
Priority Queues

Priority Queue

2 2

5

1

2

5

1

2

3

5

insert()

extractMin

2 5 1 3

first()

Priority Queue Applications

 Event-driven simulations (particle collisions, queuing
customers, traffic)

 Data compression
 Statistical analysis
 Operating systems (process queue)
 Graph searching
 Optimisation algorithms

Priority Queue ADT

 first() - get the smallest key-value (but leave it
there)

 insert() - add a new key-value

 extractMin() - remove the smallest key-value

 decreaseKey() - reduce the key of a node

 merge() - merge two queues together

Example: order statistics

 Need to find top 100 results for a web search
 Can't use quickselect because not enough memory

function top100() {
 PriorityQueue pq;
 while (elements_remain) {
 next=get_next_element();
 pq.add(next);
 if (pq.size() > 100) {

 pq.extractMin();
 }
 }
}

Array Implementations

 Put everything into an array
 (Optionally) Keep the array sorted by sorting after

every operation

Unsorted List

Sorted List

in
se

rt
()

fi
rs

t(
)

e
x
tr

a
ct

M
in

()

d
e
cr

e
a
se

K
e
y
()

m
e
rg

e
()

RB Tree Implementation

 Put everything into a Red-Black Tree

Unsorted List n 1 n n n

Sorted List 1 n n n n

RB Tree
in

se
rt

()

fi
rs

t(
)

e
x
tr

a
ct

M
in

()

d
e
cr

e
a
se

K
e
y
()

m
e
rg

e
()

Binary Heap Implementation

 Could use a min-heap (like the max-heap we
saw for heapsort)

 insert()

 first()

Binary Heap Implementation

 extractMin()

 decreaseKey()

 merge()

Limitations of the Binary Heap

 Binary heap is pretty good except for merging.
 Can we do better?

Unsorted List n 1 n n n

Sorted List 1 n n n n

RB Tree lg n lg n lg n lg n nlg n

Binary Heap 1 lg n lg n lg n nlg n

in
se

rt
()

fi
rs

t(
)

e
x
tr

a
ct

M
in

()

d
e
cr

e
a
se

K
e
y
()

m
e
rg

e
()

Binomial Heap Implementation

 First define a binomial tree
 Order 0 is a single node
 Order k is made by merging two binomial trees of

order (k-1) such that the root of one remains as
the overall root

Image courtesy of wikipedia

Merging Trees

 Note that the definition means that two trees of
order X are trivially made into one tree of order
X+1

How Many Nodes in a Binomial Tree?

 Because we combine two trees of the same size
to make the next order tree, we double the
nodes when we increase the order

 Hence:

Binomial Heap Implementation

 Binomial heap
 A set of binomial trees where every node is

smaller than its children
 And there is at most one tree of each order

attached to the root

Image courtesy of wikipedia

Binomial Heaps as Priority Queues

 first()
 The minimum node in each tree is the tree root so the

heap minimum is the smallest root

How Many Roots?

 We can only have one or zero of each tree order
 Therefore represent compactly as a string of ones

and zeroes:

 Then n = S[i]*2i

 i.e. S is just the binary representation of n...

[0] [3][1]

S=

How Many Roots in a binomial heap?

 The largest bit possible is therefore the (lg n + 1)-th bit
 So there can't be more than (lg n + 1) roots/trees
 first() is O(no. of roots) = O(lg n)

Merging Heaps

 Merging two heaps is useful for the other priority queue
operations

 First, link together the tree heads in increasing tree order

Merging Heaps

 Now check for duplicated tree orders and merge if
necessary

Merging Heaps: Analogy

 Actually this is just binary addition

6

9

3

10

7

31

9

Merging Heaps: Costs

 The addition analogy makes this easy to analyse
 Worst case: need to merge at every step and end

up with an overflow into the next highest bit position

Priority Queue Operations

 insert()
 Just create a zero-order tree and merge!

 extractMin()
 Splice out the tree with the minimum
 Form a new heap from the 2nd level of that tree
 merge the resulting heap with the original

Priority Queue Operations

 decreaseKey()
 Change the key value
 Let it 'bubble' up to its new place
 O(height of tree)

So...

Unsorted List n 1 n n n

Sorted List 1 n n n n

RB Tree lg n lg n lg n lg n nlg n

Binary Heap 1 lg n lg n lg n nlg n

Binomial Heap lg n lg n lg n lg n lg n

in
se

rt
()

fi
rs

t(
)

e
x
tr

a
ct

M
in

()

d
e
cr

e
a
se

K
e
y
()

m
e
rg

e
()

That's all folks...

 Sorting
 Bubble, (binary) insertion, selection, mergesort,

quicksort, heapsort

 Algorithm Design
 Brute force, backtracking, greedy, divide and conquer,

dynamic

 Data Structures
 Stack, queue, deque, priority queues
 BST, RB Tree, B-Tree, hash tables

 String Searching
 Naïve, Rabin-Karp, KMP

Finally...

 Good luck in your exams..!

