
Priority Queues

Priority Queue

2 2

5

1

2

5

1

2

3

5

insert()

extractMin

2 5 1 3

first()

Priority Queue Applications

 Event-driven simulations (particle collisions, queuing
customers, traffic)

 Data compression
 Statistical analysis
 Operating systems (process queue)
 Graph searching
 Optimisation algorithms

Priority Queue ADT

 first() - get the smallest key-value (but leave it
there)

 insert() - add a new key-value

 extractMin() - remove the smallest key-value

 decreaseKey() - reduce the key of a node

 merge() - merge two queues together

Example: order statistics

 Need to find top 100 results for a web search
 Can't use quickselect because not enough memory

function top100() {
 PriorityQueue pq;
 while (elements_remain) {
 next=get_next_element();
 pq.add(next);
 if (pq.size() > 100) {

 pq.extractMin();
 }
 }
}

Array Implementations

 Put everything into an array
 (Optionally) Keep the array sorted by sorting after

every operation

Unsorted List

Sorted List

in
se

rt
()

fi
rs

t(
)

e
x
tr

a
ct

M
in

()

d
e
cr

e
a
se

K
e
y
()

m
e
rg

e
()

RB Tree Implementation

 Put everything into a Red-Black Tree

Unsorted List n 1 n n n

Sorted List 1 n n n n

RB Tree
in

se
rt

()

fi
rs

t(
)

e
x
tr

a
ct

M
in

()

d
e
cr

e
a
se

K
e
y
()

m
e
rg

e
()

Binary Heap Implementation

 Could use a min-heap (like the max-heap we
saw for heapsort)

 insert()

 first()

Binary Heap Implementation

 extractMin()

 decreaseKey()

 merge()

Limitations of the Binary Heap

 Binary heap is pretty good except for merging.
 Can we do better?

Unsorted List n 1 n n n

Sorted List 1 n n n n

RB Tree lg n lg n lg n lg n nlg n

Binary Heap 1 lg n lg n lg n nlg n

in
se

rt
()

fi
rs

t(
)

e
x
tr

a
ct

M
in

()

d
e
cr

e
a
se

K
e
y
()

m
e
rg

e
()

Binomial Heap Implementation

 First define a binomial tree
 Order 0 is a single node
 Order k is made by merging two binomial trees of

order (k-1) such that the root of one remains as
the overall root

Image courtesy of wikipedia

Merging Trees

 Note that the definition means that two trees of
order X are trivially made into one tree of order
X+1

How Many Nodes in a Binomial Tree?

 Because we combine two trees of the same size
to make the next order tree, we double the
nodes when we increase the order

 Hence:

Binomial Heap Implementation

 Binomial heap
 A set of binomial trees where every node is

smaller than its children
 And there is at most one tree of each order

attached to the root

Image courtesy of wikipedia

Binomial Heaps as Priority Queues

 first()
 The minimum node in each tree is the tree root so the

heap minimum is the smallest root

How Many Roots?

 We can only have one or zero of each tree order
 Therefore represent compactly as a string of ones

and zeroes:

 Then n = S[i]*2i

 i.e. S is just the binary representation of n...

[0] [3][1]

S=

How Many Roots in a binomial heap?

 The largest bit possible is therefore the (lg n + 1)-th bit
 So there can't be more than (lg n + 1) roots/trees
 first() is O(no. of roots) = O(lg n)

Merging Heaps

 Merging two heaps is useful for the other priority queue
operations

 First, link together the tree heads in increasing tree order

Merging Heaps

 Now check for duplicated tree orders and merge if
necessary

Merging Heaps: Analogy

 Actually this is just binary addition

6

9

3

10

7

31

9

Merging Heaps: Costs

 The addition analogy makes this easy to analyse
 Worst case: need to merge at every step and end

up with an overflow into the next highest bit position

Priority Queue Operations

 insert()
 Just create a zero-order tree and merge!

 extractMin()
 Splice out the tree with the minimum
 Form a new heap from the 2nd level of that tree
 merge the resulting heap with the original

Priority Queue Operations

 decreaseKey()
 Change the key value
 Let it 'bubble' up to its new place
 O(height of tree)

So...

Unsorted List n 1 n n n

Sorted List 1 n n n n

RB Tree lg n lg n lg n lg n nlg n

Binary Heap 1 lg n lg n lg n nlg n

Binomial Heap lg n lg n lg n lg n lg n

in
se

rt
()

fi
rs

t(
)

e
x
tr

a
ct

M
in

()

d
e
cr

e
a
se

K
e
y
()

m
e
rg

e
()

That's all folks...

 Sorting
 Bubble, (binary) insertion, selection, mergesort,

quicksort, heapsort

 Algorithm Design
 Brute force, backtracking, greedy, divide and conquer,

dynamic

 Data Structures
 Stack, queue, deque, priority queues
 BST, RB Tree, B-Tree, hash tables

 String Searching
 Naïve, Rabin-Karp, KMP

Finally...

 Good luck in your exams..!

