
Hash Tables



Tables so far

set() get() delete()

BST Average O(lg n) O(lg n) O(lg n)

Worst O(n) O(n) O(n)

RB Tree Average O(lg n) O(lg n) O(lg n)

Worst O(lg n) O(lg n) O(lg n)



Table naïve array implementation

 “Direct addressing”
 Worst case O(1) access cost
 But likely to waste space

0 4 5321 6



Hashing
 A hash function is just a function h(k) that takes in a key and spits out an 

integer between 0 and some other integer M

 For a table:

 Create an array of size M

 h(key) => index into array

 E.g. Division hash:  h(k)=k mod m

Key Value

2 C

3 D

8 B

9 A
m=4



Collisions

 Set of all possible keys, U

 Set of actual keys, n

 We usually expect |n|<<|U| so we would like M<<|U|

 Inevitably, multiple keys must map to the same hash value: 
Collisions

B A C D

Key Value

2 C

3 D

8 B

9 A

6 E

m=4



Chaining

 Each hash table slot is actually a linked list of keys

 Analysis of costs
 Depends on hash function and input distribution!
 Can make progress by considering uniform hashing: 

h(k) is equally likely to be any of the M outputs.



Chaining Analysis



Chaining Analysis



The Load Factor



Variants

 Sometimes speedy lookup is an absolute requirement e.g. 
real-time systems

 Sometimes see variants of chaining where the linked list is 
replaced with a BST or Red-Black tree or similar

 (What does this do to the complexities?)



Open Addressing

 Instead of chaining, we could simply use the next 
unassigned slot in our array.

Keys: A,B,C,D,E
h(A)=1
h(B)=4
h(C)=1
h(D)=3
h(E)=3



Open Addressing

 Instead of chaining, we could simply use the next 
unassigned slot in our array.

A

C

D

B

E

Keys: A,B,C,D,E
h(A)=1
h(B)=4
h(C)=1
h(D)=3
h(E)=3
h(X)=2

Search for E

Search for X



Linear Probing

 We call this Linear Probing with a step size of one (you 
probe the array until you find an empty slot)

 Basically 'randomises' the start of the sequence and then 
proceeds incrementally

 Simples :-)
 Get long runs of occupied slots separated by empty slots 

=> “Primary Clustering”



Better Probing

 We can extend our idea to a more general probe 
sequence
 Rather than jumping to the next slot, we jump around (the 

more pseudorandom the better)
 So each key has some (hopefully unique) probe sequence: 

an ordered list of slots it will try
 As before, operations involve following the sequence until 

an element is found (hit) or an empty slot is found (miss) or 
the sequence ends (full).

 So we need some function to generate the sequence for a 
given key

 Linear probing would have:

S i (k )=(h(k )+i)mod m



Better Probing

 Quadratic Probing

 Two keys with the same hash have the same probe 
sequence => “Secondary Clustering”

S i(k )=(h(k )+c1 i+c2 i
2
)mod m



Better Probing

 Double Hashing

S i(k )=(h1(k )+ih2(k ))mod m



Analysis

 Let x = no. of probes needed
 What is E(x)?



Aside: Expectation

P(x)

xP(x)

E (x)=∑ xP (x )

x

x



Aside: Expectation
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Aside: Expectation

P(x)

E (x)=∑i
P ( x≥i)
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Analysis

 Let x = no. of probes needed
 What is E(x)?
 What is P(x>=i)?

E (x)=∑i
P ( x≥i)



Analysis



Open Addressing Performance

 Ave. number of probes in a failed search

 Ave. Number of probes in a successful search

 If we can keep n/m ~constant, then the 
searches run in O(1) still



Resizing your hash tables



Issues with Hash Tables

 Worst-case performance is dreadful
 Deletion is slightly tricky if using open addressing



Priority Queues



Priority Queue ADT

 first() - get the smallest key-value (but leave it 
there)

 insert() - add a new key-value

 extractMin() - remove the smallest key-value

 decreaseKey() - reduce the key of a node

 merge() - merge two queues together



Sorted Array Implementation

 Put everything into an array
 Keep the array sorted by sorting after every 

operation

 first()

 insert()

 extractMin()

 decreaseKey()

 merge()



Binary Heap Implementation

 Could use a min-heap (like the max-heap we 
saw for heapsort)

 insert()

 first()



Binary Heap Implementation

 extractMin()

 decreaseKey()

 merge()



Limitations of the Binary Heap

 It's common to want to merge two 
priority queues together

 With a binary heap this is costly...



Binomial Heap Implementation

 First define a binomial tree
 Order 0 is a single node
 Order k is made by merging two binomial trees of 

order (k-1) such that the root of one remains as 
the overall root

Image courtesy of wikipedia



Merging Trees

 Note that the definition means that two trees of 
order X are trivially made into one tree of order 
X+1



How Many Nodes in a Binomial Tree?

 Because we combine two trees of the same size 
to make the next order tree, we double the 
nodes when we increase the order

 Hence:



Binomial Heap Implementation

 Binomial heap
 A set of binomial trees where every node is 

smaller than its children
 And there is at most one tree of each order 

attached to the root

Image courtesy of wikipedia



Binomial Heaps as Priority Queues

 first()
 The minimum node in each tree is the tree root so the 

heap minimum is the smallest root



How many roots in a binomial heap?

 For a heap with n nodes, how many root (or trees) do we 
expect?

 Because there are 2k nodes in a tree of order k, the 
binary representation of n tells us which trees are present 
in a heap.  E.g 100101

 The biggest tree present will be of order log n, which 
corresponds to the ( log n +1)-th bit
 So there can be no more than ( log n +1) roots

 first() is O(no. of roots) = O( lg n )



Merging Heaps

 Merging two heaps is useful for the other priority queue 
operations

 First, link together the tree heads in increasing tree order



Merging Heaps

 Now check for duplicated tree orders and merge if 
necessary



Merging Heaps: Analogy

 This process is actually analogous to binary addition!



Merging Heaps: Costs

 Let H1 be a heap with n nodes and H2 a heap with 
m nodes



Priority Queue Operations

 insert()
 Just create a zero-order tree and merge!

 extractMin()
 Splice out the tree with the minimum
 Form a new heap from the 2nd level of that tree
 merge the resulting heap with the original



Priority Queue Operations

 decreaseKey()
 Change the key value
 Let it 'bubble' up to its new place
 O(height of tree)



Priority Queue Operations

 deleteKey()
 Decrease node value to be the minimum
 Call extractMin()  (!)


