Artificial Intelligence |

Dr Sean Holden
Computer Laboratory, Room FC06
Telephone extension 63725
Email: sbhll@cl.cam.ac.uk

www.cl.cam.ac.ukisbhl11/

Copyright(©) Sean Holden 2002-2012.

1



Introduction: what's Al for?

What is the purpose of Artificial Intelligence (Al)? If yoeraphilosopheror a
psychologisthen perhaps it’s:

e To understand intelligence

e TO understanaurselves

Philosophers have worked on this for at leasi) years. They've also wondered
about:

e Canwe do Al?Shouldwe do AI?

e Is Al impossibl@ (Note: | didn’t writepossiblehere, for a good reason...)

Despite2000 years of work, there’s essentialiyddly-squatin the way of results.



Introduction: what's Al for?

Luckily, we were sensible enough not to pursue degrees iloggphy—we’re
scientists/engineers, so while we might haweneinterest in such pursuits, our

perspective is different:

e Brains are small (true) and apparently slow (not quite sareteit), but incred-
Ibly good at some tasks—we want to understand a specific féroomputa-

tion.
e It would be nice to be able toonstructintelligent systems.

e It IS also nice tanake and sell cool stuff

This viewseems to be the more successful. ..

Al is entering our lives almost without us being aware of it.



Introduction: now is a fantastic time to investigate Al

In many ways this is a young field, having only really got ungay in 1956 with
the Dartmouth Conference

www f or mal . st anf ord. edu/ j nt/ hi st ory/ dart nout h/ dart nout h. ht m

e This means we can actualtjo things. It's as if we were physicists before
anyone thought about atoms, or gravity, or....

e Also, we know what we're trying to do igossible (Unless we think humans
don’t exist. NOW STEP AWAY FROM THE PHILOSOPB&foreSOMEONE
GETS HURT!!)

Perhaps I'm being too hard on them; there was some good gnarkdSocratesvanted an algorithm fofpiety” ,
leading toSyllogisms Ramon Lull'sconcept wheeland other attempts at mechanical calculators. Rene Destart
Dualismand the idea of mind as hysical system Wilhelm Leibnitz’'s opposing position dflaterialism (The
intermediate position: mind ishysicalbutunknowable The origin ofknowledge Francis Bacon’&mpiricism John
Locke: “Nothing is in the understanding, which was not first in theses”. David Hume: we obtain rules by repeated
exposureinduction Further developed by Bertrand Russel and inGloafirmation Theorgf Carnap and Hempel.

More recently: the connection betweknowledgeandaction? How are actiongustified? If to achieve the end you
need to achieve something intermediate, consider how teaethat, and so on. This approach was implemented in
Newell and Simon’s 195%eneral Problem Solver (GPS)



Is Al possible?

Many philosophers are particularly keen to argue that Ainpossibl® Why is
this? We have:

e Perception (vision, speech processing...)

e Logical reasoning (prolog, expert systems, CYC...)

e Playing games (chess, backgammon, go...)

e Diagnosis of illness (in various contexts...)

e Theorem proving (Robbin’s conjecture...)

e Literature and music (automated writing and compositipn..

e And many more...

What's made the difference? In a nutshele’re the first lucky bunch to get our
hands on computerand that allows us tbuild things

The simple ability tary things outhas led to huge advances in a relatively short
time. So: don’t believe the critics...



Further reading

Why do people dislike the idea that humanity might nospecial
An excellent article on why this view is much more problemahan it might
seem Is:

“Why people think computers can’tMarvin Minsky. Al Magazine, volume 3
number 4, 1982.



Aside: when something is understood it stops being Al

To have Al, you need a meansiofplementinghe intelligence. Computers are (at

present) the only devices in the race. (Althouglantum computatiors looking
Interesting...)

Al has had a major effect on computer science:

e Time sharing

e Interactive interpreters

e Linked lists

e Storage management

e Some fundamental ideas in object-oriented programming

e and so on...

When Al has a success, the ideas in question testbio being called Al

Similarly: do you consider the fact thabur phone can do speech recognititon
be a form of Al?



The nature of the pursuit

What is Al?This Is not necessarily a straightforward question.

It depends on who you ask...

We can find many definitions and a rough categorisation candserdepending
on whether we are interested in:

e The way In which a systemctsor the way in which ithinks

e \Whether we want it to do this infaumanway or arational way.

Here, the wordational has a special meaning: it meamsing the correct thing
In given circumstances



Acting like a human

What is Al, version one: acting like a human

Alan Turingproposed what is now known as thering Test

e A human judge is allowed to interact with an Al program via rarteal.

e This is theonly method of interaction.

e If the judge can’t decide whether the interaction is produleg a machine or
another human then the program passes the test.

In the unrestrictedTuring test the Al program may also have a camera attached,
so that objects can be shown to it, and so on.



Acting like a human

The Turing test is informative, and (very!) hard to pass.

e It requires many abilities that seem necessary for Al, sgclearning.BUT:
a human child would probably not pass the test.

e Sometimes an Al system needs human-like acting abilities-eXamplesx-
pert systemseften have to produce explanations—hbuot always

See thd_oebner Prize in Artificial Intelligence

www. | oebner. net/ Prizef/| oebner-prize. htm

10



Thinking like a human

What is Al, version two: thinking like a human

There is always the possibility that a machaing like a human does not actu-
ally think. Thecognitive modellin@pproach to Al has tried to:

e Deducehow humans think-for example byintrospectionor psychological
experiments

e Copy the process by mimicking it within a program.
An early example of this approach is tlkeneral Problem Solveproduced by

Newell and Simon in 1957. They were concerned with whethapbthe program
reasoned in the same manner that a human did.

Computer Science Psychology= Cognitive Science

11



Thinking rationally: the “laws of thought”

What is Al, version three: thinking rationally

The idea that intelligence reducesrtdional thinkingis a very old one, going at
least as far back as Aristotle as we've already seen.

The general field ofogic made major progress in the 19th and 20th centuries,
allowing it to be applied to Al.

e \We canrepresen@andreasonabout many different things.

e Thelogicistapproach to Al.

This is a very appealing idealowever...

12



Thinking rationally: the “laws of thought”

Unfortunately there are obstacles to any naive applicatfaagic. It is hard to:

e Representommonsense knowledge
e Deal withuncertainty

e Reason without being tripped up bgmputational complexity

These will be recurring themes in this course, and in Al Il.

Logic alone also falls short because:

e Sometimes it's necessary to act when thene@$ogical course of action.

e Sometimes inference is1necessar(reflex actions).

13



Further reading

The Fifth Generation Computer Systepnoject has most certainly earned the
badge of‘heroic failure”.

It is an example of how much harder the logicist approachas ffou might think:

“Overview of the Fifth Generation Computer Projectiohru Moto-oka. ACM
SIGARCH Computer Architecture News, volume 11, number 83319

14



Acting rationally

What is Al, version four: acting rationally

Basing Al on the idea ofcting rationally means attempting to design systems
that act toachieve their goalgiven theirbeliefs

Thinking about this in engineering terms, it seeaisiost inevitablyto lead us
towards the usual subfields of Al. What might be needed?

e To makegood decisiontn manydifferent situationsve need taepresenand
reasonwith knowledge

¢ \We need to deal withatural language
¢ \We need to be able talan.
e \We needvision

e \We needearning

And so on, so all the usual Al bases seem to be covered.

15



Acting rationally

The idea ofacting rationallyhas several advantages:

e The concepts ofiction, goal andbelief can be defined precisely making the
field suitable for scientific study.

This is important: if we try to model Al systems on humans, @r’teven propose
anysensible definition ofvhat a belief or goal is

In addition, humans are a system that is still changing aagted to a very spe-
cific environment.

Rational actingdoes not have these limitations.

16



Acting rationally

Rational actingalso seems tocludetwo of the alternative approaches:

e All of the things needed to pass a Turing test seem necessargtional act-
Ing, so this seems preferable to theing like a humarmpproach.

e The logicist approach can clearly foymart of what'’s required to act rationally,
so this seems preferable to thienking rationallyapproach alone.

As a result, we will focus on the idea of designing systemsdharationally.

17



Other fields that have contributed to Al

Experimental Psychology Mathematics I: logic
Mathematics II: probability

Hermann von Helmholtz: visual system. Aristotle's material turned into mathematics by Boole

Wilhelm Wundt: introspection. (Experimentally dubious.) Frege: first order logic. Gambling outcomes: Cardano, Fermat, Pascal, Bernoulli, Laplace.

Tarski: relationship between real and logical objects. Bernoulli: degree of belief.
K s 5 Bayes: updating beliefs using evidence.
Watson and Thorndike: Behaviourism SRR EoReEnt @ aligorilim,
Hilbert: limits of algorithms. Modern representation of uncertainty.
Learned a lot about pigeons and rats.

Intractability and complexity. Von Neumann and Morgenstern: combine uncertainty with
Stimulus and response/objective measures. action: decision theory.

Godel: incompleteness theorem.

Craik: "The Nature of Explanation" \

Brain as an information processing device. Neuroscience

Reasoning, beliefs, goals etc. Nasty bumps on the head - we know brains
System has a model of how the world works. Artificial Intelligence and consciousness are related.

Paul Broca: localised regions have different tasks.

Presence of neurons, although even storage of a memory

Linguistics not really understood.
Recently: EEG, MRI etc.
Skinner's "Verbal Behaviour".
Noam Chomsky: behaviourisn can't account for understanding or

production of things not previously heard.

A central AI concept: "Time flies like an arrow. Fruit flies like a banana". Economics

How should I act, in the presence of adversaries, to obtain nice
Cybernetics stuff in the future?

. . . How do I measure the degree of niceness?
250BC: first machine able to modify its own behaviour.

X Probability + Utility = Decision Theory.
James Watt: governor for steam engines.
Small economies: game theory - sometimes it's rational to act (apparently)

Drebbel: thermostat. randomly.

Norbert Weiner and others: control theory as a mathematical subject. Belman: Operations research. Markov decision processes. Future gains

. . . X resulting from a series of actions.
Minimisation of difference between current situation and goal.

. . e . . . Rational action is intractable. Herbert Simon: Satisficing is a better description
Stochastic optimal control: minimisation over time of an objective function. of what humans do.

----Al moves away from linear and continuous scenarios.




What's in this course?

This course introduces some of the fundamental areas thag upAl:

e An outline of the background to the subject.

e An introduction to the idea of aagent

e Solving problems in an intelligent way k®earch

e Solving problems represented@sstraint satisfactioproblems.
e Playinggames

e Knowledge representation, and reasoning

e Planning

e Learningusingneural networks

Strictly speaking, Al | covers what is often referred to“@sod Old-Fashioned
Al” . (Although “Old-Fashioned” is a misleading term.)

The nature of the subject changed a great deal when the iamperbfuncertainty
became fully appreciated. Al Il covers this more recent mate

19



What'snotin this course?

e The classical Al programming language®log andlisp.
e A great deal of all the areas on the last slide!

e Perceptionyision hearingandspeech processintpuch(force sensing, know-
ing where your limbs are, knowing when something is b&ahie smell

e Natural language processing.

e Acting on and in the world:robotics (effectors, locomotion, manipulation),
control engineeringmechanical engineeringuavigation

e Areas such agenetic algorithms/programmingwarm intelligencgartificial
Immune systenandfuzzy logig for reasons that | will expand upon during the
lectures.

e Uncertaintyand much further probabilistic material. (You'll have toitvantil
next year.)

20



Text book

The course is based on the relevant parts of:

Artificial Intelligence: A Modern ApproaciThird Edition (2010). Stuart Russell
and Peter Norvig, Prentice Hall International Editions.

NOTE:This is also the main recommended text for Al2.

21



Interesting things on the web

A few interesting web starting points:

The Honda Asimo robotiwr I d. honda. cont AsI MO

Al at Nasa AmeS:ww. nasa. gov/ cent er s/ anes/ r esear ch/ expl or i ngt heuni ver se/ spi ffy. ht m
DARPA Grand Challengeht t p: // ww. dar pagr andchal | enge. coni

2007 DARPA Urban Challengec:s. st anf or d. edu/ gr oup/ r oadr unner

The Cyc project:www. cyc. com

Human-like robots:ww. ai . it . edu/ proj ect s/ humanoi d-r obot i cs- group

Sony I’ObOtSZsupport . sony- eur ope. coni ai bo

NEC “PaPeRo0”:ww. nec. co. j p/ product s/ r obot / en

22



Prerequisites

The prerequisites for the course are: first order logic, salgerithms and data
structures, discrete and continuous mathematics, basiputational complexity.

DIRE WARNING:

In the lectures omachine learnind will be talking aboutneural networks

This means you will need to be ableddferentiateand also handleectors and
matrices

If you've forgotten how to do thisou WILL get lost—I guarantee it!!!

23



Prerequisites

Self test:

1. Let

flxy,...,z,) = Zawf
1=1
where the; are constants. Can you compatg/dx; wherel < j < n?

2. Let f(xy,...,x,) be afunction. Now assume = g;(v1, ..., y,,) for eachz;
and some collection of functions. Assuming all requirements for differentia-

bility and so on are met, can you write down an expression foloy; where
1<j<m?

If the answer to either of these questions is “no” then itisdifor some revision.
(You have about three weeks notice, so I'll assume you knw it

24



And finally. ..

There are some important points to be made regarcngputational complexity

First, you might well hear the termal-completebeing used a lot. What does it
mean?

Al-complete: only solvable if you can solve Al in its entiret

For example: high-quality automatic translation from omeguage to another.

To produce a genuinely good translatiomvdby Dickfrom English to Cantonese
IS likely to be Al complete.

25



And finally. ..

More practically, you will often hear me make the claim thaérything that’s at
all interesting in Al is at least NP-complete

There are two ways to interpret this:

1. The wrong way: “It's all a waste of tim&.OK, so it's a partly understandable
InterpretationBUT the fact that the travelling salesman problem is intraetabl
does nomean there’s no such thing as a satnav. ..

2. The right way: “It's an opportunity to design nice approation algorithms.”
In reality, the algorithms that aood in practiceare ones that try toftenfind
agoodbut not necessarilgptimalsolution, in areasonableamount of time.

In essence, a comment on a course assessment a couple digelats the effect of: “Why do you teach us this stuff if it'$ faitile?”

26



Artificial Intelligence |

Dr Sean Holden

An introduction toAgents

Copyright(©) Sean Holden 2002-2012.

27



Agents

There are many different definitions for the teagpentwithin Al.

Allow me to introduce

MUST ENSLAVE EARTH!!
DR HOLDEN WILL BE OUR
GLORIOUS LEADER!!!!

We will use the following simple definitionan agent is any device that can sense
and act upon its environment

28



Agents

This definition can be very widely applied: to humans, ropptsces of software,
and so on.

We are taking quite aapplied perspective. We want tamake thinggather than
copy humansso to be scientific there are some issues to be addressed:

e How can we judge an agent’s performance?
e How can an agent'snvironmenaffect its design?

e Are there sensible ways in which to think about #teictureof an agent?

Recall that we are interested in devices thetrationally, where ‘rational’ means
doing thecorrect thingundergiven circumstances

Reading:Russell and Norvig, chapter 2.

29



Measuring performance

How can we judge an agent’s performance? Any measure ofrpaaiftce is likely
to beproblem-specific

Example:For a chess playing agent, we might use its rating.

Example: For a mail-filtering agent, we might devise a measure of how nve
blocks spam, but allows interesting email to be read.

Example:For a car driving agent the measure needs considerablessicphion:
we need to take account of comfort, journey time, saftty

So:the choice of a performance measure is itself worthy of cacefnsideration.

30



Measuring performance

We're usually interested iaxpected, long-term performance
e Expectedperformance because usually agents areonotiscient—they don't
infallibly know the outcome of their actions.

e It is rational for you to enter this lecture theatre even if the roof fallsaday.

An agent capable of detecting and protecting itself fromlintaroof might be
moresuccessfuthan you, buthot morerational.

e Long-term performancéecause it tends to lead to better approximations to
what we’d consider rational behaviour.

e \We probably don’t want our car driving agent to be outstaggismooth and
safe for most of the time, but have episodesiofing through the local or-
phanage at 150 mph

31



Environments

How can an agent'snvironmenaffect its design=xample:the environment for
a chess programs vastly different to that for amutonomous deep-space vehi-
cle. Some common attributes of an environment have a consigardluence on

agent design.

e Accessible/inaccessibledo percepts tell yowverythingyou need to know
about the world?

e Deterministic/non-deterministicdoes the future depenaredictablyon the
present and your actions?

e Episodic/non-episodiis the agent run in independent episodes.
e Static/dynamiccan the world change while the agent is deciding what to do?

e Discrete/continuousan environment is discrete if the sets of allowable per-
cepts and actions are finite.

32



Environments

All of this assumes there is only one agent.

When multiple agents are involved we need to consider:

e \Whether the situation isompetitiveor cooperative

e \Whethercommunicatiorrequired?
An example of multiple agents:

news.bbc.co.uk/1/hi/technology/3486335.stm

33



Basic structures for intelligent agents

Are there sensible ways in which to think about #teictureof an agent? Again,
this is likely to beproblem-specificalthough perhaps to a lesser extent.

So far, an agent is based on percepts, actions and goals.
Example:Aircraft piloting agent.

Percepts:sensor information regarding height, speed, engetesudio and video
iInputs, and so on.

Actions: manipulation of the aircraft’s controls.
Also, perhaps talking to the passengetls

Goals: get to the necessary destination as quickly as possiblemrtimal use of
fuel, without crashinggtc

34



Programming agents

A basic agent can be thought of as working on a straightfawaderlying pro-
cess:

e Gather perceptions

e Updateworking memoryo take account of them.

e On the basis of what's in the working memoctyioose an actioto perform.

e Updatethe working memory to take account of this action.

e Do the chosen action.

Obviously, this hides a great deal of complexity.

Also, it ignores subtleties such as the fact that a perceghtnarrive while an
action is being chosen.

35



Programming agents

We’'ll initially look at two hopelessly limited approachdscause they do suggest
a couple of important points.

Hopelessly limited approach numberdse a table to map percept sequences to
actions. This can quickly be rejected.

e The table will behugefor any problem of interest. AboutH'"’ entries for a
chess player.

e We don’t usually know how to fill the table.

e Even if we allow table entries to bearnedit will take too long.
e The system would have reaitonomy

We can attempt to overcome these problems by allowing agentsson

Autonomyis an interesting issue though...

36



Autonomy

If an agent’s behaviour depends in some manner oowuis experience of the
world via its percept sequence, we say ialgonomous

e An agent using only built-in knowledge would seem not to becesgsful at Al
In any meaningful sense: its behaviour is predefined by sgyder.

e On the other handomebuilt-in knowledge seems essential, even to humans.

Not all animals are entirely autonomous.

For example:dung beetles.

37



Reflex agents

Hopelessly limited approach number Ry extracting pertinent information and
usingrulesbased on this.

Condition-action rulesi f a certainstateis observed hen perform somection

Some points immediately present themselves regandingeflex agents are un-
satisfactory:

e \We can't always decide what to do based ondheent percept

e However storingall past percepts might be undesirable (for example requiring
too much memory) or just unnecessary.

e Reflex agents don’t maintain a description of thete of their environment

e ...however this seems necessary for any meaningful Al. $den automating
the task of driving.)

This is all the more important as usually percepts don’'tytell everything about
the state

38



Keeping track of the environment

It seems reasonable that an agent should maintain:

e A description of the current state of its environment
e Knowledge of how the environmenhanges independently of the agent

e Knowledge of how the agentsctions affect its environment

This requires us to dbnowledge representatiaandreasoning

39



Goal-based agents

It seems reasonable that an agent should choose a ratiamgkecof action de-
pending on itgjoal.

e If an agent has knowledge of how its actions affect the enwrent, then it
has a basis for choosing actions to achieve goals.

e To obtain asequenc®f actions we need to be abledearchand toplan.

This isfundamentally differerfrom a reflex agent.

For example:by changing the goal you can change the entire behaviour.

40



Goal-based agents

We now have a basic design that looks something like this:

Percept

DESCFIptIOH current environment

I Description: effect of actions II

Description: behaviour of environment

Description of Goal

Action/Action sequence

41



Utility-based agents

Introducing goals is still not the end of the story.

There may benanysequences of actions that lead to a given goal,samade may
be preferable to others

A utility function maps a state to a number representing the desirability of tha
state.

e \We can trade-oftonflicting goalsfor example speed and safety.

e If an agent has several goals and is not certain of achiengghthem, then
It can trade-off likelihood of reaching a goal against theigblility of getting

there.

Maximising expected utilitpver time forms a fundamental model for the design
of agents. However we don’t get as far as that until Al 1.

42



Learning agents

It seems reasonable that an agent sh@ddn from experience

Percept

Action/Action sequence

43



Learning agents

This requires two additions:
e The learner needs some form feledbackon the agent’s performance. This
can come in several different forms.
¢ In general, we also need a meangeherating new behavioum order to find
out about the world.

This in turn implies a trade-off: should the agent spend taxgloitingwhat it’s
learned so far, oexploringthe environment on the basis that it might learn some-
thing really useful?

44



What have we learned? (No pun intended...)

Thecrucial things that should be taken away from this lecture are:

e The nature of an agent depends oreitsironmenandperformance measure
e \We're usually interested iaxpected, long-term performance

e Autonomy requires that an agent in some way behdegending on its expe-
rience of the world

e There is anatural basic structur®n which agent design can be based.
e Consideration of that structure leads naturally to thedoasas covered in this
course.

Those basic areas aneowledge representation and reasoning, search, planning

and learning on, and finally, weve learned NOT TO MESS WITH .. he'’s a VERY BAD ROBOT!

45



Artificial Intelligence |

Dr Sean Holden

Notes onproblem solving by search

Copyright(© Sean Holden 2002-2012.

46



Problem solving by search

We begin with what is perhaps the simplest collection of Ahtmques: those al-

lowing anagentexisting within arenvironmento searchfor asequence of actions
thatachieves a goal

The algorithms can, crudely, be divided into two kindsinformedandinformed

Not surprisingly, the latter are more effective and so wiedk at those in more
detail.

Reading:Russell and Norvig, chapters 3 and 4.

47



Problem solving by search

As with any area of computer science, some degregbefractionis necessary
when designing Al algorithms.

Search algorithmapply to a particularly simple class of problems—we need to
identify:
e An initial state what is the agent’s situation to start with?

e A set of actionsthese are modelled by specifying what state will result on
performing any available action from any known state.

e A goal test we can tell whether or not the state we're in correspondgmed

Note that the goal may be described by a property rather thaxlicit state or
set of states, for examptegneckmate

48



Problem solving by search

A simple examplethe 8-puzzle

Start State

BN
D&

Goal State

[

(A good way of keeping kids quiet...)

49



Problem solving by search

Start state:a randomly-selected configuration of the numbiets 8 arranged on
a3 x 3 square grid, with one square empty.

Goal state:the numbers in ascending order with the bottom right squae\e

Actions: | eft, ri ght, up, down. We can move any square adjacent to the
empty square into the empty square. (It's not always posstdothoose from all
four actions.)

Path cost:1 per move.

The 8-puzzle is very simple. However general sliding block pagzire a good
test case. The general problem is NP-complete. 5The version has about)*
states, and a random instance is in fact quite a challenge.

50



Problem solving by basic search

has found himself in an unfamiliar building:

Evil Robot

g Teleport

He wants thé@ODIN (Oblivion Device of Indescribable Nastiness)

Bill



Problem solving by search

Start state: IS In the top left corner.
Goal state: IS In the area containing the ODIN.

Actions: | ef t, ri ght, up, down. We can move as long as there’s no wall in
the way. (Again, it’'s not always possible to choose fromalirfactions.)

Path cost:1 per move. If you step on a teleport then you move to the other on
with a cost of0.

5z



Problem solving by search

Problems of this kind are very simple, but a surprisinglgéanumber of applica-
tions have appeared:

e Route-finding/tour-finding.

e Layout of VLSI systems.

e Navigation systems for robots.

e Sequencing for automatic assembly.

e Searching the internet.

e Design of proteins.

and many others...

Problems of this kind continue to form an active research.are

53



Problem solving by search

It's worth emphasising that a lot of abstraction has takeweehere:

e Can the agent know it's current state in full?

e Can the agent know the outcome of its actions in full?
Single-state problemghe state is always known precisely, as is the effect of any
action. There is therefore a single outcome state.

Multiple-state problemsThe effects of actions are known, but the state can not
reliably be inferred, or the state is known but not the effexdtthe actions.

Both single and multiple state problems can be handled ubegge search tech-
niques. In the latter, we must reason about the set of stsésve could be In:

e In this case we have an initiaetof states.
e Each action leads to a furtheetof states.

e The goal is a set of statesl of which are valid goals.

54



Problem solving by search

Contingency problems

In some situations it is necessary to perform sensihde the actions are being
carried out in order to guarantee reaching a goal.

(It's good to keep your eyes open while you cross the road!)

This kind of problem requireglanningand will be dealt with later.

55



Problem solving by search

Sometimes it is actively beneficial to act and see what hagppather than to try
to consider all possibilities in advance in order to obtapedect plan.

Exploration problems

Sometimes you haveo knowledge of the effect that your actions have on the
environment.

Babies in particular have this experience.
This means you need to experiment to find out what happens ydheact.

This kind of problem requireseinforcement learnindor a solution. We will not
cover reinforcement learning in this course. (Althougls it Al 11.)

56



Search trees

The basic idea should be familiar from yo#iigorithms I course, and also from
Foundations of Computer Science

e \We build atreewith the start state as root node.

e A node isexpandedy applying actions to it to generate new states.

e A pathis asequence of actiorthat lead from state to state.

e The aim is to find ajoal statewithin the tree.

e A solutionis a path beginning with the initial state and ending in a gbaie.

We may also be interested in thath costas some solutions might be better than
others.

Path cost will be denoted hy

57



e g [ T
- I
1

EEE, [ =@ ll EEE
Down
lll lll

GG /
o
o .
... .

58



Search trees versus search graphs

We need to make an important distinction betwsearch treeandsearch graphs
For the time being we assume that it'srae as opposed to graph that we're
dealing with.

as opposed to

(There is a good reason for this, which we’ll get to in a momeént

In atreeonly one pathcan lead to a given state. Ingaapha statecan be reached
via possiblymultiple paths

5



Search trees

Basic approach:

e Test the root to see if it is a goal.

e If not thenexpandit by generating all possible successor states according to
the available actions.

e If there is only one outcome state then move to it. Otherwismse one of
the outcomes and expand it.

e The way in which this choice is made definesearch strategy

e Repeat until you find a goal.

The collection of states generated but not yet expandedllisdctne fringe or
frontier and is generally stored asjaeue

60



The basic tree-search algorithm

In pseudo-code, the algorithm looks like this:

function treeSearch {
fringe = queue containing only the start state;
while() {
I f (enpty(fringe))
return fail;
node = head(fringe);
I f (goal (node))
return sol uti on(node);
fringe = insert(expand(node), fringe);
}
}

Thesearch strategys set by using g@riority queue

The definition ofpriority then sets the way in which the tree is searched.

61



The basic tree-search algorithm

. Expanded

O In the fringe, but not expande:

@  Notyet investigated

62



The basic tree-search algorithm

We can immediately define some familiar tree search alguosth

e New nodes are added to thead of the queudlhis isdepth-first search

e New nodes are added to ttel of the queueThis isbreadth-first search

We will not dwell on these, as they are bathimpletely hopelesn practice.
Why is that?

63



The performance of search techniques

How might we judge the performance of a search technique?

We are interested in:

e \Whether a solution is found.
e \Whether the solution found is a good one in terms of path cost.

e The cost of the search in terms of time and memory.

So
the total cost= path cost- search cost

If a problem is highly complex it may be worth settling fosab-optimal solution
obtained in ashort time

We are also interested in:
Completenesddoes the strategyuaranteea solution is found?
Optimality: does the strategy guarantee thatlikeetsolution is found?

Once we start to consider these, things get a lot more irteges

64



Breadth-first search

Why is breadth-first search hopeless?

e The procedure isomplete it is guaranteed to find a solution if one exists.

e The procedure isptimalif the path cost is a non-decreasing function of node-
depth.

e The procedure haxponential complexity for both memory and tirAdoranch-
Ing factorb requires

bd+1_1
L+b+b6"+b°+-- + b= —

nodes if the shortest path has degth

In practice it is thememoryrequirement that is problematic.

65



Depth-first search

With depth-first search: for a given branching factand depthi the memory
requirement i) (bd).

This is because we need to storedes on the current pat@ndthe other unex-
panded nodes

The time complexity is)(b?). Despite this, if there anmany solutionsve stand a
chance of finding one quickly, compared with breadth-firarsle.

66



Backtracking search

We can sometimes improve on depth-first search by usaagtracking search

e If each node knows how tgenerate the next possibilithen memory is im-
proved toO(d).

e Even better, if we can work biyiaking modificationto astate descriptiothen
the memory requirement is:

— One full state description, plus...
— ... O(d) actions (in order to be able tondoactions).

How does this work?

67



No backtracking With backtracking

Trying: up, down, | ef t,ri ght: If we have:

+ [up, down]

and so on...

68



Depth-first, depth-limited, and iterative deepening searc

Depth-first search is clearly dangerous if the tree=is/ deep or infinite

Depth-limited searcrsimply imposes a limit on depth. For example if we're
searching for a route on a map withcities we know that the maximum depth

will be n. However:

e \We still risk finding a suboptimal solution.

e The procedure becomes problematic if we impose a depth thmit is too
small.

Usually we do not know a reasonable depth limit in advance.

lterative deepening searcrepeatedly runs depth-limited search for increasing
depth limits0, 1,2, . ..

69



Iterative deepening search

Iterative deepening search

e Essentially combines the advantages of depth-first anditirdast search.
e It is complete and optimal.

e It has a memory requirement similar to that of depth-firstcdea

Importantly, the fact that you're repeating a search procsewveral times Is less
significant than it might seem.

It's still not a good practical method, but it does point us in the domaatf one...

70



Iterative deepening search

Iterative deepening depends on the fact thatvast majority of the nodes in a tree
are in the bottom level

e In a tree with branching factdrand depthi/ the number of nodes is
bd—l—l —1
fib,d) =14+b+b+b°+.- . + 5% = —

e A complete iterative deepening search of this tree gereitaie final layer
once, the penultimate layer twice, and so on down to the vadath is gener-
atedd + 1 times. The total number of nodes generated is therefore

Fob,d) = (d+1)+db+ (d— Db + (d — 2)b° + - - - + 267 + b

71



Iterative deepening search

Example:

e Forb = 20 andd = 5 we have
fi(b,d) = 3,368, 421
fo(b,d) = 3,545, 706
which represents @apercent increase with iterative deepening search.

e The overhead getsmallerasb increases. However the time complexity is still
exponential.

72



Iterative deepening search

Further insight can be gained if we note that
f2<b7 d) — fl<b7 O) + fl(ba 1) o fl(bv d>
as we generate the root, then the tree to dépémd so on. Thus

bz—H 1

z;flb?/ Zb—l

1=0

Z 2+1 e il [(Zbl+1> —(d—‘,—l)

Noting that
d
bfi(b,d) =b+ b+ ... + b4 = Zbi“
i=0
we have
d+1

fab,d) = +— 1f1<b d) =37
S0 f5(b, d) is about equal tg (b, d) for largeb.

73




Bidirectional search

In some problems we can simultaneously search:
forward from thestart state

backwardfrom thegoal state

until the searches meet.

This is potentially a very good idea:

e If the search methods have complexityy?) then...

e ...we are converting this t0(26%/%) = O(b"/?).

(Here, we are assuming the branching factdrirsboth directions.)

74



Bidirectional search - beware!

e It is not always possible to generate efficienihedecessoras well as succes-
Sors.

e If we only have thelescriptionof a goal, not arexplicit goal then generating
predecessors can be hard. (For example, consider the ¢arfcg@ckmatg

e \We need a way of checking whether or not a node appears wiliee search.

e ... and the figure of)(v?/?) hides the assumption that we can@mstant time
checking for intersection of the frontiers. (This may begiole using a hash
table).

e \We need to decide what kind of search to use in each half. Fonpbe, would
depth-first searclpe sensible? Possibly not...

e ...to guarantee that the searches meet, we need to stdne albdes of at least
one of the searches. Consequently the memory requirementis’).

75



Uniform-cost search

Breadth-first search finds trenallowestsolution, but this is not necessarily the
bestone.

Uniform-cost searclis a variant. It uses theath costp(n) as the priority for the
priority queue.

Thus, the paths that are apparently best are explored fingtthee best solution
will always be found if

Vn (Vn' € successof®) . p(n') > p(n))

Although this is still not a good practical algorithm, it dogoint the way forward
to informed search...

76



Repeated states

With many problems it is easy to waste time by expanding ndldasshave ap-
peared elsewhere in the tree. For example:

The sliding blocks puzzle for example suffers this way.

77



Repeated states

For example, in a problem such as finding a route in a map, walkef the
operators arezversible this is inevitable.

There are three basic ways to avoid this, depending on howrgoe off effec-
tiveness against overhead.

e Never return tdhe state you came fram
e Avoid cycles: never proceed tostate identical to one of your ancestors

e Do not expanany state that has previously appeared

Graph searchs a standard approach to dealing with the situation. It tsefast
of these possibilities.

78



Graph search

In pseudocode:

function graphSearch() {
cl osed = {};
fringe = queue containing only the start state;
while () {
I f (enmpty(fringe))
return fail;
node = head(fringe);
| f goal (node)
return sol ution(node);
I f (node not a nenber of closed) {
cl osed = cl osed + node;
fringe = insert(expand(node), fringe); // See note...
}
}
}

Note:If node isincl osed then it must already have been expanded.

79



Graph search

There are several points to note regarding graph search:

1. Theclosed listcontains all the expanded nodes.
2. The closed list can be implemented using a hash table.

3. Both worst case time and space are now proportional toizieeo$ the state
space.

4. Memory:depth first and iterative deepening search are no longaris@ace
as we need to store the closed list.

5. Optimality: when a repeat is found we are discarding the new possibuéy e
iIf it is better than the first one.

e This never happens for uniform-cost or breadth-first seanth constant
step costs, so these remain optimal.

e Iterative deepening search needs to check which solutitvetter and if
necessary modify path costs and depths for descendante oépeated
state.

80



Search trees

Everything we've seen so far is an exampleuoinformedor blind search—we
only distinguish goal states from non-goal states.

(Uniform cost search is a slight anomaly as it uses the pathasa guide.)
To perform well in practice we need to employormedor heuristicsearch.

This involves exploiting knowledge of thistance between the current state and
a goal

81



Problem solving by informed search

Basic search methods make limited use of anyblem-specific knowledgse
might have.
e \We have already seen the conceppath costp(n)

p(n) = cost of path (sequence of actions) from the start state to

e \We can now introduce agvaluation functionThis is a function that attempts
to measure thdesirability of each node

The evaluation function will clearly not be perfect. (If &,ithere is no need to
search.)

Best-first searcisimply expands nodes using the ordering given by the evaluat
function.

82



Greedy search

We've already seepath costused for this purpose.
e This is misguided as path cost is not in geneliakctedin any sensé¢oward
the goal

e A heuristic functionusually denoted (n) is one thatstimatethe cost of the
best path from any nodeto a goal.

e If nis a goal them(n) = 0.

Using a heuristic function along with best-first search gius thegreedy search
algorithm.

83



Example: route-finding

Example:for route finding a reasonable heuristic function is

h(n) = straight line distance from to the nearest goal

Accuracy here obviously depends on what the roads are Hdagly

84



Example: route-finding

Greedy search suffers from some problems:

e Its time complexity isO(b?).
e Its space-complexity i€ (17).

e It is not optimal or complete.

BUT: greedy searchanbe effective, provided we have a gob).

Wouldn't it be nice if we could improve it to make it optimaldeomplete?

85



A* search

Well, we can.

A* searchcombines the good points of:

e Greedy search—by making use/gf.).

e Uniform-cost search—»by being optimal and complete.

It does this in a very simple manner: it uses path ¢ost and also the heuristic
functionh(n) by forming

f(n) = p(n) + h(n)
where
p(n) = cost of pathto n

and
h(n) = estimated cost of best pattom »

So: f(n) is the estimated cost of a patiroughn.

86



A* search

A* search:

e A best-first search using(n).
e It is both complete and optimal...
e ...provided that: obeys some simple conditions.

Definition: anadmissible heuristi¢.(n) is one thatever overestimatethe cost
of the best path from to a goal. So if»'(n) denotes thectualdistance from. to

the goal we have
Vn.h(n) < h'(n).

If h(n) is admissible thelree-searchA* is optimal.

87



A* tree-search is optimal for admissililéen)

To see thatd* search is optimal we reason as follows.
Let Goal,: be an optimal goal state with

f(Goabp) = p(Goabpt) = fopt
(because:(Goaby) = 0). Let Goal, be a suboptimal goal state with

f(Goah) = p(Goak) = f2 > fopt
We need to demonstrate that the search can never sabect

88



A* tree-search is optimal for admissililéen)

At some point Goalis in the fringe.

Can it be selected before?

89



A* tree-search is optimal for admissililéen)

Let n be a leaf node in the fringe on an optimal patttioal,,. So

fopt > p(”) + h(”) — f(n>
becauseé Is admissible.

Now sayGoal, is chosen for expansiameforen. This means that

f(n) > fo

so we've established that

fopt > f2 — p(GO&b).
But this means thaboal,y; IS not optimal: a contradiction.

90



A* graph search

Of course, we will generally be dealing witjtaph search

Unfortunately the proof breaks in this case.

e Graph search cadiscard an optimaloute if that route is not the first one
generated.

e \We could keemnly the least expensive patihis means updating, which is
extra work, not to mention messy, but sufficient to insuremality.

e Alternatively, we can impose a further condition om ) whichforces the best
path to a repeated state to be generated first

The required condition is calledonotonicity As
monotonicity— admissibility

this is an important property.

91



Monotonicity

Assume’, is admissible. Remember thatn) = p(n) + h(n) so if n" follows n

p(n') > p(n)
and we expect that(n’) < h(n) although this does not have to be the case.

Heref(n) =9andf(n’) =7sof(n’) < f(n).

92



Monotonicity

Monotonicity:

e If it is always the case that(n') > f(n) thenh(n) is calledmonotonic

e /1(n) is monotonic if and only if it obeys theiangle inequality

h(n) < costn — n') + h(n)

If h(n) IS not monotonic we can make a simple alteration and use

f(n') = max{f(n), p(n') + h(n)}

This is called thepathmaxequation.

93



The pathmax equation

Why does the pathmax equation make sense?

The fact thatf(n) = 9 tells us the cost of a path throughis at least9 (because
h(n)is admissible).

But ' is on a path through. So to say thaf(n') = 7 makes no sense.

94



A* graph search is optimal for monotonic heuristics

A* graph search is optimal for monotonic heuristics.

The crucial fact from which optimality follows is that if(n) is monotonic then
the values off (n) along any path are non-decreasing.

Assume we move from to »’ using action:. Then
Ya . p(n') = p(n) + costn —— n’)
and using the triangle inequality
h(n) < costn —— n') + h(n) (1)

Thus

(n) + h(n)

(n) + costn —— n') + h(n)
(n) + h(n)

(n)

where the inequality follows from equation 1.

f()

p

I AVARS|

p
p(n
f

95



A* graph search is optimal for monotonic heuristics

We therefore have the following situation:

You can't deal withn’ until everything with

f(n") < f(n') has been dealt with.

Consequently everything withi(n”) < fopt gets explored. Then one or more
things with fop: get found (not necessarily all goals).

96



A* search is complete

A* search is complete provided:

1. The graph has finite branching factor.

2. There is a finite, positive constansuch that each operator has cost at least

Why is this? The search expands nodes according to incgedsin. So: the
only way it can fail to find a goal is if there are infinitely mangdes withf(n) <
f(Goal).

There are two ways this can happen:

1. There is a node with an infinite number of descendants.

2. There is a path with an infinite number of nodes but a finith past.

97



Complexity

e A* search has a further desirable property: tipsimally efficient

e This means that no other optimal algorithm that works by troieing paths
from the root can guarantee to examine fewer nodes.

e BUT: despite its good properties we're not done yet...

e ...A* search unfortunately still has exponential time comp{exitmost cases
unlessh(n) satisfies a very stringent condition that is generally ursget

[h(n) — I'(n)| < O(log h'(n))
where/h/(n) denotes theeal cost fromn to the goal.

e As A* search also stores all the nodes it generates, once agaigaherally
memory that becomes a problem before time

98



IDA™ - iterative deepeningl* search

How might we improve the way in which* search uses memory?

e Iterative deepening search used depth-first search withiadn depth that is
gradually increased.

e IDA* does the same thingith a limit on f cost

Acti onSequence ida() {
root = root node for problem
float fLimt = f(root);
while() {
(sequence, fLimt) = contour(root,fLimt,enptySequence);
I f (sequence ! = enptySequence)
return sequence;
if (fLimt == infinity)
return enptySequence,

99



IDA™ - iterative deepeningl* search

The functioncont our searches from a given nodes far as the specifiefllimit.
It returns either a solution, or theext biggesvalue of f to try.

(Acti onSequence, fl oat) contour(Node node, float fLimt, ActionSequence S)
float nextF = infinity;
if (f(node) > fLimt)
return (enptySequence, f(node));
Acti onSequence s’ = addToSequence( node, s);
I f (goal Test (node))
return (s’ ,fLimt);
for (each successor n’ of node) {
(sequence, newr) = contour(n’,fLimt,s’);
I f (sequence ! = enptySequence)
return (sequence,fLimt);
next F = m ni nun( next F, newF) ;
}

return (enptySequence, nextF);

100



IDA™ - iterative deepeningl* search

This is a little tricky to unravel, so here is an example:

Initially, the algorithm looks ahead and finds thenallestf cost that isgreater
thanits currentf cost limit. The new limit ist.

101



IDA™ - iterative deepeningl* search

It now does the same again:

Anything with f costat mostequal to the current limit gets explored, and the
algorithm keeps track of themallestf cost that isgreater thanits current limit.
The new limit isb.

102



IDA™ - iterative deepeningl* search

And again:

The new limitis7, so at the next iteration the three arrowed nodes will beaerpl

103



IDA™ - iterative deepeningl* search

Properties of IDA:

e It is complete and optimal under the same conditiond’as

e It is often good if we have step costs equal to

e It does not require us to maintain a sorted queue of nodes.
e It only requiresspace proportional to the longest path

e The time taken depends on the number of valuean take.

If h takes enough values to be problematic we can incrédmea fixede at each
stage, guaranteeing a solution at mogforse than the optimum.

104



Recursive best-first search (RBFS)

Another method by which we can attempt to overcome memomnydtmans is the
Recursive best-first search (RBES)

Idea: try to do a best-first search, but only Use=ar spaceby doing a depth-first
search with a few modifications:

1. We remember thé¢(n’) for the best alternative node we've seen so far on
the way to the node we’re currently considering.

2. If nhasf(n) > f(n'):
e \We go back and explore the best alternative...

e ...and as we retrace our steps we replaceftlo@st of every node we've
seen in the current path within).

The replacement of values as we retrace our steps provides a means of remem-
bering how good a discarded path might be, so that we cary&asirn to it later.

105



Recursive best-first search (RBFS)

Note: for simplicity a parameter for the path has been omitted.

functi on RBFS(Node n, Float fLimt) {
I f (goaltest(n))

return n;
I f (n has no successors)
return (fail, infinity);

for (each successor n' of n)
f(n) = maximunm(f(n ), f(n));
while() {
best = successor of n that has the smallest f(n');
if (f(best) > fLimt)
return (fail, f(best));
next Best = second smallest f(n') value for successors of n;
(result, f') = RBFS(best, mninmum(fLimt, nextBest));
f(best) =1’;
If (result !'=fail)
return result;

IMPORTANTf ( best) Is modifiedwhenRBFS produces a result.

106



Recursive best-first search (RBFS): an example

This function is called usingBFS(start State, 1 nfinity) tobegin the
process.

Function call numbetr:

fLimit; = oo

. hextBest =5

|
|
|
|
|
|
/N
/N
|
|
|
|

P P
~ 7 7
K o ¢’
/N 7\ /N
/ | \ / | \ / | \

7 [ [
| | |
| | |
| | |

®

/ : \

s
// ! \\
\ / \ / \ / ! \ / \ /
\ / \ / \ / | \ / \ /
e © ® © e & & ¢ ¢ e ©
Now perform the recursive function calesult, /') = RBFSbest, 5)

so f(best) takes the returned valyé

107



Recursive best-first search (RBFS): an example

Function call numbe?;:

fLimit; = oo
fLimit, =5

nextBest = 5
‘ ~N
|
|
|
|
|

7\

Now perform the recursive function callesult, /) = RBFSbest, 5)

so f(best) takes the returned valyé

108



Recursive best-first search (RBFS): an example

Function call numbeg:

fLimit; = oo
fLimit, =5

5
. hextBest =5

Now f(best) > fLimit 3 so the function call returngail, 10) into (resulg, ') and
f(best) = 10.

109



Recursive best-first search (RBFS): an example

The while loop for function calk now repeats:

fLimit; = oo
fLimit, =5

4 replaced by

. hextBest =5

5 replaced byl (

Now f(best) > fLimit, so the function call returngail, 9) into (result, f') and
f(best) = 9.

110



Recursive best-first search (RBFS): an example

The while loop for function call now repeats:

fLimit; = oo
4 replaced by

. \\n\extBesi =7

5 replaced byl (

|
|
|
|
|
|
7\
/N
|
|
|
|

|
/N
/N
/ \
/ ! \
|
|

\ /
e o

We do a further function call to expand the new best node, amhs.

111



Recursive best-first search (RBFS)

Some nice properties:

e If /1 is admissible then RBFS is optimal.
e Memory requirement i§)(bd)

e Generally more efficient than IDA
And some less nice ones:

e Time complexity is hard to analyse, but can be exponential.

e Can spend a lot of time=-generating nodes

112



Other methods for getting around the memory problem

To some extent IDAand RBFS throw the baby out with the bathwater.

e They limit memory too harshly, so...

e ...we can try to usall available memory

MA™* and SMA" will not be covered in this course...

113



Local search

Sometimes, it's only thgoalthat we're interested in. Theathneeded to get there
IS Irrelevant.

e For example: VLSI layout, factory design, vehicle routiragitomatic pro-
gramming...

e \We are now simply searching for a node that is in some sémseest

e This is also known asptimisation

This leads to the remarkably simple conceploofal search

114



Local search

Instead of trying to find a path from start state to goal, wdaepthelocal area
of the graph, meaning those nodes one edge away from the dmeeatie

We assume that we have a functigf) such thatf(n’) > f(n) indicatesn’ is
preferable ton.

115



Then-gueens problem

You may be familiar with the:-queens problem

Find an arrangement of queens on an by »n board such that no queen is attack-
iIng another.

In the Prolog course you may have been tempted to generateifaions of row
numbers and test for attacks.

This is ahopeless stratedfpr largen. (Imaginen ~ 1,000, 000.)

116



Then-gueens problem

We might however consider the following:

e A state (node): is a permutation of 1, ..., n}, denoting the rows that the
gueens appear on.

¢ \We move from one node to another by movingjiagle queemno anyalternative
row.

e \We definef(n) to be the number of pairs of queens attacking one-another in
the new positioA (Regardless of whether or not the attack is direct.)

°Note that we actually want tminimizef here. This is equivalent to maximizingf, and | will generally use whichever seems more appropriate.

117



Then-gueens problem

Here,n = {4,3,?7,8,6,2,4,1} and thef values for the undecided queen are
shown.

As we can choose which queen to move, each node in facithasighbours in
the graph.

118



Hill-climbing search

Hill-climbing searchis remarkably simple:

Cenerate a start state n.

while () {
Generate the N neighbours {n_1,..., n_N} of n;
I f (max(f(n_i)) <=1f(n)) return n;
n=n.i mximzing f(n_i);

}

In fact, that looks so simple that it's amazing the algoritisrat all useful.

In this version we stop when we get to a node with no betterhigr. We might
alternatively allowsideways movdsy changing the stopping condition:

If (max(f(n.i)) <f(n)) return n;

Why would we consider doing this?

119



Hill-climbing search: the reality

In reality, nature has a number of ways of shapingp complicate the search
process.

Global maximum

o/

Local maxima

Shoulder

Plateau

Sidewaysmoves allow us to move acrop&teausandshoulders

However, should we ever find lacal maximumthen we’ll return it: we won't
keep searching to find@obal maximum

120



Hill-climbing search: the reality

Of course, the fact that we're dealing witljaneral grapmeans we need to think
of something like the preceding figure, but ivery large number of dimensiagns
and this makes the problemuch harder

There is a body of technigues for trying to overcome suchlprob. For example:

e Stochastic hill-climbingChoose a neighbour at random, perhaps with a prob-
ability depending on itg value. For example: leV(n) denote the neighbours

of n. Define
N¥(n) = {n" € N(n)|f(n) > f(n)

N~(n) ={n" € N(n)|f(n) < f(n)}.

Then . 0 if n/ N—<TL)
r(n) = { %(f(n’) — f(n)) otherwise

121



Hill-climbing search: the reality

e First choice: Generate neighbours at random. Select the first one thattes be
than the current one. (Particularly good if nodes hanany neighbour$

e Random restartsRun a proceduré times with a limit on the time allowed for
each run.
Note: generating a start state at random may itself not be stfargverd.

e Simulated annealingSimilar to stochastic hill-climbing, but start with lots of
random variation andceduce it over time
Note: in some cases this govablyan effective procedure, although the time
taken may be excessive If we want the proof to hold.

e Beam searchMaintain £ nodes at any given time. At each search step, find
the successors of each, and retain the bésim all the successors.
Note: this isnotthe same as random restarts.

122



Gradient ascent and related methods

For some problemis—we do not have a search graph, butantinuous search
space

Typically, we have a functiorf(x) : R” — R and we want to find

Xopt = argmax f(x)

3For the purposes of this course, thaning of neural networkis a notable example.

123



Gradient ascent and related methods

In a single dimension we can clearly try to solve

df (x)

= ()
dx
to find thestationary pointsand use
d’f(z)
dx?
to find a globalmaximum In multiple dimensiontghe equivalent is to solve
0f(x)
\Y — =0
flx) = =5
where )
0f(X) _ Tore o) 0fx)
Ox 0xq 09 0xn, |-
and the equivalent of the second derivative isiiessianmatrix
[ 0/%(x) 0f%(x) .. OF%x)
(9:13% 0x10x9 O0x10xy
0f*(x) 0f*(x) . . 9f(x
H — 0ro0x] @x% 0x90xy,
0f*(x) 0f*(x) .. Af'(®
| Oxplxy Oxpdxg 02

124



Gradient ascent and related methods

However this approach is usualiyt analytically tractableegardless of dimen-
sionality.

The simplest way around this is to emplgsadient ascent

e Start with a randomly chosen poigg.

e Using a smalktep size, iterate using the equation

X1 = X; + €V f(x;).
This can be understood as follows:

e Atthe current poink; the gradient/ f(x; ) tells us thelirectionandmagnitude
of the slope ak;.

e Adding eV f(x;) therefore moves usamall distance upward

This is perhaps more easily seen graphically. ..

125



Gradient ascent and related methods

Here we have a simplearabolic surface

With ¢ = 0.1 the procedure is clearly effective at finding the maximum.

Note however thathe steps are smaland in a more realistic problemmight
take some time. ..

126



Gradient ascent and related methods

Simply increasing the step size&ean lead to a different problem:

We can easily jJump too far. ..

127



Gradient ascent and related methods

There is a large collection of more sophisticated methodsekample:

e Line searchincrease until f increaseand minimise in the resulting interval.
Then choose a new direction to move @onjugate gradienisthe Fletcher-
ReeveandPolak-Ribieremethods etc.

e UseH to exploit knowledge of the local shape tf For example thélewton-
RaphsorandBroyden-Fletcher-Goldfarb-Shanno (BFQ8égthods etc.

128



Artificial Intelligence |

Dr Sean Holden

Notes ongames (adversarial search)

Copyright(© Sean Holden 2002-2012.

129



Solving problems by search: playing games

How might an agent act whehe outcomes of its actions are not knolbecause
anadversary is trying to hinder &

e This is essentially a more realistic kind of search problesoabise we do not
know the exact outcome of an action.

e This is a common situation whemaying gamesin chess, draughts, and so on
an opponentespondgo our moves.

e \We don’t know what their response will be, and so the outcohmiomoves
IS not clear.

Game playing has been of interest in Al because it providedeadisationof a
world in which two agents act teeduceeach other’s well-being.

130



Playing games: search against an adversary

Despite the fact that games are an idealisation, game pl@gan be an excellent
source of hard problems. For instance with chess:

e The average branching factor is roughly
e Games can reach) moves per player.
e So a rough calculation gives the search tr€€’ nodes.

e Even if only different, legal positions are consideredéfsout10’.
So: in additionto the uncertainty due to the opponent:

e \We can’'t make a complete search to find the best move...

e ... SO We have to act even though we’re not sure about thehorgttb do.

131



Playing games: search against an adversary

And chess isn’t even very hard:

e GolIs muchharder than chess.

e The branching factor is aboat0.

Until very recently it has resisted all attempts to produg®ad Al player.

See:
senseis.xmp.net/’MoGo

and others.

132



Playing games: search against an adversary

It seems that games are a step closer to the complexitiesemhi@ the world
around us than are the standard search problems consiaefad s

The study of games has led to some of the most celebratedajpmiis and tech-
niques in Al.

We now look at:

e How game-playing can be modelledssarch
e Theminimax algorithnfor game-playing.
e Some problems inherent in the use of minimax.

e The concept ofr — 3 pruning

Reading:Russell and Norvig chapter 6.

133



Perfect decisions in a two-person game

Say we have two players. Traditionally, they are calléax andMin for reasons
that will become clear.
e \We'll usenoughts and crossexs an initial example.
e Max moves first.
e The players alternate until the game ends.
e At the end of the game, prizes are awarded. (Or punishmenigalered—
IS starting up his favourite chainsaw...)

This is exactly the same game format as chess, Go, draughssoam.

134



Perfect decisions in a two-person game

Games like this can be modelled as search problems as follows

e There is annitial state

@ Max to move

e There is a set obperators Here, Max can place a cross in any empty square,
or Min a nought.

e There is aterminal test Here, the game ends when three noughts or three
crosses are in a row, or there are no unused spaces.

e There is autility or payoff function. This tells us, numerically, what the out-
come of the game is.

This is enough to model the entire game.

135



Perfect decisions in a two-person game

We canconstruct a tredo represent a game. From the initial state Max can make
nine possible moves:

Then it's Min’s turn...

136



Perfect decisions in a two-person game

For each of Max’s opening moves Min has eight replies:

And so on...

This can be continued to represeiitpossibilities for the game.

137



Perfect decisions in a two-person game

At the leaves a player has won or there are no spaces. Lea/edalledusing
the utility function.

138



Perfect decisions in a two-person game

How can Max use this tree to decide on a move? Consider a mongesitree:

Labels on the leaves denote utility.
High values are preferred by Max.
2 j i ; Low values are preferred by Min.

20 20 15 6 7

If Max is rational he will play to reach a position with tleggest utility possible

But if Min is rational she will play taninimisethe utility available to Max.

139



The minimax algorithm

There are two moves: Max then Min. Game theorists would b&ldne move,
or two ply deep.

The minimax algorithmallows us to infer the best move that the current player
can make, given the utility function, by working backwardrfr the leaves.

TN

4 5 20 20 15

As Min plays the last move, shreinimiseghe utility available to Max.

140



The minimax algorithm

Min takes the final move:

e If Min Is in game positionl, her best choice is move So from Max’s point
of view this node has a utility af.

e If Min Is in game positior?, her best choice is move So from Max’s point
of view this node has a utility af.

e If Min Is in game positiors, her best choice is move So from Max’s point
of view this node has a utility of.

e If Min is in game positiont, her best choice is move So from Max’s point
of view this node has a utility of.

141



The minimax algorithm

Moving one further step up the tree:

We can see that Max’s best opening move is mg\as this leads to the node with
highest utility.

142



The minimax algorithm

In general:

e Generate the complete tree and label the leaves accordihg tatility func-
tion.

e Working from the leaves of the tree upward, label the nodg®d@ing on
whether Max or Min is to move.

e If Min Is to move label the current node with thenimumutility of any de-
scendant.

e If Max is to move label the current node with theaximumutility of any
descendant.

If the game i ply and at each point there ayavailable moves then this process
has (surprise, surprisé)(q”’) time complexity and space complexity linearjin
andg.

143



Making imperfect decisions

We need to avoid searching all the way to the end of the &ee.

e \We generate only part of the tree: instead of testing whetheyde is a leaf
we introduce aut-off test telling us when to stop.

e Instead of a utility function we introduce avaluation functiorfor the evalu-
ation of positions for an incomplete game.

The evaluation function attempts to measure the expeciéty of the current
game position.

144



Making imperfect decisions

How can this be justified?

e This Iis a strategy that humans clearly sometimes make use of.
e For example, when using the concepthaditerial valuein chess.

e The effectiveness of the evaluation functiomigical...

e ... but it must be computable in a reasonable time.

e (In principle it could just be done using minimax.)

The importance of the evaluation function can not be undezdt—it is probably
the most important part of the design.

145



The evaluation function

Designing a good evaluation function can be extremely yrick

e Let's say we want to design one for chess by giving each piscenaterial
value: pawn =, knight/bishop =3, rook =5 and so on.

e Define the evaluation of a position to be the difference betwthe material
value of black’s and white’s pieces

evalposition = > valueofp; — ) value ofg,

black’s piecey); white’s pieces;

This seems like a reasonable first attempt. Why might it gag®o

146



The evaluation function

Consider what happens at the start of a game:

e Until the first capture the evaluation function giveso in fact we have aat-
egorycontaining many different game positions with equal estanautility.
e For example, all positions where white is one pawn ahead.

e The evaluation function for such a category should perhaymesent the prob-
ability that a position chosen at random from it leads to a win

So in fact this seems highly naive...

147



The evaluation function

|deally, we should considendividual positions

If on the basis of past experience a position B&% chance of winning,10%
chance of losing and0% chance of reaching a draw, we might give it an evalua-
tion of

eval position = (0.5 x 1) + (0.1 x —=1) + (0.4 x 0) = 0.4.

Extending this to the evaluation of categories, we shoudd theight the positions
In the category according to their likelihood of occurring.

Of course, walon’t knowwhat any of these likelihoods are...

148



The evaluation function

Using material value can be thought of as giving useaghted linear evaluation
function

evalposition = » " w;f;
=1

where thew, are weightsand thef; represenfeaturesof the position. In this

example
f; = value of thesth piece

w; = number ofith pieces on the board

where black and white pieces are regarded as different and #re positive for
one and negative for the other.

149



The evaluation function

Evaluation functions of this type are very common in gamgip
There is no systematic method for their design.

Weights can be chosen by allowing the game to play itself awguearning
techniques to adjust the weights to improve performance.

By using more carefully crafted features we can giiféerent evaluationso indi-
vidual positions

150



a — [ pruning

Even with a good evaluation function and cut-off test, tineeticomplexity of the
minimax algorithm makes it impossible to write a good chesgyam without
some further improvement.

e Assuming we have 150 seconds to make each move, for chess we b®
limited to a search of aboutto 4 ply whereas...

e ...even an average human player can mandge:.

Luckily, it is possible to prune the search tneghout affecting the outconand
without having to examine all of.it

151



a — [ pruning

Returning for a moment to the earlier, simplified example:

Idein

20 20 15 6 7

The search is depth-first and left to right.

152



a — [ pruning

The search continues as previously for the firtaves.

Then we note: iMax plays move3 thenMin can reach a leaf with utility at most
1.

So: we don’t need to search any further under Max’s opening nsovehis is
because the search haseady establishedhat Max can do better by making
opening move.

153



a — [ pruning in general

Remember that this searchdspth-first We're only going to use knowledge of
nodes on the current path

v = m tells us that the
a=m A = Player

value> m
= v = Opponent

value of this node i$> m.

The value ofx is updated as
the search progresses.
While searching under this node
value> m/ W€ find that the opponent can force
- a score ofn.
If n < m we can stop. There is a
better choice earlier in the game.

If n < m’ we can stop. The player
Searching here establishes that maximises and will never move here.

the opponent can force a score
of m'.

So:once you've established thatis sufficiently small, you don’t need to explore
any more of the corresponding node’s children.

154



a — [ pruning in general

The situation is exactly analogous if wevap player and opponeirt the previous
diagram.

The search is depth-first, so we're only ever lookingrat path through the tree
We need to keep track of the valuesand 5 where
a = thehighestutility seen so far on the path fdax

B = thelowestutility seen so far on the path féin
AssumeMax begins Initial values fora. and are

o= —00

and
B = +o0.

155



a — [ pruning in general

So: we start with the function call
player(—oo, +00, root)

The following function implements the procedure suggestgethe previous dia-
gram:

playerc, 5, n){
if (n IS at the cut-off poinp return evaluatiofm);
value= —oo;
for(each successor of n){
value= max(value opponenfu, 3, n'));
if (value> ) return value;
if(value> «) o = value;

}

return value

}

156



a — [ pruning in general

The functionopponent is exactly analogous:

opponentx, 3, n){
iIf (n IS at the cut-off poinp return evaluatiofm);
value= +o0;
for(each successor of n){
value= min(value playera, 3,n’));
If (value < «) return value;
If(value< ) 5 = value;

}

return value
h

Note: the semantics here is that parameters are passed to fusigfienlue

157



a — [ pruning in general

Applying this to the earlier example and keeping track ofvakies fora and
you should obtain:

Return2

Returnl

158



How effective isa — 3 pruning?

(Warning: the theoretical results that follow are somewtiaalised.)

A quick inspection should convince you that theler in which moves are ar-
ranged in the tree is critical.

So, it seems sensible to try good moves first:
e If you were to have a perfect move-ordering technigue then 5 pruning
would beO(¢”/?) as opposed t®(q").
e so the branching factor would effectively be; instead of;.
e \We would therefore expect to be able to search aleat as many moves as
before

However, this is not realistic: if you had such an orderirghteque you'd be able
to play perfect games!

159



How effective isa — 3 pruning?

If moves are arranged at random then- 3 pruning Is:

e O((q/logq)’) asymptotically whery > 1000 or...

e ...aboutO(¢*/*) for reasonable values of

In practice simple ordering technigues can get close tod¢lsedase. For example,
If we try captures, then threats, then moves forwetal

Alternatively, we can implement an iterative deepeningagaph and use the order
obtained at one iteration to drive the next.

160



A further optimisation: the transposition table

Finally, note that many games correspondjtaphsrather tharireesbecause the
same state can be arrived at in different ways.

e This is essentially the same effect we saw Iin heuristic searecall graph
searchversustree search
e It can be addressed in a similar way: store a state with itsi@ran in a hash
table—qgenerally called @ansposition table-the first time it is seen.
The transposition table is essentially equivalent todluesed listintroduced as
part of graph search.

This can vastly increase the effectiveness of the searadepspbecause we don't
have to evaluate a single state multiple times.

161



Artificial Intelligence |

Dr Sean Holden

Notes onconstraint satisfaction problems (CSPSs)

Copyright(© Sean Holden 2002-2012.

162



Constraint satisfaction problems (CSPs)

The search scenarios examined so far seem in some waysstansatiy.

e States were represented usingpamtrary andproblem-specifidata structure.
e Heuristics were alsproblem-specific

e It would be nice to be able twansformgeneral search problems inte&an-
dard format

CSPsstandardisehe manner in which states and goal tests are represented...

163



Constraint satisfaction problems (CSPs)

By standardising like this we benefit in several ways:

¢ \We can devisgeneral purposalgorithms and heuristics.

e \We can look at general methods for exploring ¢heictureof the problem.

e Consequently it is possible to introduce techniqueslifamomposingroblems.

e \We can try to understand the relationship betweersthectureof a problem
and thedifficulty of solving it

Note: another method of interest in Al that allows us to do similangs involves
transforming to goropositional satisfiabilityproblem. We’'ll see an example of
this in Al 1.

164



Introduction to constraint satisfaction problems

We now return to the idea of problem solving by search and exarhfrom this
new perspective.

Aims:

e To introduce the idea of a constraint satisfaction probl@8R) as a general
means of representing and solving problems by search.

e To look at abacktracking algorithnfor solving CSPs.
e To look at someyeneral heuristicfor solving CSPs.

¢ To look atmore intelligent ways of backtracking

Reading:Russell and Norvig, chapter 5.

165



Constraint satisfaction problems

We have:

e A set ofn variablesVy, V5, ..., V.
e For eachl; adomainD; specifying the values that can take.

e A set ofm constraintsCy, Cs, ..., C,,.

Each constraint’; involves a set of variables and specifiessélonwable collection
of values

e A stateis an assignment of specific values to some or all of the vi@sab
e An assignment isonsistenif it violates no constraints.

e An assignment isompletdf it gives a value to every variable.

A solutionis a consistent and complete assignment.

166



Example

We will use the problem ofolouring the nodes of a grapds a running example.

Each node corresponds tovariable We have three colours and directly con-
nected nodes should have different colours.

167



Example

This translates easily to a CSP formulation:

e The variables are the nodes
V. = node:

e The domain for each variable contains the values black, mddgan

Dzz{Bava}

e The constraints enforce the idea that directly connecte@sonust have dif-
ferent colours. For example, for variablgsand; the constraints specify

(B,R),(B,C),(R,B),(R,C),(C,B),(C,R)

e VariableV; is unconstrained.

168



Different kinds of CSP

This is an example of the simplest kind of CSP: itliscretewith finite domains
We will concentrate on these.

We will also concentrate oninary constraintsthat is, constraints betwegmirs
of variables

e Constraints on single variablessary constraints—can be handled by ad-
justing the variable’s domain. For example, if we don’t wanto bered, then
we just remove that possibility from,.

e Higher-order constraint@applying to three or more variables can certainly be
considered, but...

e ...when dealing with finite domains they can always be cdadeto sets of
binary constraints by introducing exteaixiliary variables

How does that work?

169



Auxiliary variables

Example:three variables each with domaiw, R, C'}.

A single constraint

(c,c,C),(R,B,B),(B,R,B),(B,B, R)

i New, binary constraints:
y . > £ , v ') A = ]-7 ‘/2 = C )
- 4= : Vi=R),(A=2V,=B),
Av/? 144:31‘/:2:R1
/; £ 4, V ) A= 43 ‘/2 =B )

N

N N N N
N N N

I |
— o — —
T
I | T
W Q
—_ — — —
Sah Shh e

=N
NN TN N
~— — —

[ |
Rt
o Lo oY oY
[ |
T WA
~— — — —

The original constraint connects all
three variables.

Introducing auxiliary variablel with domain{1, 2. 3,4} allows us to convert this
to a set of binary constraints.

170



Backtracking search

Consider what happens if we try to solve a CSP using a simplaigue such as
breadth-first search

The branching factor isd at the first step, for. variables each witlhl possible
values.
Step2: (n—1)d
Step 3: (n —2)d > Number of leaves= nd x (n — 1)d x --- x 1
: = nld"

Stepn: d

BUT: only d" assighments are possible.

/

The order of assignment doesn’t matter, and we should assigme variable at a
time.

171



Backtracking search

Using the graph colouring example:

The search now looks something like this...

...and new possibilities appear.

172



Backtracking search

Backtracking search searches depth-first, assigning Besiagable at a time, and
backtracking if no valid assignment is available.

1=B
2=R
3=C
4=B
5=R

Nothing is available for 7, so
either assign 8 or backtrack

Rather than using problem-specific heuristics to try to muprsearching, we can
now explore heuristics applicable teneralCSPs.

173



Backtracking search

Result backTrack(problem {
return bt ([], problem;

}

Result bt (assignnentList, problem {
| f (assignnmentList Iis conplete)
return assi gnnentLi st;
next Var = get Next Var (assi gnnent Li st, problem;
for (all v in orderVariabl es(nextVar, assignnentList, probl
I1f (v Is consistent wth assignnentList) {
add "nextVar = v" to assignnentlList;
solution = bt(assignnentList, problem;
I f (solution is not "fail")
return sol ution;
renmove "nextVar = v" from assi gnnentLi st;

}
}

return "fail";

}

174



Backtracking search: possible heuristics

There are several points we can examine in an attempt tonogemeral CSP-
based heuristics:

e In what order should we try tassign variable®

¢ In what order should we try tassign possible valude a variable?
Or being a little more subtle:

e What effect might the values assigned so far have on latemated assign-
ments?

e When forced to backtrack, is it possible to avoid the samarfalater on?

175



Heuristics |: Choosing the order of variable assignmentkvatues

Say we have = B and2 = R

At this point there inly one possible assignment
for 3, whereas the others have more flexibility.

Assigning such variable8rst is called theminimum remaining values (MRV)
heuristic.

(Alternatively, themost constrained variabler fail first heuristic.)

176



Heuristics |: Choosing the order of variable assignmentkvatues

How do we choose a variable to begin with?

The degree heuristichooses the variable involved in the most constraints on as
yet unassigned variables.

Start with 3, 5 or 7.

MRYV is usually better but the degree heuristic is a good teaker.

177



Heuristics |: Choosing the order of variable assignmentkvatues

Once a variable is chosen,\what order should values be assigi?ed

Choosingl = C'is bad as it removes
the final possibility for3.

-

The heuristic prefers 1=B

Theleast constraining valuleuristic chooses first the value that leaves the max-
Imum possible freedom in choosing assignments for the Ma&'&neighbours.

178



Heuristics II: forward checking and constraint propagatio

Continuing the previous slide’s progress, now add C'.

C is ruled out as an assignment
2 and 3.

Each time we assign a value to a variable, it makes sensedtedkat value from
the collection ofpossible assignments to its neighbaurs

This is callediorward checking It works nicely in conjunction with MRV.

179



Heuristics II: forward checking and constraint propagatio

We can visualise this process as follows:

1 2 3 4 5 §) 7 8
Start | BRC | BRC | BRC' | BRC | BRC | BRC | BRC' | BRC
2=B| RC | = RC | RC |BRC |BRC | BRC | BRC
3=R| C = = RC | BC | BRC'| BC | BRC
6=B| C = = RC C = C | BRC
5=C| C =B | =R R =C | =8 ! BRC

At the fourth stey hasno possible assignments left

However, we could have detected a problem a little eatlier..

180



Heuristics II: forward checking and constraint propagatio

...by looking at step three.

1 2 3 4 5 §) 7 8
Start | BRC | BRC | BRC' | BRC | BRC | BRC | BRC' | BRC
=DB| RC | = RC | RC |BRC |BRC | BRC | BRC
=R| C = = RC | BC | BRC'| BC | BRC
6=B| C =B | =R | RC C =B C | BRC
5=C| C =B | =R R =C | =8 ! BRC

e At step three) can beC' only and7 can beC' only.
e But5 and7 are connected.
e SO we can't progress, but this hasn’t been detected.

e Ideally we want to da@onstraint propagation

Trade-off:time to do the search, against time to explore constraints.

181



Constraint propagation

Arc consistency:

Consider a constraint as beidgected For examplel — 5.

In general, say we have a constraint- ; and currently the domain ofis D, and
the domain ofj is D;.

1 — 7 IS consistentf

Vd € D;,3d" € D, such that — j is valid

182



Constraint propagation

Example:
In step three of the tablé), = { R, C'} andD; = {C'}.

e 5 — 4in step three of the table consistent

e 4 — 5 In step three of the table not consistent

4 — 5 can be made consistent by deletiigrom D.,.

Or in other words, regardless of what you assignyou’ll be able to find some-
thing valid to assign tg.

183



Enforcing arc consistency

We can enforce arc consistency each time a variaislassigned.

e \We need to maintain eollection of arcs to be checked
e Each time we alter a domain, we may have to include furthes iarthe col-
lection.
This is because if — j Is inconsistent resulting in a deletion fro we may as
a conseguence make some Aare; : inconsistent.

Why is this?

184



Enforcing arc consistency

1 — j is not consistent so
deleteB from the domain

kyx — 1 1S consistent but kx — i is no longer consistent
kx = R can only be paired becausé = R can not be paired
with i = B. with i = R.

e | — 7 Inconsistent means removing a value fram
e Jd € D, such that there is no valid € D; so deletel € D,.

However some” € D, may only have been pairable with

We need to continue until all consequences are taken care of.

185



The AC-3 algorithm

NewDomai ns AC-3 (problem {
Queue toCheck = all arcs i->j;
while (toCheck is not enpty) {
| ->] = next (toCheck);
i f (renovel nconsi stencies(Di,D)) {
for (each k that is a nei ghbour of i)
add k->i to toCheck;

}
}
}

Bool renovel nconsi stencies (domai nl, donmai n2) {
Bool result = false;
for (each d in domainl) {
If (no d in domain2 valid with d) {
renove d from domai ni;
result = true;

}
}

return result;

186



Enforcing arc consistency

Complexity:

e A binary CSP withn variables can have(n?) directional constraints — ;.

e Any i — j can be considered at mastimes wherel = max; |D;| because
only d things can be removed from,.

e Checking any single arc for consistency can be dore(ift).

So the complexity i$)(n*d?).
Note: this setup includes 3SAT.

Consequencewe can’t check for consistency in polynomial time, which geists
this doesn’t guarantee to find all inconsistencies.

187



A more powerful form of consistency

We can define a stronger notion of consistency as follows:

e Given:anyk — 1 variables and any consistent assignment to these.

e Then:We can find a consistent assignment to attyvariable.

This is known as:-consistency

Strongk-consistencyequires the we bé-consistentf: — 1-consistenetcas far
down asl-consistent.

If we can demonstrate strongconsistency (where as usualis the number of
variables) then an assignment can be foun@(ind).

Unfortunately, demonstrating strongconsistency will bewvorst-case exponen-
tial.

188



Backjumping

The basic backtracking algorithm backtracks tortinest recent assignmenkhis
Is known aschronological backtrackinglt is not always the best policy:

Say we've assigned = B, 3 = R, 5 = C and4 = B and now we want to
assign something to. This isn’t possible so we backtrack, however re-assigning
4 clearly doesn’t help.

189



Backjumping

With some careful bookkeeping it is often possiblgump back multiple levels
without sacrificing the ability to find a solution.

We need some definitions:
e When we set a variablg to some valuel € D; we refer to this as thassign-
mentA; = (V; < d).

e A partial instantiation/, = {A;, Ay, ..., A} IS aconsistentset of assign-
ments to the first variables...

e ... whereconsistenimeans that no constraints are violated.

Henceforth we shall assume that variables are assigned ordlerl/;, V5. ..., V,
when formally presenting algorithms.

190



Gaschnig’s algorithm

Gaschnig’s algorithnworks as follows. Say we have a partial instantiatipn

e When choosing a value fdr,.,; we need to check that any candidate value
d € D, 1s consistent with,.

e When testing potential values fak we will generally discard one or more
possibilities, because they conflict with some membel;,. of

o \We keep track of thenost recent assignment; for which this has happened.

Finally, if novalue forV/.., is consistent with;,, then we backtrack t®’.

If there are no possible values left to try forthen we backtrackhronologically

191



Gaschnig’s algorithm

Example:

If there’s no value left to try fob then backtrack tG@ and so on.

192



Graph-based backjumping

This allows us to jump back multiple levelghen we initially detect a conflict
Can we do better than chronological backtrackimgreaftef?

Some more definitions:

e \We assume an orderiig. V5. ..., V,, for the variables.

e GivenV’ = {V;, V5, ..., V,} wherek < n theancestorof V., are the mem-
bers ofl”’ connected td/,..; by a constraint.

e TheparentP (V') of V.., is its most recent ancestor.

The ancestors for each variable can be accumulated as m&sitgrare made.

Graph-based backjumpingacktracks to thearentof V. ;.

193



Graph-based backjumping

{11 3743 8}

)

{5}

5@ {3}

3@ {1} 3¢ {1}

1 1

At this point, backjump to thearentfor 7, which isb.

194



Backjumping and forward checking

If we useforward checkingsay we're assigning to),..; by makingV,.., = d:

e Forward checking removes from the D; of all V; connected ta/,.; by a
constraint.
e \When doing graph-based backjumping, we'd also &dd to the ancestors of
V..
In fact, use of forward checking can make some forms of bawgjngredundant

Note:there are in fact many ways of combiningnstraint propagatiomvith back-
jumping and we will not explore them in further detail here.

195



Backjumping and forward checking

Ancestors

1-{
2-{13, 4)

1 2 3 4 5 §) 7 8
Start | BRC | BRC | BRC' | BRC | BRC | BRC | BRC' | BRC
1=B| = RC | RC | BRC | BRC | BRC | RC | BRC
3=R| =8B C =R |BRC| BC |BRC| C |BRC
5=C| = C = BR | = BR ! BRC
4=DB| = C = BR | = BR ! BRC

Forward checking finds the problenefore backtracking does

196



Graph-based backjumping

We're not quite done yet though. What happens witieie are no assignments
left for the parent we just backjumped?to

Backjumping fromV; to V; is fine. However we shouldn’t then just backjump to
V5, because changing; could fix the problem at.

197



Graph-based backjumping

To describe an algorithm in this case is a little involved.

Leaf dead-end variablg;

Leaf dead-end
Is.

Given an instantiatiord, andV/... ;, if there is no consistent € D, we call/, a
leaf dead-enc@ndV,_, aleaf dead-end variable

198



Graph-based backjumping

Also

Leaf dead-end variablg;

Internal dead-end
1.
L ?2?? Internal dead-end variablé
Leaf dead-end
Is.

If V. was backtracked to from a later leaf dead-end and there aneon® values
to try for V; then we refer to it as amternal dead-end variabland call/;_; an
Internal dead-end

199



Graph-based backjumping

To keep track of exactly where to jump to we also need the dieins:

e Thesessiorof a variablel” begins when the search algorithm visits it and ends
when it backtracks through it to an earlier variable.

e Thecurrent sessiownf a variablel” is the set of all variables visiting during its
session.

e In particular, the current session for anycontainsl’.
e Therelevant dead-ends for the current sessidfV) for a variablel” are:

1. If V is a leaf dead-end variable thénl”) = {V/}.
2. If VV was backtracked to from a dead-erdthen2(V') = R(V) U R(V").

And we’re not done yet...

200



Graph-based backjumping

Example:

Session ofz = {V7}.
R(V7) = {17} /\
Session start
Session ol = {V,, V5, Vg, V7 }.
Session start R(Vy) = {Vz}

As expected, the relevant dead-endifors {17 }.

201



Graph-based backjumping

One more bunch of definitions before the pain stops. 1ayg a dead-end:

e Theinduced ancestormd(V}) of V, are defined as

ind(Vi) = {Vi,Va,....Viaibn | | ) ancestor§)
VeR(V;)
e Theculprit for 1} is the most recenit” < ind(V},).
Note that these definitions depend B0//},).
FINALLY: graph-based backjumpirgackjumps to the culprit

202



Graph-based backjumping

Example:

Backjump fromV;
to V.

Session oV, = {Vy, V5, Vs, V7 }.

Nothing left to try! /A R(VA) = {V3}
ind(V,) = {V5}

As expected, we back jump 3 instead ofi,. Hooray!

203



Conflict-directed backjumping

Gaschnig’s algorithm and graph-based backjumping casbb@inecto produce
conflict-directed backjumping

We will not explore conflict-directed backjumping in thisuree.

For considerable further detail on algorithms for CSPs see:

“Constraint Processing,” Rina Dechter. Morgan Kaufmani9(3.

204



Varieties of CSP

We have only looked atiscreteCSPs withfinite domains These are the simplest.
We could also consider:

1. Discrete CSPs withmfinite domains
e \We need aconstraint languageFor example
Vi< Vig+5
e Algorithms are available for integer variables and lineamnstraints.
e There isno algorithmfor integer variables and nonlinear constraints.

2. Continuous domains—using linear constraints definimyer regions we have
linear programming This is solvable in polynomial time in.

3. We can introduce@reference constraints addition toabsolute constraints
and in some cases aijective function

205



Artificial Intelligence |

Dr Sean Holden

Notes orknowledge representation and reasoning using first-ordgicl (FOL)

Copyright(© Sean Holden 2002-2012.

206



Knowledge representation and reasoning using FOL

We now look at how an agent mighgpresentknowledge about its environment
using first order logic (FOL), anctasonwith this knowledge to achieve its goals.

Aims:
e To show how FOL can be usedritepresent knowledggbout an environment in
the form of bothbackground knowledgendknowledge derived from percepts

e To show how this knowledge can be useditive non-perceived knowledge
about the environment usinglaeorem prover

e To introduce thesituation calculusand demonstrate its application in a simple
environment as a means by which an agent can work out whatnexto

207



Interesting reading

Reading:Russell and Norvig, chapters 7 to 10.

Knowledge representation based on logic is a vast subjeotamt be covered In
full in the lectures.

In particular:

e Techniques for representirigrther kinds of knowledge
e Techniques for moving beyond the idea dafiuation

e Reasoning systems basedaaiegories

e Reasoning systems usingfault information

e Truth maintenance systems

Happy reading :-)

208



Knowledge representation and reasoning

Earlier in the course we looked at whatamentshould be able to do.

It seems that all of us—and all intelligent agents—shoulellagical reasoning
to help us interact successfully with the world.

Any intelligent agent should:

e Possesk&nowledgeabout theenvironmentand abouhow its actions affect the
environment

e Use some form ofogical reasoningto maintain its knowledge agercepts
arrive.

e Use some form ological reasoningto deduce actionto perform in order to
achievegoals

209



Knowledge representation and reasoning

This raises some important guestions:

e How do we describe the current state of the world?

e How do we infer from our percepts, knowledge of unseen pditseoworld?

e How does the world change as time passes?

e How does the world stay the same as time passes?f(dime problern)

e How do we know the effects of our actions? (Tdpealificationandramifica-
tion problems)

We’ll now look at one way of answering some of these questions

210



Logic for knowledge representation

FOL (arguably?) seems to provide a good way in which to repethe required
kinds of knowledge:

e It IS expressive-anything you can program can be expressed.

e It is concise

e It is unambiguous

e It can be adapted toifferent contexts

e It has aninference procedurelthough a semidecidable one.

In addition is has a well-defineti/ntaxandsemantics

211



Logic for knowledge representation

Problem:it’s quite easy to talk about things like=t theoryusing FOL. For exam-
ple, we can easily write axioms like

VS . VS . (V. (zeSeorels)=S5=25)

But how would we go about representing the propositionithatu have a bucket
of water and throw it at your friend they will get wet, have arfpuon their head
from being hit by a bucket, and the bucket will now be emptycamde®

More importantly, how could this be represented within aavittamework for
reasoning about the world?

It's time to introduce my friend] he Wumpus.

212



Wumpus world

As a simple test scenario for a knowledge-based agent wanaike use of the
Wumpus World

Evil Robot

The Wumpus World is a 4 by 4 grid-based cave.

wants to enter the cave, find some gold, and get out again un-
scathed.

213



Wumpus world

The rules oMVumpus World
e Unfortunately the cave contains a number of pits, wkich can
fall into. Eventually his batteries will fail, and that'sdlend of him.

e The cave also contains the Wumpus, who is armed with stateecaitEvil
Robot Obliteration Technology

e The Wumpus itself knows where the pits are and never falsone.

214



Wumpus world

can move around the cave at will and can perceive the follgwin
¢ In a position adjacent to the Wumpus, a stench is percenN&timpuses are
famed for theidack of personal hygieng

¢ In a position adjacent to a pit,aeezds perceived.

¢ In the position where the gold isgiitter is perceived.

e On trying to move into a wall, aumpis perceived.

e On killing the Wumpus acreamis perceived.
In addition, has a single arrow, with which to try to kill the Wum-
pus.

“Adjacent” in the following doesot include diagonals.

215



Wumpus world

So we have:
Percepts:st ench, breeze,glitter, bunp, scream
Actions:f orward,turnLeft ,turnRi ght,grab,rel ease,shoot,cli nb.

Of course, our aim now i8ot just to design an agent that can perform well in a
single cave layout.

We want to design an agent that aauallyperform wellregardlessof the layout
of the cave.

216



Some nomenclature

The choice of knowledge representation language tendstbtéetwo important
commitments:

e Ontological commitmentsvhat does the world consist of?

e Epistemological commitmentwhat are the allowable states of knowledge?
Propositional logic is useful for introducing some fundauad ideas, but its on-

tological commitment—that the world consists of facts—stimes makes it too
limited for further use.

FOL has a different ontological commitment—the world cetsbffacts objects
andrelations

217



Logic for knowledge representation

The fundamental aim is to construckaowledge basgB containing acollection
of statementabout the world—expressed in FOL—such thagful things can be
derivedfrom it.

Our central aim is to generate sentences thatraes if the sentences in ths
are true

This process is based on concepts familiar from your intcbmhy logic courses:

e Entailment:kB = o« means that th&B entailsa.

e Proof: KB -; & means thaty is derived from the&B using:. If ; Is soundthen
we have groof.

e ; IS soundif it can generate only entailed.

e ; IScompletdf it can find a proof forany entaileda.

218



Example: Prolog

You have by now learned a little about programmingPiolog. For example:

concat ([],L,L).
concat ([H T],L,[H L2]) :- concat(T,L,L2).

IS a program to concatenate two lists. The query
concat([1,2,3],[4, 5], X).
results in

X=1[1, 2, 3, 4, 5].

What's happening here? Well, Prolog is jushare limited form of FOIlso...

219



Example: Prolog

... we are In fact doing inference fronka:

e The Prolog programme itself is th&. It expresses somelowledge about
lists.
e The query is expressed in such a way add¢ave some new knowledge
How does this relate to full FOL? First of all the list notatis nothing busyntac-

tic sugar. It can be removed: we define a constant caflegt y and a function
calledcons.

Now|[ 1, 2, 3] justmeanscons(1, cons(2, cons(3, enpty)))) which
Is atermin FOL.

| will assume the use of the syntactic sugar for lists from onaw

220



Prolog and FOL

The program when expressed in FOL, says

Vx.concat (enpty,x,x) A
Vh,t,l1,ly.concat (¢,1;,ly) = concat (cons(h,t),l;,cons(h,ls))

The rule is simple—qgiven a Prolog program:

e Universally quantify all the unbound variables in each loféhe progranand

e ... form the conjunction of the results

If the universally quantified lines arg,, -, . . ., L, then the Prolog programme
corresponds to thi€B

KB=IL4 ALy N\---AL,
Now, what does the query mean?

221



Prolog and FOL

When you give the query

concat([1,2,3],[4, 5], X).

to Prolog it responds biyying to provethe following statement
KB — dx.concat ([1,2, 3], 4,5], x)

So: it tries to prove that thé&B implies the queryand variables in the query are
existentially quantified.

When a proof is found, it suppliesvalue forx thatmakes the inference true

222



Prolog and FOL

Prolog differs from FOL in that, amongst other things:

e It restricts you to usingdorn clauses
e Its inference procedure is nofi@l-blown proof procedure

e It does not deal witmegationcorrectly.

Howeverthe central idea also works for full-blown theorem provers

If you want to experiment, you can obta#iover9from
http://ww. cs. unm edu/ ~nccune/ nace4/

We’'ll see a brief example now, and a more extensive exampte o§e later, time
permitting...

223



Prolog and FOL

Expressed in Prover9, the above Prolog program and quekyilaothis:

set (prolog _style variabl es).

% This is the translated Prolog programfor |ist concatenation.
% Prover9 has its own syntactic sugar for |ists.

fornul as(assunptions).
concat ([], L, L).
concat (T, L, L2) -> concat([H T], L, [HL2]).
end of |ist.
% This is the query.
f or nul as(goal s).

exists X concat([1, 2, 3], [4, 5], X).
end of |ist.

Note: it Is assumed thainbound variables are universally quantified

224



Prolog and FOL

You can try to infer a proof using

prover9 -f file.in
and the result is (in addition to a lot of other information):

concat (T,L,L2) -> concat([H T],L,[H L2]) # | abel (non_clause). [assunption].
(exists X concat([1,2,3],[4,5],X)) # | abel (non_clause) # | abel (goal). [goal].
concat ([],A A). [assunption].

-concat (A, B,C) | concat([D:A],B,[D:C]). [clausify(1)].
-concat([1,2,3],[4,5],A. [deny(2)].

concat ([A],B,[A:B]). [ur(4,4a,3,a)].

-concat([2,3],[4,5],A). [resolve(5,a,4,b)].

concat ([A,B],C [AB:C). [ur(4,a,6,a)].

$F. [resolve(8,a,7,a)].

O© 00 NO Ul WN -

This shows that a proof is found but doesn’t explicitly giveadue for X—we’ll
see how to extract that later...

225



The fundamental idea

So thebasic ideas: build akB that encodeknowledge about the wor|theeffects
of actionsand so on.

TheKB is a conjunction of pieces of knowledge, such that:

e A query regarding what our agent shoulda@on be posed in the form

JactionList .Goal (... actionList ...)

e Proving that
KB=— dactionList . Goal (... actionList ...)

iInstantiatesact | onLi st to anactual list of actionghat will achieve a goal
represented by th€oal predicate.

We sometimes use the notatiesk andtell to refer toqueryingandadding to
theKB.

226



Using FOL in Al: the triumphant return of the Wumpus

We want to be able tepeculateabout the past and abgobssible futuresSo:

Evil Robot

e \We includesituationsin the logical language used by oK.

e \We Includeaxiomsin our KB that relate to situations.

This gives rise taituation calculus

227



Situation calculus

In situation calculus

e The world consists of sequencessafiations
e Over time, an agent moves from one situation to another.

e Situations are changed as a resultiofions

In Wumpus World the actions aréor war d, shoot ,gr ab,cl i nb,r el ease,
turnRi ght ,turnLeft.

e A situation argumenis added to items that can change over time. For example
At(location s)
Items that can change over time are calleeénts

e A situation argument is not needed for things that don’'t geanThese are
sometimes referred to asernalor atemporal

228



Representing change as a result of actions

Situation calculus uses a function
resultacti on, s)

to denote theewsituation arising as a result of performing the specifietbaah
the specified situation.

resultgrab, sy) = s;
resultturnleft, s;) = so
resultshoot, s9) = s3
resul{forward, s3) = sy

229



Axioms |: possibility axioms

The first kind of axiom we need in @B specifieswhen particular actions are
possible

We introduce a predicate
Possgacti on, s)

denoting that an action can be performed in situation
We then need aossibility axionfor each action. For example:
At(l,s) A Available(gol d, [, s) = Poss$grab, s)

Remember thatinbound variables are universally quantified

230



Axioms |l; effect axioms

Given that an action results in a new situation, we can inice@ffect axiomgo
specify the properties of the new situation.

For example, to keep track of whether has the gold we neegifect
axiomsto describe the effect of picking it up:

Poss$grab, s) = Havegol d, resul{grab, s))
Effect axioms describe the way in which the woclthnges
We would probably also include
—Havegol d, s)
In thekB, wheres Is thestarting state

Important we are describingvhat is truein the situation that resultrom per-
forming an actionn agiven situation

231



Axioms llI; frame axioms

We needrame axiomdo describaéhe way in which the world stays the same
Example:
Havgo, s) A

—(a = release Ao =¢gol d) A —(a = shoot Ao =arrow)
—> Havego, resulta, s))

describes the effect dfaving something and not discarding it
In @ more general setting such an axiom might well look ddifer For example
—Havego, s) A

(a # grab(o) V —(Availablgo, s) A Portabléo)))
—> —Have(o, resulta, s))

describes the effect oot having something and not picking it.up

232



The frame problem

Theframe problemhas historically been a major issue.

Representational frame problera large number of frame axioms are required to
represent the many things in the world which will not changehe result of an
action.

We will see how to solve this in a moment.

Inferential frame problemwhen reasoning about a sequence of situations, all the
unchanged properties still need to be carried through alstaps.

This can be alleviated usinganning systemthat allow us to reason efficiently
when actions change only a small part of the world. Therelaeadher remedies,
which we will not cover.

233



Successor-state axioms

Effect axioms and frame axioms can be combined stocessor-state axioms

One is needed for each predicate that can change over time.

Action a Is possible—-
(true in new situation<~—
(you did something to make it true
it was already true and you didn’t make it false

For example

Possa, s) =
(Haveo, resulta, s)) <= ((a = grab A Available(o,s) V
(Haveo,s) A —(a =release A o=gold) A
—(a = shoot A o=arrow))))

234



Knowing where you are

If sy 1s the initial situation we know that
At<(17 1)7 30)

| am assuminghat we've added axioms allowing us to deal with the numbéos
5 and pairs of such numberd&xercise: do this.)

We need to keep track of what way we’re facing. Say north south i1s2, east is

1 and west IS.
facing(sy) = 0

We need to know how motion affects location

forwardResult(z, y),nort h) = (z,y + 1)
forwardResult(z, y),east ) = (x + 1, y)

and
At(l, s) = goForwards) = forwardResult, facing(s))

235



Knowing where you are

The concept of adjacency is very important in the Wumpusavorl
Adjacently, l;) < dd forwardResull;,d) = [,
We also know that the cave 49y 4 and surrounded by walls
WallHer€(z,y)) <— (x=0Vy=0Vax=5Vy=>5)

It is only possible to change location by moving, and thisyambrks if you're not
facing a wall. So...

...we need a successor-state axiom:;
Possa, s) =
At(l, resulta, s)) < (I = goForwards)

N\ a = forward

A —WallHerg))
V (At(l,s) A a # forward)

236



Knowing where you are

It is only possible to change orientation by turning. Agaue, need a successor-
state axiom
Possa, s) =
facingresulta, s)) = d <
(a = turnRight A d = modfacing(s) + 1,4))
V (a = turnLeft A d = modfacing(s) — 1,4))
V (facing's) = d A a # turnRight A a # turnLeft)

and so on...

237



The qualification and ramification problems

Qualification problemwe are in general never completely certain what conditions
are required for an action to be effective.

Consider for example turning the key to start your car.
This will lead to problems if important conditions are oradtfrom axioms.

Ramification problemactions tend to have implicit consequences that are large |
number.

For example, if | pick up a sandwich in a dodgy sandwich shopilllalso be
picking up all the bugs that live in it. | don’t want to modelgtexplicitly.

238



Solving the ramification problem

The ramification problem can be solved inpdifying successor-state axioms

For example:

Poss$a, s) =
(At(o,l, resulta, s)) <—

(a=go(l',1) A
lo=robot Vv Hagrobot ,o,s)|)V
(At(o,1,s) A

=37 a=go(l, ") AT A
{o =robot vV Hagrobot o, s)}]))

describes the fact that anythiihg IS carrying moves around with him.

239



Deducing properties of the world: causal rules

If you know where you are, then you can think abpl#cesrather than jussitu-
ations

Synchronic ruleselate properties shared by a single state of the world.

There are two kindscausalanddiagnostic

Causal rules some properties of the world will produce percepts.
WumpusAti;) A Adjacently, [;) = StenchAt/,)

PitAt(/,) A Adjacentl, [,) — BreezeAtl,)
Systems reasoning with such rules are knowmasdel-basedeasoning systems.

240



Deducing properties of the world: diagnostic rules

Diagnostic rules infer properties of the world from percepts.
For example:
At(l, s) N\ Breezes) —> BreezeAt!)
At(l,s) AN St ench(s) = St enchAt (I
These may not be very strong.

The difference between model-based and diagnostic reagsoan be important.

For example, medical diagnosis can be done based on symgiobhased on a
model of disease.

241



General axioms for situations and objects

Note In FOL, if we have two constantsobot andgol d then an interpretation
IS free to assign them to be the same thing.

This is not something we want to allow.

Unigue names axiomstate that each pair of distinct items in our model of the

world must be different
robot #gold

robot #£ arrow
robot # wunpus

wunpus # gol d

242



General axioms for situations and objects

Unique actions axiomstate that actions must share this property, so for each pair

of actions
go(l,1") # grab
go(l,l') # drop(o)

dr op(o) # shoot
and in addition we need to define equality for actions, so &heaction

go(l,l') =go(I",1") < I=1"NI=1"
drop(o) =drop(d) < o=/

243



General axioms for situations and objects

The situations arerderedso
sp # resulta, s)
and situations areistinctso
resulta, s) = resulfa’,s') <= a=d As=+¢
Strictly speaking we should be usingraany-sortearersion of FOL.

In such a system variables can be divided sioiswhich are implicitly separate
from one another.

244



The start state

Finally, we're going to need to specifyhat’s true in the start state

For example
At(r obot , |1, 1], s0)

At(VVUITpUS, [37 4]7 50>
Hagr obot , ar r ow, s)

and so on.

245



Sequences of situations

We know that the functiomesulttells us about the situation resulting from per-
forming an action in an earlier situation.

How can this help us findequences of actions to get things ddne
Define
Sequencl], s, s’ ) = s = s
Sequencgal, s, s') = Possa, s) A s’ = resulfa, s)
Sequencg: :: as, s, s’ ) = 3t . Sequenc@al, s, t) A Sequencgs, t, s')
To obtain asequence of actions that achiev&esal s) we can use the query

da ds . Sequencegr, s, s) A Goal s)

246



Knowledge representation and reasoning

It should be clear that generating sequences of actionsfbyemce in FOL Is
highly non-trivial.

Ideally we'd like to maintain amxpressivéanguage whilgestrictingit enough to
be able to do inferencefficiently

Further aims
e To give a brief introduction teemantic networkandframesfor knowledge
representation.
e To see hownheritancecan be applied as a reasoning method.
e To look at the use ofules for knowledge representation, along witirward
chainingandbackward chainindgor reasoning.

Further reading The Essence of Atrtificial IntelligencAlison Cawsey. Prentice
Hall, 1998.

247



Frames and semantic networks

Frames and semantic networks represent knowledge in thredbclasses of ob-
jectsandrelationships between them

e Thesubclassandinstancerelationships are emphasised.

e \We formclass hierarchiesn which inheritanceis supported and provides the
maininference mechanism

As a result inference is quite limited.
We also need to be extremely careful absernantics

The only major difference between the two ideasasational

248



Example of a semantic network

subclass
as

subclass subclass

volume

Ear problem has
volume - . .\ has
Rock musician Classical musiciarp

hair_length

hair_length _
instance

Jake Mayhe

instancg

i has
Violet Scroot

249



Frames

Frames once again support inheritance througlstielass relationship

Rock musician .
Musician

has: instrument

has: ear problems
hairlength: long
volume: loud

has, hai r | engt h, vol une etcareslots
| ong, | oud, | nst runent etcaresl|ot values

These are a direct predecessobbject-oriented programming languages

250



Defaults

Both approaches to knowledge representation are ableagpo@tedefaults

Rock musician

Dementia Evilperson

subclass: Musician
has: ear problems
* hairlength: long
*volume:  loud

subclass: Rock musicia
hairlength: short
image: gothic

Starred slots arg/pical valuesassociated with subclasses and instances;dout
be overridden

251



Multiple inheritance

Both approaches can incorporatelltiple inheritanceat a cost:

Rock musician Classical musician

insta\ré\ instance
Cornelius Cleverchap

e What ishai r | engt h for Cor nel | us if we're trying to use inheritance to
establish it?

e This can be overcome initially by specifying which classnkarited fromin
preferencavhen there’s a conflict.

e But the problem is still not entirely solved—what if we waatgrefer inheri-
tance of some things from one class, but inheritance of stinem a different
one?

252



Other issues

e Slots and slot values can themselves be frames. For exampient i a may
have an instrument slot with the vali® ect ri ¢ har p, which itself may
have properties described in a frame.

e Slots can havepecified attributesFor example, we might specify thatst r unent
can have multiple values, that each value can only be amiostfl nst r unent ,
that each value has a slot calledned by and so on.

e Slots may contain arbitrary pieces of program. This is kn@asprocedural
attachment The fragment might be executed to return the slot’s value, o
update the values in other sl@s:

253



Rule-based systems

A rule-based system requires three things:

1. Asetofi f -t hen rules These denote specific pieces of knowledge about the
world.

They should be interpreted similarly to logical implicatio

Such rules denotevhat to door what can be inferredunder given circum-
stances.

2. A collection offactsdenoting what the system regards as currently true about
the world.

3. An interpreter able to apply the current rules in the lighthe current facts.

254



Forward chaining

The first of two basic kinds of interpretéegins with established facts and then
applies rules to them

This is adata-drivenprocess. It is appropriate if we know thetial facts but not
the required conclusion.

Example: XCON—used for configuring VAX computers.

In addition:

e \We maintain avorking memorytypically of what has been inferred so far.

e Rules are oftemondition-action ruleswhere the right-hand side specifies an

action such as adding or removing something from working orgnprinting
a messagetc

e In some cases actions might be entire program fragments.

255



Forward chaining

The basic algorithm is:

1. Find all the rules that can fire, based on the current wgrkniemory.
2. Select a rule to fire. This requiresanflict resolution strategy

3. Carry out the action specified, possibly updating the vimgrknemory.

Repeat this process until eithen rules can be usear ahalt appears in the work-
INng memory.

256



Example

Condition—action rules

dry_mouth —> ADD thirsty

thirsty —> ADD get_drink

get_drink AND no_work —> ADD go_bar
working —> ADD no_work

no_work —> DELETE working

Interpreter

Working memory

dry_mouth
working

257



Example

Progress is as follows:

1. The rule
dry_mouth = ADD thirsty

fires adding hi r st y to working memory.

2. The rule
t hirsty = ADD get _dri nk

fires addingget _dri nk to working memory.

3. The rule
wor ki ng = ADD no_wor k

fires addingho wor k to working memory.

4. The rule
get _dri nk AND no_wor k = ADD go_bar

fires, and we establish that it’s time to go to the bar.

258



Conflict resolution

Clearly in any more realistic system we expect to have to dathl a scenario
wheretwo or more rules can be fired at any one time

e Which rule we choose can clearly affect the outcome.

e \We might also want to attempt to avoid inferring an abundarfagseless in-
formation.

We therefore need a meansrefolving such conflicts

259



Conflict resolution

Commonconflict resolution strategiegre:

e Prefer rules involving more recently added facts.

e Prefer rules that ameore specificFor example
pat i ent _coughi ng = ADD | ung_pr obl em
IS more general than
pati ent _coughi ng AND pat i ent _snoker =—> ADD | ung_cancer.

This allows us to define exceptions to general rules.
e Allow the designer of the rules to specify priorities.

e Fire all rulessimultaneousk~this essentially involves following all chains of
Inference at once.

260



Reason maintenance

Some systems will allow information to be removed from thekatg memory if
It Is no longenustified

For example, we might find that
pat i ent _coughi ng

and
pati ent snoker

are in working memory, and hence fire
pati ent coughi ng AND pat i ent _snoker —> ADD | ung_cancer

but later infer something that causest | ent _coughi ng to bewithdrawnfrom
working memory.

The justification fon ung _cancer has been removed, and so it should perhaps
be removed also.

261



Pattern matching

In general rules may be expressed in a slightly more flexdria finvolving vari-
ableswhich can work in conjunction witpattern matching

For example the rule
coughs(X) AND snoker (X) = ADD | ung cancer (X)
contains the variablé&’.
If the working memory containsoughs (neddy ) andsnoker (neddy) then
X = neddy

provides a match and
| ung_cancer (neddy)

Is added to the working memory.

262



Backward chaining

The second basic kind of interpreter begins withbal and finds a rule that would
achieve it.

It then worksbackwards trying to achieve the resulting earlier goals in the suc-
cession of inferences.

Example: MYCIN—medical diagnosis with a small number of dibions.

This is agoal-drivenprocess. If you want toest a hypothesier you have some
Idea of a likely conclusion it can be more efficient than fomvahaining.

263



Working memory

dry_nout h
wor ki ng

Example

get dri nk
no_wor k

thirsty
no_wor k

dry_nout h
no_wor k

To establistgo_bar we have to
establisiget _dr i nk andno_wor k.
These are the new goals.

Try first to establislget _dr i nk. This
can be done by establishindpi r st y.

t hi r st y can be established by establishing
dr y_nout h. This is in the working memory
so we're done.

Finally, we can establisho_wor k by
establishingwr ki ng. This is in the working
memory so the process has finished.

264



Example with backtracking

If at some point more than one rule has the required concluben we carack-
track.

Example: Prolog backtracks, and incorporates pattern matching. It orders a
tempts according to the order in which rules appear in thgnaro.

Example: having added

up.early — ADD tired

and
tired AND | azy = ADD go_bar

to the rules, andip ear | y to the working memory:

265



Example with backtracking

Working memory

dry_nout h
wor ki ng
up_early

Attempt to establisigo_bar

by establishing i r ed and get drink
no_wor k
|l azy.

This can be done by establishing

up_early|up_earlyandl azy. thirsty
up_ear | y is in the working memory no_wor k

so we're done.

Process proceeds as before

We can not establisigazy

and so we backtrack and try a dry_mout h
: no_wor K
different approach.

266



Artificial Intelligence |

Dr Sean Holden

Notes onplanning

Copyright(©) Sean Holden 2002-2012.

267



Problem solving is different to planning

In search problemsve:

e Represent stateand a state representation contasmasrythingthat’s relevant
about the environment.

e Represent actiondy describing a new state obtained from a current state.

e Represent goaisall we know is how to test a state either to see if it's a goal,
or using a heuristic.

e A segquence of actions is a ‘plarbut we only considesequences of consecu-
tive actions

Search algorithms are good for solving problems that fitfiaimework. However
for more complex problems they may fail completely...

268



Problem solving is different to planning

Representing a problem such ag out and buy some piets hopeless:

e There aréoo many possible actiorat each step.

e A heuristic can only help you rank states. In particular ieslmot help you
ignoreuseless actions.

e \We are forced to start at the initial state, but you have tokveart how to get
the pies—that is, go to town and buy them, get online and find a web kde t
sells piesetc—before you can start to do.it

Knowledge representation and reasoning might not helgeidthough we end
up with a sequence of actions—a plan—there is so much fleyibiat complex-
ity might well become an issue.

269



Introduction to planning

We now look at how an agent migbbnstruct a plarenabling it to achieve a goal.

Aims

e To look at how we might update our conceptafowledge representation and
reasoningto apply more specifically to planning tasks.

e To look in detail at the basigartial-order planning algorithm

Reading Russell and Norvig, chapter 11.

270



Planning algorithms work differently

Difference 1

¢ Planning algorithms usespecial purpose languageoften based on FOL or
a subset— to represent states, goals, and actions.

e States and goals are described by sentences, as might lweskmut...

e ...actions are described by stating theeconditionsand theireffects

So if you know the goal includes (maybe among other things)
Havepi e)

and actiorBuy(x) has an effecHave =) then you know that a plamcluding
Buy(pi e)

might be reasonable.

271



Planning algorithms work differently

Difference 2

e Planners can add actionsaty relevant point at all between the start and the
goal, not just at the end of a sequence starting at the start state.

e This makes sense: | may determine tHavg car Keys) is a good state to be
in without worrying about what happens before or after figdimem.

e By making an important decision like requiriitave car Keys) early on we
may reduce branching and backtracking.

e State descriptions are not completetavecar Keys) describes alass of
states—and this adds flexibility.

Sa you have the potential to search bédivwardsandbackwardawithin the same
problem.

272



Planning algorithms work differently

Difference 3

It is assumed that most elements of the environmentaependent of most other
elements

e A goalincluding several requirements can be attacked wdiliide-and-conquer
approach.

e Each individual requirement can be fulfilled using a subplan

e ...and the subplans then combined.

This works provided there is not significant interactionviestn the subplans.

Remember: th&tame problem

273



Running example: gorilla-based mischief

We will use the following simple example problem, which asdxhon a similar
one due to Russell and Norvig.

The intrepid little scamps in th€ambridge University Roof-Climbing Society
wish to attach amflatable gorillato the spire of &amous College To do this
they need to leave home and obtain:

e An inflatable gorilla these can be purchased from all good joke shops.
e Some ropeavailable from a hardware store.

e A first-aid kit also available from a hardware store.

They need to return home after they've finished their shappin

How do they go about planning theally escapad@

274



The STRIPS language

STRIPS:*Stanford Research Institute Problem Solvf970).

States areconjunctionsof ground literals They must not includéunction sym-

bols
At(honme) A —Haveggori | | a)

A ~Havgr ope)
A —Haveki t)
Goals areconjunctionof literals where variables are assumedstentially quan-
tified.
At(z) A Sellgz,gori | | a)
A planner finds a sequence of actions that when performed sithkegoal true.
We are no longer employing a full theorem-prover.

275



The STRIPS language

STRIPS represents actions usimggrators For example

Op(Action: Galy), Pre: Atz) A Pathx, y), Effect: At(y) A —At(z))
All variables are implicitly universally quantified. An ofaor has:

e An action descriptionwhat the action does.

e A precondition what must be true before the operator can be usegorA
junction of positive literals

e An effect what is true after the operator has been usedcoAjunction of
literals.

276



The space of plans

We now make a change in perspective—we sear¢lian space

e Start with anempty plan

e Operate on itto obtain new plans. Incomplete plans are cafledial plans
Refinement operatoadd constraints to a partial plan. All other operators are
calledmodification operators

e Continue until we obtain a plan that solves the problem.
Operations on plans can be:

e Adding a step
e Instantiating a variable
e Imposing an orderinghat places a step in front of another.

e and so on...

277



Representing a plan: partial order planners

When putting on your shoes and socks:

e It does not mattewhether you deal with your left or right foot first.

e It does mattethat you place a sock dmeforea shoe, for any given foot.

It makes sense in constructing a plam to make anycommitmento which side
Is done firstif you don’t have to

Principle of least commitmentdo not commit to any specific choices until you
have to. This can be applied both to ordering and to instaoiaf variables. A
partial order plannerallows plans to specify that some steps must come before
others but others have no ordering. liAearisation of such a plan imposes a
specific sequence on the actions therein.

278



Representing a plan: partial order planners

A plan consists of:

1. Aset{5;,9,...,9,} of steps Each of these is one of the availablesrators

2. A set ofordering constraintsAn ordering constraint; < .S, denotes the fact
that stepS; must happen before step. S; < S; < S, and so on has the
obvious meaning.S; < S; doesnot mean thatS; mustimmediatelyprecede

Si.
3. A set of variable bindings = = wherev Is a variable and is either a variable
or a constant.

4. A set ofcausal linksor protection intervalsS; — S;. This denotes the fact
that the purpose of; is to achieve the preconditionfor 5.

A causal link isalwayspaired with an equivalent ordering constraint.

279



Representing a plan: partial order planners

Theinitial plan has:

e Two steps, calledtartandFinish
¢ a single ordering constraidtart< Finish
e No variable bindings

e No causal links
In addition to this:

e The stepStarthas no preconditions, and its effect is the start state fer th
problem.

e The steprinishhas no effect, and its precondition is the goal.

e NeitherStartor Finishhas an associated action.

We now need to consider what constitutesoéution..

280



Solutions to planning problems

A solution to a planning problem is ampmpleteandconsistenpartially ordered
plan.

Complete each precondition of each stepaishievedoy another step in the solu-
tion.

A preconditionc for S is achieved by a stef' if:

1. The precondition is an effect of the step
S" < S andc € Effectqs")
and...

2. ... there isno otherstep thatcould cancel the precondition. That is, ri¢
exists where:

e The existing ordering constraints allow/ to occurafter S” butbefores.
e —c € Effectd5”).

281



Solutions to planning problems

Consistent no contradictions exist in the binding constraints or ia groposed
ordering. That is:

1. For binding constraints, we never have- X andv = Y for distinct constants
X andY'.

2. For the ordering, we never hage< S’ andS’ < S.
Returning to the roof-climber’s shopping expedition, hisrthe basic approach:

e Begin with only theSt art andFi ni sh steps in the plan.
e At each stage add a new step.

e Always add a new step such thatcarrently non-achieved precondition is
achieved

e Backtrack when necessary.

282



An example of partial-order planning

Here is thenitial plan:

At (Home) ASel I s(JS, Q[{ASells(HS, R) ASell s(HS

At (Honme) AHave( G A Have(R) A Have( FA)

Thin arrows denote ordering.

283



An example of partial-order planning

There ardwo actions available

At (z),Sel | s(z,vy)

Buy (y)

Have(y)

A planner might begin, for example, by addingay(G) action in order to achieve
the Have G) precondition of~inish

Note the following order of events is by no means the only onelaloha to a
planner.

It has been chosen for illustrative purposes.

284



An example of partial-order planning

Incorporating the suggested step into the plan:

At (Hone),Sel | s(JS, G ,Sel | s(HS, R), Sel | s(HS, H
At (z),%el | s(z,Q)

At (Hore) ,Have( QG ,Have(R),Have( FA)

Thick arrows denote causal links. They always have a thmnaunderneath.

Here the newBuy step achieves thdaveg G) precondition of=inish

285



An example of partial-order planning

The planner can now introduce a second causal link f&iartto achieve the
Sellgx, G) precondition oBuy(G).

At (Homre) ,Sel I s(JS, §\Sel | s(HS, R),Sel | s(HS

At (JS),Sel I s(JS, G)

At (Homre) ,Have( G ,Have(R),Have( FA)

286



An example of partial-order planning

The planner’'s next obvious move is to introduc&astep to achieve that(JS)
precondition oBuy(G).

At (Horre) ,Sel I s(JS, Q,Sel | s(HS, R),Sel | s(HS, FA

At (JS),Sel I s(JS, G)

At (Homre) ,Have( G ,Have(R),Have( FA)

And we continue...

287



An example of partial-order planning

Initially the planner can continue quite easily in this mann

e Add a causal link fronStartto Go(JS) to achieve the\t(z) precondition.

e Add the steBuy(R) with an associated causal link to thkavg R) precondi-
tion of Finish

e Add a causal link fronStartto Buy(R) to achieve thé&ell§HS, R) precondi-
tion.

But then things get more interesting...

288



An example of partial-order planning

At (Hone) ,Sel | s(JS\G , Sel , R),Sel | s(HS, FA)

At (JS),Sel I s(JS, G At (HS),Sel I s(HS, R)

At (Hone) ,Have( G ,Have(R),Have( FA)

At this point it starts to get tricky...
The At(HS) precondition inBuy(R) is not achieved.

289



An example of partial-order planning

At (Home) ,Sel I s(JS, @, & HS, R),Sel | s(HS, FA)

At (JS),Sell s(JS, G Sel | s(HS, R),At (HS)

At (Hone) ,Have( G ,Have(R) ,Have( FA)

TheAt(HS) precondition is easy to achievBut if we introduce a causal link from
Startto Go(HS) then we risk invalidating the precondition f@0o(JS).

290



An example of partial-order planning

A step that might invalidate (sometimes the wardbberis employed) a previ-
ously achieved precondition is calledraeat

Threat

A planner can try to fix a threat by introducing an orderingstoaint.

201



An example of partial-order planning

The planner could backtrack and try to achieve Alher) precondition using the
existingGo(JS) step.

At (Horre) , Sel | s(JS, §il| , R),Sel | s(HS, FA)

At (JS),Sel I s(JS, G Sel | s(HS, R), At (HS)

At (JS)

At (Homre) ,Have( G ,Have(R) ,Have( FA)

This involves a threat, but one that can be fixed using pramoti

292



The algorithm

Simplifying slightly to the case where there are variables

Say we have a partially completed plan and a set of the pre&ommslthat have
yet to be achieved.

e Select a preconditiop that has not yet been achieved and is associated with
an actions.

e At each stagéhe partially complete plan is expanded into a new colletctb
plans

e To expand a plan, we can try to achigvesither by using an action that's
already in the plan or by adding a new action to the plan. Imegitase, call
the actionA.

We then try to construct consistent plans wherachieves.

293



The algorithm

This works as follows:

e Foreach possible way of achievipg

— Add Start< A, A < Finish, A < B and the causal linkl % B to the plan.

— If the resulting plan is consistent we're done, othervgseerate all possi-
ble ways of removing inconsistenciag promotion or demotion angkeep
any resulting consistent plans

At this stage:

e If you haveno further preconditions that haven'’t been achietiegnany plan
obtained is valid

294



The algorithm

But how do we try teenforce consisten®y

When you attempt to achieyeusing A:

e Find all the existing causal linkd’ —% B’ that areclobberedby A.

e For each of those you can try adding< A’ or B’ < A to the plan.

e Find all existing actions’ in the plan that clobber theewcausal link4A % B.
e For each of those you can try addiag< A or B < C'to the plan.

e Generatesvery possible combinatioim this way and retain any consistent
plans that result.

295



Possible threats

What about dealing withariable<?
If at any stage an effectAt(z) appears, is it a threat ot (J S)?

Such an occurrence is calleghassible threaand we can deal with it by introduc-
Ing inequality constraintsin this caser = JS.

e Each partially complete plan now has a setf inequality constraints associ-
ated with it.

e An inequality constraint has the form+# X wherev is a variable and\ is a
variable or a constant.

e Whenever we try to make a substitution we chédo make sure we won't
Introduce a conflict.

If we would introduce a conflict then we discard the partially complgiith as
Inconsistent.

296



Artificial Intelligence |

Dr Sean Holden

Notes onmachine learning using neural networks

Copyright(© Sean Holden 2002-2012.

297



Did you heed the DIRE WARNING?

At the beginning of the courdesuggested making sure you can answer the fol-
lowing two questions:

1. Let

n

flxy,...,z,) = Zaixf
1=1
where the:; are constants. Compute /0z; wherel < j < n?

Answer:As

f(xlaazn):al'x%—"_J’_a]z?—"_—"_anz%

only one term in the sum dependson so all the other terms differentiate to
give 0 and
of

0z

= 20T

298



Did you heed the DIRE WARNING?

2. Letf(xy,...,x,) be afunction. Now assume = ¢;(v1, ..., y,,) for eachz;
and some collection of functions. Assuming all requirements for differentia-

bility and so on are met, can you write down an expression foloy; where
1<j<m?

Answer:this is just thechain rulefor partial differentiation

Af - 9f 9y,
dy; <= 0g;0y;

299



Supervised learning with neural networks

We now look at how an agent migl#tarn to solve a general problem by seeing
examples

Aims

e To present an outline cfupervised learnings part of Al.

e To introduce much of the notation and terminology used.

e To introduce the classicalkerceptron

e To introducemultilayer perceptrongand thebackpropagation algorithnfor
training them.

Reading Russell and Norvig chapter 20.

300



An example

A common source of problems in Al imedical diagnosis

Imagine that we want to automate the diagnosis of @i (call
it D) by constructing a machine:

Measurementgaken from the 1 if the patient suffers fronD

0 otherwise

patient: heart rate, blood pressure, Machine
presence of green spat.

Could we do this byexplicitly writing a progranthat examines the measurements
and outputs a diagnosis?

Experience suggests that this is unlikely.

301



An example, continued...

An alternative approach: each collection of measuremesmsbe written as a

vector,

x = (2 o3 -+ T,)

where,

r1 = heart rate

ro = blood pressure

xr3 = 1 If the patient has green spots
0 otherwise

and so on

(Note it's a common convention that vectors a@umn vectordy default. This
IS why the above Is written asteanspose

302



An example, continued...

A vector of this kind contains all the measurements for alsimpatient and Is
called afeature vectoor instance

The measurements anéributesor features

Attributes or features generally appear as one of three lbgses:

e Continuous z; € |Tmin, Tmax Wherezrmin, tmax € R.
e Binary. z; € {0,1} orx; € {—1,+1}.
e Discrete z; can take one of a finite number of values, say {X,..., X,}.

303



An example, continued...

Now imagine that we have a large collection of patient his®(n in total) and
for each of these we know whether or not the patient suffexaa .
e The:th patient history gives us an instance

e This can be paired with a single bits-er 1—denoting whether or not thg¢h
patient suffers fromD. The resulting pair is called amxampleor alabelled
example

e Collecting all the examples together we obtaimzaning sequence
s = ((x1,0), (x2,1),...,(Xm,0))

304



An example, continued...

In supervised machine learning we aim to desi¢ggeaning algorithmwhich takes
s and produces aypothesis..

Learning Algorithm

Intuitively, a hypothesis is something that lets us diagnasvpatients.
This isSIMPORTANT we want to diagnose patients thiaé system has never seen

The ability to do this successfully is callegneralisation

305



An example, continued...

In fact, a hypothesis is justfanctionthat mapsnstancedo labels

Classifier
Attribute vector

h(x)

X

As h is afunctionit assigns a label tanyx andnot just the ones that were in the
training sequence

What we mean by &bel here depends on whether we’re doirigssificationor
regression

306



Supervised learning: classification

In classificatiorwe’re assigningk to one of a sefw, ..., w.} of c classes

For example, ifk contains measurements taken from a patient then there beght
three classes:

wy = patient has disease
wy = patient doesn’t have disease
w3 = don’t ask me buddy, I'm just a computer!

Thebinary case above also fits into this framework, and we’ll often sjse to
the case of two classes, denotédand (.

307



Supervised learning: regression

In regressiorwe’re assigningk to areal numberh(x) € R.

For example, ik contains measurements taken regarding today’s weathewde
might have

h(x) = estimate of amount of rainfall expected tomorrow

For the two-class classification problem we will also refea situation somewhat

between the two, where
h(x) = Pr(xisin C)

and so we would typically assignto classC' if h(x) > 1/2.

308



Summary

We don’t want to design explicitly.

_ Classifier
Attribute vector h(x)

X

Learner
L

Training sequence
S

So we use &arner L to infer it on the basis of a sequencef training examples

309



Neural networks

There is generally a sét of hypotheses from which is allowed to select
L(s)=heH
H is called thehypothesis space

The learner can output a hypothesis explicitly or—as in #m®eof aneural net-
work—it can output a vector

WT:(w1 wy - - - wv[/)

of weightswhich in turn specify

wherew = L(s).

310



Types of learning

The form of machine learning described is calfegbervised learning

This introduction will concentrate on this kind of learnidg particular, the liter-
ature also discusses:

1. Unsupervised learning
2. Learning usingnembership querieandequivalence queries

3. Reinforcement learning

Some of this further material will be covered in Al 2.

311



Some further examples

e Speech recognitian

e Decidingwhether or not to give credit

e Detectingcredit card fraud

e Deciding whether tiuy or sell a stock optian
e Deciding whether aimour is benign

e Data mining extracting interesting but hidden knowledge from exgtiarge
databases. For example, databases contafmagcial transactionor loan
applications

e Deciding whethedriving conditions are dangerous

e Automatic driving (See Pomerleau, 1989, in which a car is driven for 90
miles at 70 miles per hour, on a public road with other carseame but with
no assistance from humans.)

312



This is very similar to curve fitting

This process is in fact very similar tairve fitting

Think of the process as follows:

e Nature picks am’ € H but doesn’t reveal it to us.

e Nature then shows us a training sequehadere eacl; is labelled as.’(x; )+
¢; Wheree; Is noise of some kind.

Our job is to try to infer what)' is on the basis of only.

This is easy to visualise in one dimensiars just fitting a curve to some points

313



Curve fitting

Example if H is the set of all polynomials of degréahen nature might pick
1 3 1

h'(z) = gxg — 5372 + 2x — 5

The line is dashed to emphasise the fact thatlon’t get to see.it

314



Curve fitting

We can now useé’ to obtain a training sequeneen the manner suggested..

Here we have,

ST — <<£C17 291), <ZC27 92% SRR <$7’rl7 ym))

where eachr; andy; Is a real number.

315



Curve fitting

We’'ll use alearning algorithm/Z that operates in a reasonable-looking way: it
picks ani € H minimising the following quantity,

b= Z(h(%) — i)

In other words

m

h = L(s) = argmin Z(h(ém — yi>2

heH P
Why is this sensible?

1. Each term in the sum isif h(x;) is exactlyy;.

2. Each termncreasesas the difference betweén:;) andy; increases.

3. We add the terms for all examples.

316



Curve fitting

If we pick i using this method then we get:

The chosen is close to the targét, even though it was chosesing only a small
number of noisy examples

It is not quite identical to the target concepit.

However if we were given a new poirt and asked to guess the valuéex’) then
guessing:(x’) might be expected to do quite well.

317



Curve fitting

Problem we don’t knowwhat  nature is using What if the one we choose
doesn’t match? We can makeir 7 ‘bigger’ by defining it as

H = {h : his apolynomial of degree at mos}

If we use the same learning algorithm then we get:

The result in this case is similar to the previous ohes again quite close t@’,
but not quite identical.

318



Curve fitting

So what’s the problemRepeating the process with,
H = {h : his a polynomial of degree at mos}

gives the following:

In effect, we have madeur 7 too ‘small’. It does not in fact contain any hypoth-
esis similar tan'.

319



Curve fitting

So we have to makk huge, right? WRONG!'With
H = {h : his apolynomial of degree at magi}

we get:

BEWARE!!!This is known asverfitting

320



Curve fitting

An experiment to gain some further insighsing

1 1 1 1 3 1
W) = — 10 _ =8, = 6, 2,3 2.2 9. °

() e T T —|—3£L‘ % 2w =5
as the unknown underlying function.

We can look at howhe degree of the polynomial the training algorithm can exitp
affects the generalisation ability of the resultihg

We use the same training algorithm, and we train using
H = {h : his apolynomial of degree at maos}

for values ofd ranging froml to 30

321



Curve fitting

e Each time we obtain ah of a given degree—call it ,—we assess its quality
using a furtherl00 inputsx; generated at randorand calculating

100
1

ald) = 755 D (W) = ha(x))

1=1

e As the values)(d) are found using inputs that are not necessarily included in
the training sequendéey measure generalisation

e To smooth out the effects of the random selection of examp&eszpeat this
processl 00 times and average the valugg/).

322



Curve fitting

Here Is the result:

Log of average q

Clearly: we need to choosé sensibly if we want to obtaigood generalisation
performance

323



The perceptron

The example just given illustrates much of what we want to ¢towever in
practice we deal witlmore than a single dimension

The simplest form of hypothesis used is theear discriminant also known as
theperceptron Here

m

h(w;x) =0 (wo + Z wlxl> = 0 (wy + w1z, + waTo + - - - + Wy
i=1

So: we have @near functionmodified by theactivation function.

The perceptron’s influence continues to be felt in the reardtongoing develop-
ment ofsupport vector machines

324



The perceptron activation function |

There are three standard forms for the activation function:

1. Linear: for regression problemae often use
o(z) ==z

2. Step for two-class classification problemige often use

(= [Crifz>0
O\ = C5 otherwise.

3. Sigmoid/Logisticfor probabilistic classificatiorwe often use

PrixisinCy) =o(z) = 1+ exlp(—2>'

Thestep functions important but the algorithms involved are somewhat ciifé
to those we’ll be seeing. We won'’t consider it further.

Thesigmoid/logistic functiomplays a major role in what follows.

325



The sigmoid/logistic function

The logistic function o(z) = Logistic o(z) applied to the output of a linear function

o
o

~—~
<)
=
B
o)
A
%

Na
=
A

Q)
S
O

SIS

Input x5

326



Gradient descent

A method fortraining a basic perceptroworks as follows. Assume we're dealing
with aregression problerand usingr(z) = z.

We define a measure efror for a given collection of weights. For example

m

E(w) =Y (y: — h(w;x;))*
=1l
Modifying our notation slightly so that
T
= |

X 1 2y 9 -+ )

W= (wy wy wy - Wy )

lets us write

327



Gradient descent

We want tominimiseE (w ).

One way to approach this is to start with a randemand update it as follows:

OE(w)
Wit = Wy — 1) 9
W,
where
OE(w) <aE<w) 0E(w)  OE(w) )T
Ow _ owy owq Owy,

andn is some small positive number.

The vector

~OE(w)
ow

tells us thedirection of the steepest decreasefinw).

328



Gradient descent

With .
E(w) = Z(% — WTXZ)2
WEREVE -
OF (w o, T \9
az(u] - o <Z-Zl(yi B )
~ Y To \2
= 21 (a—w](yz - w'x;) )
~ T Y T
— Z (2(% — W Xz)a—wj (_W Xz))

wherex " is the jth element ofx;.

329



Gradient descent

The method therefore gives the algorithm

Wil = Wi+ 2 Z (yz — WtTXz‘) X;
i=1

Some things to note:
e In this casel(w) is parabolicand has ainique global minimunandno local
minimaso this works well.

e Gradient descenin some form is a very common approach to this kind of
problem.

e \We can perform a similar calculation father activation functionand for
other definitions for(w ).

e Such calculations lead tiifferent algorithms

330



Perceptrons aren’t very powerful: the parity problem

There are many problems a perceptron can't solve.

We need a network that computesre interesting functions

331



The multilayer perceptron

Eachnodein the network is itself a perceptron:

e \\eightsw; connect nodes together.
e ; IS the weighted sum aictivationfor node;.
e o IS theactivation function

e Theoutputis z; = o(a;).

332



The multilayer perceptron

Reminder

We’'ll continue to use the notation

2l = (12 20+ 2,)
w! = (wy wy wy -+ wy, )
So that
n n
’(UZZZ:U}()—FZ’LUZZZ
i=0 i=1

— WTZ

333



The multilayer perceptron

In the general case we haveampletely unrestricted feedforward structure

Outputy = h(w;x)

Each nodds a perceptroniNo specific layerings assumed.

w;_,; connects nodéto nodej. w, for node; is denoteduv_ ;.

334



Backpropagation

As usual we have:

e Instances! = (z1,....1,).

e A training sequence = ((x1,41), .- -, (X, Ym))-

We also define a measure of training error
E(w) = measure of the error of the network sn
wherew is the vector ofall the weights in the network

Our aim is to find a set of weights thatinimisest'(w) usinggradient descent

335



Backpropagation: the general case

Thecentral taskis therefore to calculate
OFE(w)
ow
To do that we need to calculate the individual quantities
OE(w)
aij

for every weightv;_, ; in the network

Often £(w) is the sum of separate components, one for each examgple in

E(w)=) Ey(w)

In which case
OB(W) <= O0E,(w)

ow ow

p=1
We can therefore consider examples individually.

336



Backpropagation: the general case

Place example at the input and calculate; and z; for all nodesincluding the
outputy. This isforward propagation

We have

0L, (w) OE,(w) Oa;
8wi_>j B 8aj 8wi_>j
wherea; = >, wi_ ;2.
Here the sum is ovall the nodes connected to nogeAs

6@7 8
awi_)j = awi_)j (Z wk—>j2k> = Zj

k

we can write

Wi— 4
where we've defined
j p—

3@]-

337



Backpropagation: the general case

So we now need to calculate the valuesdor.

Whenj is theoutput node-that is, the one producing the output= i (w;x,) of
the network—this is easy as = y and

5 OFE,(w)
J aaj

N aEp(“’) 0y
_ 8y 5’@]’

_aEp(W> oo
~ T oy o'(aj)

using the fact thay = o(a;).

338



Backpropagation: the general case

The first term is in general easy to calculdo® a givenFE as the error is generally
just a measure of the distance betweand the label in the training sequence.

Example:when
Ey(w) = (y — yp)2

) oy - )

2(h(w;x,) — yp)

we have

339



Backpropagation: the general case

Whenj; is not an output nod&e need something different:

We're interested In

OE,(w)

5. =
/ (9aj

Altering a; can affectseveral other nodes, ko, . .

affect E,(w).

340

., k, each of which can in turn



Backpropagation: the general case

We have

OB, (w) OE,(w)0a;, Oay,
= da; Z da, Oa; Z O

kE{kl,kQ,...,kq} kE{kl,kQ,...,kq}

wherek, ks, . . ., k, are the nodes to which nodesends a connection.

341



Backpropagation: the general case

Because we know how to computefor the output nodeve canwork backwards
computing furthep values.

We will always know all the values. for nodes ahead of where we are

Hence the ternbackpropagation

342



Backpropagation: the general case

and

343



Backpropagation: the general case

Summaryto calculatea%’% for the pth pattern:

1. Forward propagation apply x, and calculate outputstcfor all the nodes in
the network

2. Backpropagation 1for the outputnode

0E,(w) OE,(w)
8?5Hj = 2,0; = 2,0 (a ) gy
wherey = h(w;x,).
3. Backpropagation 2For other nodes
OE,(w) /
= 2z . S
ﬁ’LUz'—U' e <aj) zk: e

where the),, were calculated at an earlier step.

344



Backpropagation: a specific example

Hidden nodes receive
inputs from all features

Output node receives
inputs from all hidden

For the outputi(a) = a. For the hidden nodes(a) = -

345



Backpropagation: a specific example

For the outputs(a) = a sod’(a) = 1.

For the hidden nodes: 1

~ 1+ exp(—a)

o(a)
(o)
o'(a) = o(a) [l = o(a)]
We’ll continue using the same definition for the error

m

E(w) = (4, — h(w;x,))’

p=1

Ey(w) = (y, — h(w; Xp)>2

346



Backpropagation: a specific example

For the output the equation is
OE,(w)

awz‘—mutput

OL,(W)

/
— Zi5output: ;0 (aoutputj 3

wherey = h(w;x,). So as

0L, (w 0 5
2 ()
= 2(y — yp)
=2 [h(W;xp) — yp]

ando’(a) =1 s0
50utput: 2 [h(w; Xp) — yp]
and

OE,(w)

awz‘—>output

= 2zi(h(W; X,) — yp)

347



Backpropagation: a specific example

For the hidden nodedhe equation is

oF
( = 20 a,] Zékw]_)k

awz—m

Howeverthere is only one outplgo
OE,(w)

ow;_, g

= zio(a;) [1 — o(a;)] doutputtj—output

and we know that
doutput = 2 [(W; X)) — yy)
SO

OE,(W)
5wi—>j

= 2m;25(1 — z;) [R(W; %) — Yp] Wjoutput

= 2z;0(ay) [1 — o(ay)] [M(W; Xp) — yp] Wjoutput

348



Putting it all together

We can then use the derivatives in one of two basic ways:

Batch (as described previously)

oL (w) "L OFE,(w)
ow _pz1 ow

then
OE(w)

Oow

Wil = W — 1)

Wi

Sequentialusing just one pattern at once
OE,(w)
ow

selecting patterns sequence or at randam

Wil = Wy — 1)

Wi

349



Example: the parity problem revisited

As an example we show the result of training a network with:

e TWO Inputs.

e One output.

e One hidden layer containingunits.
o1 =0.01.

e All other details as above.

The problem is the parity problem. There darenoisy examples.

The sequential approach is used, with0 repetitions through the entire training
sequence.

350



Example: the parity problem revisited

351



Isited

the parity problem revi

Example

Uit

T,
T,

i
111

To) o 1__
o
mdino yromjoN

o0
=
—
=}
=
)
—

Before t

o

mdino yIomjoN

352



Example: the parity problem revisited

Error during training

200 300 400 500 600 700 800 90 1000

353



