = ∃t . Sequence([a], s, t) ∧ Sequence(as, t, s′)

To obtain asequence of actions that achievesGoal(s) we can use the query

∃a ∃s . Sequence(a, s0, s) ∧Goal(s)

246

Knowledge representation and reasoning

It should be clear that generating sequences of actions by inference in FOL is
highly non-trivial.

Ideally we’d like to maintain anexpressivelanguage whilerestrictingit enough to
be able to do inferenceefficiently.

Further aims:

• To give a brief introduction tosemantic networksand framesfor knowledge
representation.

• To see howinheritancecan be applied as a reasoning method.

• To look at the use ofrules for knowledge representation, along withforward
chainingandbackward chainingfor reasoning.

Further reading: The Essence of Artificial Intelligence, Alison Cawsey. Prentice
Hall, 1998.

247

Frames and semantic networks

Frames and semantic networks represent knowledge in the form of classes of ob-
jectsandrelationships between them:

• Thesubclassandinstancerelationships are emphasised.

• We formclass hierarchiesin which inheritanceis supported and provides the
main inference mechanism.

As a result inference is quite limited.

We also need to be extremely careful aboutsemantics.

The only major difference between the two ideas isnotational.

248

Example of a semantic network

has

Jake Mayhem

instance

Ear problems

volume

has

subclass

Musician

subclass
hasInstrument

Person

has

has

Right arm

subclass volume

has

hair_length Any

Sheet music

Quiet

instance

Violet Scroot
has

Oboe

has

Axe

Long

Loud
Rock musician

hair_length

Head

Left arm

Classical musician

249

Frames

Frames once again support inheritance through thesubclass relationship.

volume: loud

has: ear problems
hairlength: long

subclass: Musician

Rock musician

subclass: Person
has: instrument

Musician

has, hairlength, volume etcareslots.

long, loud, instrument etcareslot values.

These are a direct predecessor ofobject-oriented programming languages.

250

Defaults

Both approaches to knowledge representation are able to incorporatedefaults:

has: ear problems
* hairlength: long

subclass: Musician

* volume: loud

subclass: Rock musician
hairlength: short
image: gothic

Rock musician
Dementia Evilperson

Starred slots aretypical valuesassociated with subclasses and instances, butcan
be overridden.

251

Multiple inheritance

Both approaches can incorporatemultiple inheritance, at a cost:

instanceinstance

Classical musicianRock musician

Cornelius Cleverchap

• What ishairlength for Cornelius if we’re trying to use inheritance to
establish it?

• This can be overcome initially by specifying which class is inherited fromin
preferencewhen there’s a conflict.

• But the problem is still not entirely solved—what if we want to prefer inheri-
tance of some things from one class, but inheritance of others from a different
one?

252

Other issues

• Slots and slot values can themselves be frames. For exampleDementia may
have an instrument slot with the valueElectric harp, which itself may
have properties described in a frame.

• Slots can havespecified attributes. For example, we might specify thatinstrument
can have multiple values, that each value can only be an instance ofInstrument,
that each value has a slot calledowned by and so on.

• Slots may contain arbitrary pieces of program. This is knownasprocedural
attachment. The fragment might be executed to return the slot’s value, or
update the values in other slotsetc.

253

Rule-based systems

A rule-based system requires three things:

1. A set ofif-then rules. These denote specific pieces of knowledge about the
world.

They should be interpreted similarly to logical implication.

Such rules denotewhat to door what can be inferredunder given circum-
stances.

2. A collection offactsdenoting what the system regards as currently true about
the world.

3. An interpreter able to apply the current rules in the lightof the current facts.

254

Forward chaining

The first of two basic kinds of interpreterbegins with established facts and then
applies rules to them.

This is adata-drivenprocess. It is appropriate if we know theinitial facts but not
the required conclusion.

Example: XCON—used for configuring VAX computers.

In addition:

• We maintain aworking memory, typically of what has been inferred so far.

• Rules are oftencondition-action rules, where the right-hand side specifies an
action such as adding or removing something from working memory, printing
a messageetc.

• In some cases actions might be entire program fragments.

255

Forward chaining

The basic algorithm is:

1. Find all the rules that can fire, based on the current working memory.

2. Select a rule to fire. This requires aconflict resolution strategy.

3. Carry out the action specified, possibly updating the working memory.

Repeat this process until eitherno rules can be usedor ahalt appears in the work-
ing memory.

256

Example

dry_mouth
working

InterpreterWorking memory

Condition−action rules

no_work −> DELETE working
working −> ADD no_work
get_drink AND no_work −> ADD go_bar
thirsty −> ADD get_drink
dry_mouth −> ADD thirsty

257

Example

Progress is as follows:

1. The rule
dry mouth =⇒ ADD thirsty

fires addingthirsty to working memory.

2. The rule
thirsty =⇒ ADD get drink

fires addingget drink to working memory.

3. The rule
working =⇒ ADD no work

fires addingno work to working memory.

4. The rule
get drink AND no work =⇒ ADD go bar

fires, and we establish that it’s time to go to the bar.

258

Conflict resolution

Clearly in any more realistic system we expect to have to dealwith a scenario
wheretwo or more rules can be fired at any one time:

• Which rule we choose can clearly affect the outcome.

• We might also want to attempt to avoid inferring an abundanceof useless in-
formation.

We therefore need a means ofresolving such conflicts.

259

Conflict resolution

Commonconflict resolution strategiesare:

• Prefer rules involving more recently added facts.

• Prefer rules that aremore specific. For example

patient coughing =⇒ ADD lung problem

is more general than

patient coughing AND patient smoker =⇒ ADD lung cancer.

This allows us to define exceptions to general rules.

• Allow the designer of the rules to specify priorities.

• Fire all rulessimultaneously—this essentially involves following all chains of
inference at once.

260

Reason maintenance

Some systems will allow information to be removed from the working memory if
it is no longerjustified.

For example, we might find that

patient coughing

and
patient smoker

are in working memory, and hence fire

patient coughing AND patient smoker =⇒ ADD lung cancer

but later infer something that causespatient coughing to bewithdrawnfrom
working memory.

The justification forlung cancer has been removed, and so it should perhaps
be removed also.

261

Pattern matching

In general rules may be expressed in a slightly more flexible form involvingvari-
ableswhich can work in conjunction withpattern matching.

For example the rule

coughs(X) AND smoker(X) =⇒ ADD lung cancer(X)

contains the variableX.

If the working memory containscoughs(neddy) andsmoker(neddy) then

X = neddy

provides a match and
lung cancer(neddy)

is added to the working memory.

262

Backward chaining

The second basic kind of interpreter begins with agoaland finds a rule that would
achieve it.

It then worksbackwards, trying to achieve the resulting earlier goals in the suc-
cession of inferences.

Example: MYCIN—medical diagnosis with a small number of conditions.

This is agoal-drivenprocess. If you want totest a hypothesisor you have some
idea of a likely conclusion it can be more efficient than forward chaining.

263

Example

get drink
no work

thirsty
no work

working

dry mouth
no work

dry mouth
working

Try first to establishget drink. This

so we’re done.

Working memory
Goal

go bar

can be done by establishingthirsty.

These are the new goals.

establishget drink andno work.

To establishgo bar we have to

thirsty can be established by establishing

dry mouth. This is in the working memory

Finally, we can establishno work by

establishingworking. This is in the working

memory so the process has finished.

264

Example with backtracking

If at some point more than one rule has the required conclusion then we canback-
track.

Example: Prolog backtracks, and incorporates pattern matching. It orders at-
tempts according to the order in which rules appear in the program.

Example: having added

up early =⇒ ADD tired

and
tired AND lazy =⇒ ADD go bar

to the rules, andup early to the working memory:

265

Example with backtracking

thirsty
no work

get drink
no work

working

dry mouth
no work

dry mouth
working
up early

Process proceeds as before

go bar

lazy

lazy
up early

lazy
tired

different approach.

by establishingtired and

Attempt to establishgo bar

lazy.

This can be done by establishing

up early andlazy.

so we’re done.

up early is in the working memory

We can not establisglazy

and so we backtrack and try a

GoalWorking memory

266

Artificial Intelligence I

Dr Sean Holden

Notes onplanning

Copyright c© Sean Holden 2002-2012.

267

Problem solving is different to planning

In search problemswe:

• Represent states: and a state representation containseverythingthat’s relevant
about the environment.

• Represent actions: by describing a new state obtained from a current state.

• Represent goals: all we know is how to test a state either to see if it’s a goal,
or using a heuristic.

• A sequence of actions is a ‘plan’: but we only considersequences of consecu-
tive actions.

Search algorithms are good for solving problems that fit thisframework. However
for more complex problems they may fail completely...

268

Problem solving is different to planning

Representing a problem such as:‘go out and buy some pies’is hopeless:

• There aretoo many possible actionsat each step.

• A heuristic can only help you rank states. In particular it does not help you
ignoreuseless actions.

• We are forced to start at the initial state, but you have to work out how to get
the pies—that is, go to town and buy them, get online and find a web site that
sells piesetc—before you can start to do it.

Knowledge representation and reasoning might not help either: although we end
up with a sequence of actions—a plan—there is so much flexibility that complex-
ity might well become an issue.

269

Introduction to planning

We now look at how an agent mightconstruct a planenabling it to achieve a goal.

Aims:

• To look at how we might update our concept ofknowledge representation and
reasoningto apply more specifically to planning tasks.

• To look in detail at the basicpartial-order planning algorithm.

Reading: Russell and Norvig, chapter 11.

270

Planning algorithms work differently

Difference 1:

• Planning algorithms use aspecial purpose language—often based on FOL or
a subset— to represent states, goals, and actions.

• States and goals are described by sentences, as might be expected, but...

• ...actions are described by stating theirpreconditionsand theireffects.

So if you know the goal includes (maybe among other things)

Have(pie)

and actionBuy(x) has an effectHave(x) then you know that a planincluding

Buy(pie)

might be reasonable.

271

Planning algorithms work differently

Difference 2:

• Planners can add actions atany relevant point at all between the start and the
goal, not just at the end of a sequence starting at the start state.

• This makes sense: I may determine thatHave(carKeys) is a good state to be
in without worrying about what happens before or after finding them.

• By making an important decision like requiringHave(carKeys) early on we
may reduce branching and backtracking.

• State descriptions are not complete—Have(carKeys) describes aclass of
states—and this adds flexibility.

So: you have the potential to search bothforwardsandbackwardswithin the same
problem.

272

Planning algorithms work differently

Difference 3:

It is assumed that most elements of the environment areindependent of most other
elements.

• A goal including several requirements can be attacked with adivide-and-conquer
approach.

• Each individual requirement can be fulfilled using a subplan...

• ...and the subplans then combined.

This works provided there is not significant interaction between the subplans.

Remember: theframe problem.

273

Running example: gorilla-based mischief

We will use the following simple example problem, which as based on a similar
one due to Russell and Norvig.

The intrepid little scamps in theCambridge University Roof-Climbing Society
wish to attach aninflatable gorilla to the spire of aFamous College. To do this
they need to leave home and obtain:

• An inflatable gorilla: these can be purchased from all good joke shops.

• Some rope: available from a hardware store.

• A first-aid kit: also available from a hardware store.

They need to return home after they’ve finished their shopping.

How do they go about planning theirjolly escapade?

274

The STRIPS language

STRIPS:“Stanford Research Institute Problem Solver”(1970).

States: areconjunctionsof ground literals. They must not includefunction sym-
bols.

At(home) ∧ ¬Have(gorilla)
∧ ¬Have(rope)
∧ ¬Have(kit)

Goals: areconjunctionsof literals where variables are assumedexistentially quan-
tified.

At(x) ∧ Sells(x,gorilla)

A planner finds a sequence of actions that when performed makes the goal true.
We are no longer employing a full theorem-prover.

275

The STRIPS language

STRIPS represents actions usingoperators. For example

At(y),¬At(x)

At(x),Path(x, y)

Go(y)

Op(Action: Go(y),Pre: At(x) ∧ Path(x, y),Effect: At(y) ∧ ¬At(x))

All variables are implicitly universally quantified. An operator has:

• An action description: what the action does.

• A precondition: what must be true before the operator can be used. Acon-
junction of positive literals.

• An effect: what is true after the operator has been used. Aconjunction of
literals.

276

The space of plans

We now make a change in perspective—we search inplan space:

• Start with anempty plan.

• Operate on itto obtain new plans. Incomplete plans are calledpartial plans.
Refinement operatorsadd constraints to a partial plan. All other operators are
calledmodification operators.

• Continue until we obtain a plan that solves the problem.

Operations on plans can be:

• Adding a step.

• Instantiating a variable.

• Imposing an orderingthat places a step in front of another.

• and so on...

277

Representing a plan: partial order planners

When putting on your shoes and socks:

• It does not matterwhether you deal with your left or right foot first.

• It does matterthat you place a sock onbeforea shoe, for any given foot.

It makes sense in constructing a plannot to make anycommitmentto which side
is done firstif you don’t have to.

Principle of least commitment: do not commit to any specific choices until you
have to. This can be applied both to ordering and to instantiation of variables. A
partial order plannerallows plans to specify that some steps must come before
others but others have no ordering. Alinearisation of such a plan imposes a
specific sequence on the actions therein.

278

Representing a plan: partial order planners

A plan consists of:

1. A set{S1, S2, . . . , Sn} of steps. Each of these is one of the availableoperators.

2. A set ofordering constraints. An ordering constraintSi < Sj denotes the fact
that stepSi must happen before stepSj. Si < Sj < Sk and so on has the
obvious meaning.Si < Sj doesnot mean thatSi must immediatelyprecede
Sj.

3. A set of variable bindingsv = x wherev is a variable andx is either a variable
or a constant.

4. A set ofcausal linksor protection intervalsSi
c→ Sj. This denotes the fact

that the purpose ofSi is to achieve the preconditionc for Sj.

A causal link isalwayspaired with an equivalent ordering constraint.

279

Representing a plan: partial order planners

The initial plan has:

• Two steps, calledStartandFinish.

• a single ordering constraintStart< Finish.

• No variable bindings.

• No causal links.

In addition to this:

• The stepStart has no preconditions, and its effect is the start state for the
problem.

• The stepFinishhas no effect, and its precondition is the goal.

• NeitherStartor Finishhas an associated action.

We now need to consider what constitutes asolution...

280

Solutions to planning problems

A solution to a planning problem is anycompleteandconsistentpartially ordered
plan.

Complete: each precondition of each step isachievedby another step in the solu-
tion.

A preconditionc for S is achieved by a stepS ′ if:

1. The precondition is an effect of the step

S ′ < S andc ∈ Effects(S ′)

and...

2. ... there isno otherstep thatcould cancel the precondition. That is, noS ′′

exists where:

• The existing ordering constraints allowS ′′ to occurafterS ′ butbeforeS.

• ¬c ∈ Effects(S ′′) .

281

Solutions to planning problems

Consistent: no contradictions exist in the binding constraints or in the proposed
ordering. That is:

1. For binding constraints, we never havev = X andv = Y for distinct constants
X andY .

2. For the ordering, we never haveS < S ′ andS ′ < S.

Returning to the roof-climber’s shopping expedition, hereis the basic approach:

• Begin with only theStart andFinish steps in the plan.

• At each stage add a new step.

• Always add a new step such that acurrently non-achieved precondition is
achieved.

• Backtrack when necessary.

282

An example of partial-order planning

Here is theinitial plan:

Start

Finish

At(Home) ∧ Have(G) ∧ Have(R) ∧ Have(FA)

At(Home)∧ Sells(JS,G) ∧ Sells(HS,R) ∧ Sells(HS,FA)

Thin arrows denote ordering.

283

An example of partial-order planning

There aretwo actions available:

Go(y)

At(y),¬At(x)

Buy(y)

At(x),Sells(x, y)

Have(y)

At(x)

A planner might begin, for example, by adding aBuy(G) action in order to achieve
theHave(G) precondition ofFinish.

Note: the following order of events is by no means the only one available to a
planner.

It has been chosen for illustrative purposes.

284

An example of partial-order planning

Incorporating the suggested step into the plan:

Start

Buy(G)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

At(x),Sells(x,G)

Thick arrows denote causal links. They always have a thin arrow underneath.

Here the newBuy step achieves theHave(G) precondition ofFinish.

285

An example of partial-order planning

The planner can now introduce a second causal link fromStart to achieve the
Sells(x,G) precondition ofBuy(G).

Start

Buy(G)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(JS),Sells(JS,G)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

286

An example of partial-order planning

The planner’s next obvious move is to introduce aGo step to achieve theAt(JS)
precondition ofBuy(G).

Buy(G)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)At(x)

Go(JS)

Start

At(JS),Sells(JS,G)

And we continue...

287

An example of partial-order planning

Initially the planner can continue quite easily in this manner:

• Add a causal link fromStartto Go(JS) to achieve theAt(x) precondition.

• Add the stepBuy(R) with an associated causal link to theHave(R) precondi-
tion of Finish.

• Add a causal link fromStartto Buy(R) to achieve theSells(HS,R) precondi-
tion.

But then things get more interesting...

288

An example of partial-order planning

Start

At(JS),Sells(JS,G)

Finish

At(Home),Have(G),Have(R),Have(FA)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

Buy(R)

At(HS),Sells(HS,R)

At(Home)

Buy(G)

Go(JS)

At this point it starts to get tricky...

TheAt(HS) precondition inBuy(R) is not achieved.

289

An example of partial-order planning

Start

At(JS),Sells(JS,G)

Finish

At(Home),Have(G),Have(R),Have(FA)

Sells(HS,R),At(HS)

Go(HS)

At(x)

¬At(x)
Go(JS)

Buy(G) Buy(R)

At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)At(Home)

TheAt(HS) precondition is easy to achieve.But if we introduce a causal link from
Startto Go(HS) then we risk invalidating the precondition forGo(JS).

290

An example of partial-order planning

A step that might invalidate (sometimes the wordclobber is employed) a previ-
ously achieved precondition is called athreat.

Threat

Promotion

Demotion

c

¬c

cc

¬c

¬c

A planner can try to fix a threat by introducing an ordering constraint.

291

An example of partial-order planning

The planner could backtrack and try to achieve theAt(x) precondition using the
existingGo(JS) step.

Start

At(JS),Sells(JS,G)

Go(JS)

Finish

Go(HS)
At(Home) At(Home),Sells(JS,G),Sells(HS,R),Sells(HS,FA)

Buy(R)Buy(G)

¬At(JS)

At(JS)

At(Home),Have(G),Have(R),Have(FA)

Sells(HS,R),At(HS)

This involves a threat, but one that can be fixed using promotion.

292

The algorithm

Simplifying slightly to the case where there areno variables.

Say we have a partially completed plan and a set of the preconditions that have
yet to be achieved.

• Select a preconditionp that has not yet been achieved and is associated with
an actionB.

• At each stagethe partially complete plan is expanded into a new collection of
plans.

• To expand a plan, we can try to achievep either by using an action that’s
already in the plan or by adding a new action to the plan. In either case, call
the actionA.

We then try to construct consistent plans whereA achievesp.

293

The algorithm

This works as follows:

• Foreach possible way of achievingp:

– Add Start< A, A < Finish, A < B and the causal linkA
p→ B to the plan.

– If the resulting plan is consistent we’re done, otherwisegenerate all possi-
ble ways of removing inconsistenciesby promotion or demotion andkeep
any resulting consistent plans.

At this stage:

• If you haveno further preconditions that haven’t been achievedthenany plan
obtained is valid.

294

The algorithm

But how do we try toenforce consistency?

When you attempt to achievep usingA:

• Find all the existing causal linksA′
¬p→ B′ that areclobberedbyA.

• For each of those you can try addingA < A′ orB′ < A to the plan.

• Find all existing actionsC in the plan that clobber thenewcausal linkA
p→ B.

• For each of those you can try addingC < A or B < C to the plan.

• Generateevery possible combinationin this way and retain any consistent
plans that result.

295

Possible threats

What about dealing withvariables?

If at any stage an effect¬At(x) appears, is it a threat toAt(JS)?

Such an occurrence is called apossible threatand we can deal with it by introduc-
ing inequality constraints: in this casex 6= JS.

• Each partially complete plan now has a setI of inequality constraints associ-
ated with it.

• An inequality constraint has the formv 6= X wherev is a variable andX is a
variable or a constant.

• Whenever we try to make a substitution we checkI to make sure we won’t
introduce a conflict.

If we would introduce a conflict then we discard the partially completedplan as
inconsistent.

296

Artificial Intelligence I

Dr Sean Holden

Notes onmachine learning using neural networks

Copyright c© Sean Holden 2002-2012.

297

Did you heed the DIRE WARNING?

At the beginning of the courseI suggested making sure you can answer the fol-
lowing two questions:

1. Let

f(x1, . . . , xn) =
n
∑

i=1

aix
2
i

where theai are constants. Compute∂f/∂xj where1 ≤ j ≤ n?

Answer:As

f(x1, . . . , xn) = a1x
2
1 + · · · + ajx

2
j + · · · + anx

2
n

only one term in the sum depends onxj, so all the other terms differentiate to
give0 and

∂f

∂xj
= 2ajxj

298

Did you heed the DIRE WARNING?

2. Letf(x1, . . . , xn) be a function. Now assumexi = gi(y1, . . . , ym) for eachxi
and some collection of functionsgi. Assuming all requirements for differentia-
bility and so on are met, can you write down an expression for∂f/∂yj where
1 ≤ j ≤ m?

Answer:this is just thechain rulefor partial differentiation

∂f

∂yj
=

n
∑

i=1

∂f

∂gi

∂gi
∂yj

299

Supervised learning with neural networks

We now look at how an agent mightlearn to solve a general problem by seeing
examples.

Aims:

• To present an outline ofsupervised learningas part of AI.

• To introduce much of the notation and terminology used.

• To introduce the classicalperceptron.

• To introducemultilayer perceptronsand thebackpropagation algorithmfor
training them.

Reading: Russell and Norvig chapter 20.

300

An example

A common source of problems in AI ismedical diagnosis.

Imagine that we want to automate the diagnosis of anEmbarrassing Disease(call
it D) by constructing a machine:

0 otherwise
1 if the patient suffers fromDMeasurementstaken from the

patient: heart rate, blood pressure,
presence of green spotsetc.

Machine

Could we do this byexplicitly writing a programthat examines the measurements
and outputs a diagnosis?

Experience suggests that this is unlikely.

301

An example, continued...

An alternative approach: each collection of measurements can be written as a
vector,

x
T = (x1 x2 · · · xn)

where,

x1 = heart rate
x2 = blood pressure
x3 = 1 if the patient has green spots

0 otherwise
...

and so on

(Note: it’s a common convention that vectors arecolumn vectorsby default. This
is why the above is written as atranspose.)

302

An example, continued...

A vector of this kind contains all the measurements for a single patient and is
called afeature vectoror instance.

The measurements areattributesor features.

Attributes or features generally appear as one of three basic types:

• Continuous: xi ∈ [xmin, xmax] wherexmin, xmax∈ R.

• Binary: xi ∈ {0, 1} or xi ∈ {−1,+1}.
• Discrete: xi can take one of a finite number of values, sayxi ∈ {X1, . . . , Xp}.

303

An example, continued...

Now imagine that we have a large collection of patient histories (m in total) and
for each of these we know whether or not the patient suffered fromD.

• Theith patient history gives us an instancexi.

• This can be paired with a single bit—0 or 1—denoting whether or not theith
patient suffers fromD. The resulting pair is called anexampleor a labelled
example.

• Collecting all the examples together we obtain atraining sequence

s = ((x1, 0), (x2, 1), . . . , (xm, 0))

304

An example, continued...

In supervised machine learning we aim to design alearning algorithmwhich takes
s and produces ahypothesish.

Learning Algorithms h

Intuitively, a hypothesis is something that lets us diagnose newpatients.

This isIMPORTANT: we want to diagnose patients thatthe system has never seen.

The ability to do this successfully is calledgeneralisation.

305

An example, continued...

In fact, a hypothesis is just afunctionthat mapsinstancesto labels.

x

Classifier

h(x) LabelAttribute vector

As h is a functionit assigns a label toanyx andnot just the ones that were in the
training sequence.

What we mean by alabel here depends on whether we’re doingclassificationor
regression.

306

Supervised learning: classification

In classificationwe’re assigningx to one of a set{ω1, . . . , ωc} of c classes.

For example, ifx contains measurements taken from a patient then there mightbe
three classes:

ω1 = patient has disease
ω2 = patient doesn’t have disease
ω3 = don’t ask me buddy, I’m just a computer!

Thebinary case above also fits into this framework, and we’ll often specialise to
the case of two classes, denotedC1 andC2.

307

Supervised learning: regression

In regressionwe’re assigningx to areal numberh(x) ∈ R.

For example, ifx contains measurements taken regarding today’s weather then we
might have

h(x) = estimate of amount of rainfall expected tomorrow

For the two-class classification problem we will also refer to a situation somewhat
between the two, where

h(x) = Pr(x is inC1)

and so we would typically assignx to classC1 if h(x) > 1/2.

308

Summary

We don’t want to designh explicitly.

Training sequence

h = L(s)

Labelh(x)

s

Learner
L

Classifier
Attribute vector

x

So we use alearnerL to infer it on the basis of a sequences of training examples.

309

Neural networks

There is generally a setH of hypotheses from whichL is allowed to selecth

L(s) = h ∈ H
H is called thehypothesis space.

The learner can output a hypothesis explicitly or—as in the case of aneural net-
work—it can output a vector

w
T =

(

w1 w2 · · · wW

)

of weightswhich in turn specifyh

h(x) = f(w;x)

wherew = L(s).

310

Types of learning

The form of machine learning described is calledsupervised learning.

This introduction will concentrate on this kind of learning. In particular, the liter-
ature also discusses:

1. Unsupervised learning.

2. Learning usingmembership queriesandequivalence queries.

3. Reinforcement learning.

Some of this further material will be covered in AI 2.

311

Some further examples

• Speech recognition.

• Decidingwhether or not to give credit.

• Detectingcredit card fraud.

• Deciding whether tobuy or sell a stock option.

• Deciding whether atumour is benign.

• Data mining: extracting interesting but hidden knowledge from existing, large
databases. For example, databases containingfinancial transactionsor loan
applications.

• Deciding whetherdriving conditions are dangerous.

• Automatic driving. (See Pomerleau, 1989, in which a car is driven for 90
miles at 70 miles per hour, on a public road with other cars present, but with
no assistance from humans.)

312

This is very similar to curve fitting

This process is in fact very similar tocurve fitting.

Think of the process as follows:

• Nature picks anh′ ∈ H but doesn’t reveal it to us.

• Nature then shows us a training sequences where eachxi is labelled ash′(xi)+
ǫi whereǫi is noise of some kind.

Our job is to try to infer whath′ is on the basis ofs only.

This is easy to visualise in one dimension:it’s just fitting a curve to some points.

313

Curve fitting

Example: if H is the set of all polynomials of degree3 then nature might pick

h′(x) =
1

3
x3 − 3

2
x2 + 2x− 1

2

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

The line is dashed to emphasise the fact thatwe don’t get to see it.

314

Curve fitting

We can now useh′ to obtain a training sequences in the manner suggested..

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

Here we have,
s
T = ((x1, y1), (x2, y2), . . . , (xm, ym))

where eachxi andyi is a real number.

315

Curve fitting

We’ll use alearning algorithmL that operates in a reasonable-looking way: it
picks anh ∈ H minimising the following quantity,

E =
m
∑

i=1

(h(xi)− yi)
2

In other words

h = L(s) = argmin
h∈H

m
∑

i=1

(h(xi)− yi)
2

Why is this sensible?

1. Each term in the sum is0 if h(xi) is exactlyyi.

2. Each termincreasesas the difference betweenh(xi) andyi increases.

3. We add the terms for all examples.

316

Curve fitting

If we pick h using this method then we get:

0.5 1 1.5 2 2.5 3

-0.2

0.2

0.4

0.6

The chosenh is close to the targeth′, even though it was chosenusing only a small
number of noisy examples.

It is not quite identical to the target concept.

However if we were given a new pointx′ and asked to guess the valueh′(x′) then
guessingh(x′) might be expected to do quite well.

317

Curve fitting

Problem: we don’t knowwhatH nature is using. What if the one we choose
doesn’t match? We can makeourH ‘bigger’ by defining it as

H = {h : h is a polynomial of degree at most5}
If we use the same learning algorithm then we get:

0.5 1 1.5 2 2.5 3

-0.2

0.2

0.4

0.6

The result in this case is similar to the previous one:h is again quite close toh′,
but not quite identical.

318

Curve fitting

So what’s the problem?Repeating the process with,

H = {h : h is a polynomial of degree at most1}
gives the following:

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

In effect, we have madeourH too ‘small’. It does not in fact contain any hypoth-
esis similar toh′.

319

Curve fitting

So we have to makeH huge, right? WRONG!!!With

H = {h : h is a polynomial of degree at most25}
we get:

0.5 1 1.5 2 2.5 3

-0.4

-0.2

0.2

0.4

0.6

0.8

BEWARE!!!This is known asoverfitting.

320

Curve fitting

An experiment to gain some further insight: using

h′(x) =
1

10
x10 − 1

12
x8 +

1

15
x6 +

1

3
x3 − 3

2
x2 + 2x− 1

2
.

as the unknown underlying function.

We can look at howthe degree of the polynomial the training algorithm can output
affects the generalisation ability of the resultingh.

We use the same training algorithm, and we train using

H = {h : h is a polynomial of degree at mostd}
for values ofd ranging from1 to 30

321

Curve fitting

• Each time we obtain anh of a given degree—call ithd—we assess its quality
using a further100 inputsx′i generated at randomand calculating

q(d) =
1

100

100
∑

i=1

(h′(x′i)− hd(x
′
i))

2

• As the valuesq(d) are found using inputs that are not necessarily included in
the training sequencethey measure generalisation.

• To smooth out the effects of the random selection of exampleswe repeat this
process100 times and average the valuesq(d).

322

Curve fitting

Here is the result:

5 10 15 20 25 30
d

5

10

15

20

25

30

Log of average q

Clearly: we need to chooseH sensibly if we want to obtaingood generalisation
performance.

323

The perceptron

The example just given illustrates much of what we want to do.However in
practice we deal withmore than a single dimension.

The simplest form of hypothesis used is thelinear discriminant, also known as
theperceptron. Here

h(w;x) = σ

(

w0 +
m
∑

i=1

wixi

)

= σ (w0 + w1x1 + w2x2 + · · · + wnxn)

So: we have alinear functionmodified by theactivation functionσ.

The perceptron’s influence continues to be felt in the recentand ongoing develop-
ment ofsupport vector machines.

324

The perceptron activation function I

There are three standard forms for the activation function:

1. Linear: for regression problemswe often use

σ(z) = z

2. Step: for two-class classification problemswe often use

σ(z) =

{

C1 if z > 0
C2 otherwise.

3. Sigmoid/Logistic: for probabilistic classificationwe often use

Pr(x is inC1) = σ(z) =
1

1 + exp(−z).

Thestep functionis important but the algorithms involved are somewhat different
to those we’ll be seeing. We won’t consider it further.

Thesigmoid/logistic functionplays a major role in what follows.

325

The sigmoid/logistic function

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The logistic function σ(z) = 1

1+exp(−z)

z

σ
(z

)

−10
−5

0
5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

Input x1

Logistic σ(z) applied to the output of a linear function

Input x2

P
r(
x

is
in

C
1
)

326

Gradient descent

A method fortraining a basic perceptronworks as follows. Assume we’re dealing
with a regression problemand usingσ(z) = z.

We define a measure oferror for a given collection of weights. For example

E(w) =
m
∑

i=1

(yi − h(w;xi))
2

Modifying our notation slightly so that

x
T = (1 x1 x2 · · · xn)

w
T = (w0 w1 w2 · · · wn)

lets us write

E(w) =

m
∑

i=1

(yi −w
T
xi)

2

327

Gradient descent

We want tominimiseE(w).

One way to approach this is to start with a randomw0 and update it as follows:

wt+1 = wt − η
∂E(w)

∂w

∣

∣

∣

∣

wt

where
∂E(w)

∂w
=
(

∂E(w)
∂w0

∂E(w)
∂w1

· · · ∂E(w)
∂wn

)T

andη is some small positive number.

The vector

−∂E(w)

∂w
tells us thedirection of the steepest decrease inE(w).

328

Gradient descent

With

E(w) =
m
∑

i=1

(yi −w
T
xi)

2

we have

∂E(w)

∂wj
=

∂

∂wj

(

m
∑

i=1

(yi −w
T
xi)

2

)

=
m
∑

i=1

(

∂

∂wj
(yi −w

T
xi)

2

)

=
m
∑

i=1

(

2(yi −w
T
xi)

∂

∂wj

(

−wT
xi

)

)

= −x(j)
i

m
∑

i=1

2
(

yi −w
T
xi

)

wherex(j)
i is thejth element ofxi.

329

Gradient descent

The method therefore gives the algorithm

wt+1 = wt + 2η
m
∑

i=1

(

yi −w
T
t xi

)

xi

Some things to note:

• In this caseE(w) is parabolicand has aunique global minimumandno local
minimaso this works well.

• Gradient descentin some form is a very common approach to this kind of
problem.

• We can perform a similar calculation forother activation functionsand for
other definitions forE(w).

• Such calculations lead todifferent algorithms.

330

Perceptrons aren’t very powerful: the parity problem

There are many problems a perceptron can’t solve.

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

x1

x
2

−1 0 1 2 −1

0

1

2

0

0.2

0.4

0.6

0.8

1

x2

x1

N
et

w
o
rk

o
u
tp

u
t

We need a network that computesmore interesting functions.

331

The multilayer perceptron

Eachnodein the network is itself a perceptron:

aj zj
σ(aj)

w0

w1

w2

wn

...

Nodej
z1

z2

zn

∑n

i=0
wizi

z0 = 1

• Weightswi connect nodes together.

• aj is the weighted sum oractivationfor nodej.

• σ is theactivation function.

• Theoutputis zj = σ(aj).

332

The multilayer perceptron

Reminder:

We’ll continue to use the notation

z
T = (1 z1 z2 · · · zn)

w
T = (w0 w1 w2 · · · wn)

So that
n
∑

i=0

wizi = w0 +
n
∑

i=1

wizi

= w
T
z

333

The multilayer perceptron

In the general case we have acompletely unrestricted feedforward structure:

Feature vectorx Nodei

Nodej
wi→j

Outputy = h(w;x)

x1

x2

xn

...

Each nodeis a perceptron.No specific layeringis assumed.

wi→j connects nodei to nodej. w0 for nodej is denotedw0→j.

334

Backpropagation

As usual we have:

• InstancesxT = (x1, . . . , xn).

• A training sequences = ((x1, y1), . . . , (xm, ym)).

We also define a measure of training error

E(w) = measure of the error of the network ons

wherew is the vector ofall the weights in the network.

Our aim is to find a set of weights thatminimisesE(w) usinggradient descent.

335

Backpropagation: the general case

Thecentral taskis therefore to calculate
∂E(w)

∂w

To do that we need to calculate the individual quantities

∂E(w)

∂wi→j

for every weightwi→j in the network.

OftenE(w) is the sum of separate components, one for each example ins

E(w) =
m
∑

p=1

Ep(w)

in which case
∂E(w)

∂w
=

m
∑

p=1

∂Ep(w)

∂w

We can therefore consider examples individually.

336

Backpropagation: the general case

Place examplep at the input and calculateaj andzj for all nodesincluding the
outputy. This isforward propagation.

We have
∂Ep(w)

∂wi→j
=

∂Ep(w)

∂aj

∂aj
∂wi→j

whereaj =
∑

k wk→jzk.

Here the sum is overall the nodes connected to nodej. As

∂aj
∂wi→j

=
∂

∂wi→j

(

∑

k

wk→jzk

)

= zi

we can write
∂Ep(w)

∂wi→j
= δjzi

where we’ve defined

δj =
∂Ep(w)

∂aj

337

Backpropagation: the general case

So we now need to calculate the values forδj...

Whenj is theoutput node—that is, the one producing the outputy = h(w;xp) of
the network—this is easy aszj = y and

δj =
∂Ep(w)

∂aj

=
∂Ep(w)

∂y

∂y

∂aj

=
∂Ep(w)

∂y
σ′(aj)

using the fact thaty = σ(aj).

338

Backpropagation: the general case

The first term is in general easy to calculatefor a givenE as the error is generally
just a measure of the distance betweeny and the label in the training sequence.

Example:when
Ep(w) = (y − yp)

2

we have
∂Ep(w)

∂y
= 2(y − yp)

= 2(h(w;xp)− yp)

339

Backpropagation: the general case

Whenj is not an output nodewe need something different:

j

...
...

aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

We’re interested in

δj =
∂Ep(w)

∂aj
Altering aj can affectseveral other nodesk1, k2, . . . , kq each of which can in turn
affectEp(w).

340

Backpropagation: the general case

j

...
...

aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

We have

δj =
∂Ep(w)

∂aj
=

∑

k∈{k1,k2,...,kq}

∂Ep(w)

∂ak

∂ak
∂aj

=
∑

k∈{k1,k2,...,kq}
δk
∂ak
∂aj

wherek1, k2, . . . , kq are the nodes to which nodej sends a connection.

341

Backpropagation: the general case

j

...
...

aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

Because we know how to computeδj for the output nodewe canwork backwards
computing furtherδ values.

We will always know all the valuesδk for nodes ahead of where we are.

Hence the termbackpropagation.

342

Backpropagation: the general case

j

...
...

aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

∂ak
∂aj

=
∂

∂aj

(

∑

i

wi→kσ(ai)

)

= wj→kσ
′(aj)

and
δj =

∑

k∈{k1,k2,...,kq}
δkwj→kσ

′(aj) = σ′(aj)
∑

k∈{k1,k2,...,kq}
δkwj→k

343

Backpropagation: the general case

Summary: to calculate∂Ep(w)

∂w for thepth pattern:

1. Forward propagation: applyxp and calculate outputsetc for all the nodes in
the network.

2. Backpropagation 1: for theoutputnode

∂Ep(w)

∂wi→j
= ziδj = ziσ

′(aj)
∂Ep(w)

∂y

wherey = h(w;xp).

3. Backpropagation 2: For other nodes

∂Ep(w)

∂wi→j
= ziσ

′(aj)
∑

k

δkwj→k

where theδk were calculated at an earlier step.

344

Backpropagation: a specific example

Hidden nodes receive
inputs from all features

Output node receives
inputs from all hidden
nodes

y = h(w;x)

...

...

x2

x1

xn

For the output:σ(a) = a. For the hidden nodesσ(a) = 1
1+exp(−a).

345

Backpropagation: a specific example

For the output:σ(a) = a soσ′(a) = 1.

For the hidden nodes:
σ(a) =

1

1 + exp(−a)
so

σ′(a) = σ(a) [1− σ(a)]

We’ll continue using the same definition for the error

E(w) =
m
∑

p=1

(yp − h(w;xp))
2

Ep(w) = (yp − h(w;xp))
2

346

Backpropagation: a specific example

For the output: the equation is

∂Ep(w)

∂wi→output
= ziδoutput= ziσ

′(aoutput)
∂Ep(w)

∂y

wherey = h(w;xp). So as

∂Ep(w)

∂y
=

∂

∂y

(

(yp − y)2
)

= 2(y − yp)

= 2 [h(w;xp)− yp]

andσ′(a) = 1 so
δoutput= 2 [h(w;xp)− yp]

and
∂Ep(w)

∂wi→output
= 2zi(h(w;xp)− yp)

347

Backpropagation: a specific example

For the hidden nodes: the equation is

∂Ep(w)

∂wi→j
= ziσ

′(aj)
∑

k

δkwj→k

Howeverthere is only one outputso

∂Ep(w)

∂wi→j
= ziσ(aj) [1− σ(aj)] δoutputwj→output

and we know that
δoutput= 2 [h(w;xp)− yp]

so
∂Ep(w)

∂wi→j
= 2ziσ(aj) [1− σ(aj)] [h(w;xp)− yp]wj→output

= 2xizj(1− zj) [h(w;xp)− yp]wj→output

348

Putting it all together

We can then use the derivatives in one of two basic ways:

Batch: (as described previously)

∂E(w)

∂w
=

m
∑

p=1

∂Ep(w)

∂w

then

wt+1 = wt − η
∂E(w)

∂w

∣

∣

∣

∣

wt

Sequential: using just one pattern at once

wt+1 = wt − η
∂Ep(w)

∂w

∣

∣

∣

∣

wt

selecting patternsin sequence or at random.

349

Example: the parity problem revisited

As an example we show the result of training a network with:

• Two inputs.

• One output.

• One hidden layer containing5 units.

• η = 0.01.

• All other details as above.

The problem is the parity problem. There are40 noisy examples.

The sequential approach is used, with1000 repetitions through the entire training
sequence.

350

Example: the parity problem revisited

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

2
Before training

x1

x
2

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

2
After training

x1

x
2

351

Example: the parity problem revisited

−1
0

1
2

−1
0

1
2
0

0.5

1

x1

Before training

x2

N
et

w
o
rk

o
u
tp

u
t

−1
0

1
2 −1

0

1

2
0

0.5

1

x2

After training

x1

N
et

w
o
rk

o
u
tp

u
t

352

Example: the parity problem revisited

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10
Error during training

353

