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Event-driven simulations (particle collisions, queuing
customers, traffic)

Data compression

Statistical analysis

Operating systems (process queue)
Graph searching

Opftimisation algorithms




first() - get the smallest key-value (but leave it
there)

insert() - add a new key-value
extractMin() - remove the smallest key-value
decreaseKey() - reduce the key of a node

merge() - merge two queues together




* Need 1o find fop 100 results for a web search
= Can't use quickselect because not enough memory

function top100() {
PriorityQueue pq;
while ( elements remain ) {
next=get next element();
pg.add(next);
if (pg.size() > 100) {
pg.extractMin();
}
}
}




= Put everything into an array

= (Optionally) Keep the array sorted by sorting after
every operation
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= Put everything into a Red-Black Tree
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* Could use a min-heap (like the max-heap we

saw for heapsort) A
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= extractMin() , Extovac b g Like one ileralion

R l,\a, aQ L\Q Sovt
) %‘D T =) O(tﬁr\>

« decreasekey(] . Gud o)

'CK/‘MJ’Q’ O(f)
, bubble  O(yn)

" merge() o (aseef




Unsorted List

Sorted List 1 n n n n
RB Tree Ig n Ilg n Ilg n Ilg n nig n
Binary Heap 1 Ilg n Ilg n Ilg n nig n

* Binary heap is pretty good except for merging.
= Can we do better?




" First define a binomial tree

* Order 0is a single node

* Order k is made by merging two binomial frees of
order (k-1) such that the root of one remains as
the overall roof
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Image courtesy of wikipedia




* Note that the definition means that two trees of
order X are frivially made into one tree of order
X+1




" Because we combine two trees of the same size
to make the next order tree, we double the
nodes when we increase the order

" Hence:;
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. Binomi
" A set of binomial trees where every node is

smaller than its children

* And there is at most one tree of each order
o’r’roched to the roo’r

\e*"% @@ @@@
@@@

Image courtesy of wikipedia




= first()

" The minimum node in each free is the tree root so the
heap minimum is the smallest root
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* We can only have one or zero of each tree order

* Therefore represent compactly as a string of ones
and zeroes:
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* The largest bit possible is therefore the (Ig n + 1)-th bit
= So there can't be more than (Ig n + 1) roots/trees

= first() is O(no. of roots) = O(Ilgn) 4;—3—»
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" Merging two heaps is useful for the other priority queue
operations

= First, link fogether the tree heads in increasing free order




* Now check for duplicated free orders and merge if
necessary
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= Actuadlly this is just binary addition
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* The addition analogy makes this easy to analyse

= Worst case: need to merge at every step and end
up with an overflow into the next highest bit position
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" insert()
= Just create a zero-order free and merge!l —© + o—i—/?

= extractMin()
* Splice out the tree with the minimum OM
* Form a new heap from the 2" level of that tree 0(1)
" merge the resulting heap with the original o(lj n)
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* decreaseKey()
= Change the key value
" Let it 'bubble' up to its new place
" O(height of tree)
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Sorting

= Bubble, (binary) insertion, selection, mergesort,
quicksort, heapsort

Algorithm Design

= Brute force, backtracking, greedy, divide and conquer,
dynamic

Data Structures

* Stack, queue, deque, priority queues
= BST, RB Tree, B-Tree, hash tables

String Searching

"= Naive, Rabin-Karp, KMP




* Good luck in your exams..!




