Priority Queues

Priority Queue

_I
2 2 1 1--
5 2 2
5 3
5

Event-driven simulations (particle collisions, queuing
customers, traffic)

Data compression

Statistical analysis

Operating systems (process queue)
Graph searching

Opftimisation algorithms

first() - get the smallest key-value (but leave it
there)

insert() - add a new key-value
extractMin() - remove the smallest key-value
decreaseKey() - reduce the key of a node

merge() - merge two queues together

* Need 1o find fop 100 results for a web search
= Can't use quickselect because not enough memory

function top100() {
PriorityQueue pq;
while (elements remain) {
next=get next element();
pg.add(next);
if (pg.size() > 100) {
pg.extractMin();
}
}
}

= Put everything into an array

= (Optionally) Keep the array sorted by sorting after
every operation

Unsorted L4§t Pvmg N
Sorted L-st sz:j l N N N

= Put everything into a Red-Black Tree

Unsorted List
Sorted List n n n n

RB Tree (3 n o lgn gn lgn Ay

* Could use a min-heap (like the max-heap we

saw for heapsort) A

&
" insert()
AdA fo boftom
- llde @
_j O(M,,p‘; \M\s> = O((j Y\\

= extractMin() , Extovac b g Like one ileralion

R l,\a, aQ L\Q Sovt
) %‘D T =) O(tﬁr\>

« decreasekey(] . Gud o)

'CK/‘MJ’Q’ O(f)
, bubble O(yn)

" merge() o (aseef

Unsorted List

Sorted List 1 n n n n
RB Tree Ig n Ilg n Ilg n Ilg n nig n
Binary Heap 1 Ilg n Ilg n Ilg n nig n

* Binary heap is pretty good except for merging.
= Can we do better?

" First define a binomial tree

* Order 0is a single node

* Order k is made by merging two binomial frees of
order (k-1) such that the root of one remains as
the overall roof

Order 0 1 2 3

Image courtesy of wikipedia

* Note that the definition means that two trees of
order X are frivially made into one tree of order
X+1

" Because we combine two trees of the same size
to make the next order tree, we double the
nodes when we increase the order

" Hence:;
O¢dS A 0¢M
(-
) = /\W = Q_

. Binomi
" A set of binomial trees where every node is

smaller than its children

* And there is at most one tree of each order
o’r’roched to the roo’r

\e*"% @@ @@@
@@@

Image courtesy of wikipedia

= first()

" The minimum node in each free is the tree root so the
heap minimum is the smallest root

/ LT
~ D __[‘ \|V\L"~ .'\ _
? WS)

4> > o(re"

* We can only have one or zero of each tree order

* Therefore represent compactly as a string of ones
and zeroes:

;M" FQY=l fpleo F D)=
e S ZFEJZ

0—: -lo”

o)
CzJ FC

= Thenn=s[i*2 ||
" |.e.Sisjust the binary representation of n...

* The largest bit possible is therefore the (Ig n + 1)-th bit
= So there can't be more than (Ig n + 1) roots/trees

= first() is O(no. of roots) = O(Ilgn) 4;—3—»
[tgnjr § < o Lot
MO\SL \e/\gsd/\ OC S - j

W (,\Q_j OFO‘@/ Dﬂ ﬂj
MO- (\00‘3 = \,-\3 "l
_ O(\ﬁ V\j

w0 (s ")

o et -

bigyes
No. rees =

" Merging two heaps is useful for the other priority queue
operations

= First, link fogether the tree heads in increasing free order

* Now check for duplicated free orders and merge if
necessary

®

Odur

= Actuadlly this is just binary addition

&

PO

* The addition analogy makes this easy to analyse

= Worst case: need to merge at every step and end
up with an overflow into the next highest bit position

\\(\ €0~ch nergl 1S 0(‘3
(|

A de Al V“““)(([l2g 1) #17) merges

_
\ 9]}00

= O('j V\\
—

" insert()
= Just create a zero-order free and merge!l —© + o—i—/?

= extractMin()
* Splice out the tree with the minimum OM
* Form a new heap from the 2" level of that tree 0(1)
" merge the resulting heap with the original o(lj n)

© 2 /7(;) — . WOSS)
IR M

* decreaseKey()
= Change the key value
" Let it 'bubble' up to its new place
" O(height of tree)

05 — e o
&

haight of ovdu b= KF! |

%'/3%91’ orob \‘jnj” "@
=) 0((3"\) .

——

Unsorted List

Sorted List 1 n n n n
RB Tree Ilg n Ilg n Ilg n Ilg n nig n
Binary Heap 1 Ilg n Ilg n Ilg n nig n

Binomial Heap Ilg n Ilg n Ilg n lg n Ilg n

Sorting

= Bubble, (binary) insertion, selection, mergesort,
quicksort, heapsort

Algorithm Design

= Brute force, backtracking, greedy, divide and conquer,
dynamic

Data Structures

* Stack, queue, deque, priority queues
= BST, RB Tree, B-Tree, hash tables

String Searching

"= Naive, Rabin-Karp, KMP

* Good luck in your exams..!

