
Pattern matching

What happens if, at a Unix/Linux shell prompt, you type

ls ∗

and press return?

Suppose the current directory contains files called regfla.tex,

regfla.aux, regfla.log, regfla.dvi, and (strangely) .aux. What

happens if you type

ls ∗ .aux

and press return?

1

Alphabets

An alphabet is specified by giving a finite set, Σ, whose elements are

called symbols . For us, any set qualifies as a possible alphabet, so long

as it is finite.

Examples:
Σ1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} — 10-element set of decimal digits.

Σ2 = {a, b, c, . . . , x, y, z} — 26-element set of lower-case characters

of the English language.

Σ3 = {S | S ⊆ Σ1} — 210-element set of all subsets of the alphabet of

decimal digits.

Non-example:

N = {0, 1, 2, 3, . . . } — set of all non-negative whole numbers is not an

alphabet, because it is infinite.

2

Strings over an alphabet

A string of length n (≥ 0) over an alphabet Σ is just an ordered

n-tuple of elements of Σ, written without punctuation.

Example: if Σ = {a, b, c}, then a, ab, aac, and bbac are strings over Σ

of lengths one, two, three and four respectively.

Σ∗ def
= set of all strings over Σ of any finite length.

N.B. there is a unique string of length zero over Σ, called the null string

(or empty string) and denoted ε (no matter which Σ we are talking

about).

3

Concatenation of strings

The concatenation of two strings u, v ∈ Σ∗ is the string uv obtained

by joining the strings end-to-end.

Examples: If u = ab, v = ra and w = cad, then vu = raab,

uu = abab and wv = cadra.

This generalises to the concatenation of three or more strings.

E.g. uvwuv = abracadabra.

4

Regular expressions over an alphabet Σ

• each symbol a ∈ Σ is a regular expression

• ε is a regular expression

• ∅ is a regular expression

• if r and s are regular expressions, then so is (r|s)

• if r and s are regular expressions, then so is rs

• if r is a regular expression, then so is (r)∗

Every regular expression is built up inductively, by finitely many

applications of the above rules.

(N.B. we assume ε, ∅, (,), |, and ∗ are not symbols in Σ.)

5

Matching strings to regular expressions

• u matches a ∈ Σ iff u = a

• u matches ε iff u = ε

• no string matches ∅

• u matches r|s iff u matches either r or s

• u matches rs iff it can be expressed as the concatenation of two

strings, u = vw, with v matching r and w matching s

• u matches r∗ iff either u = ε, or u matches r, or u can be

expressed as the concatenation of two or more strings, each of which

matches r

6

Examples of matching, with Σ = {0, 1}

• 0|1 is matched by each symbol in Σ

• 1(0|1)∗ is matched by any string in Σ∗ that starts with a ‘1’

• ((0|1)(0|1))∗ is matched by any string of even length in Σ∗

• (0|1)∗(0|1)∗ is matched by any string in Σ∗

• (ε|0)(ε|1)|11 is matched by just the strings ε, 0, 1, 01, and 11

• ∅1|0 is just matched by 0

7

Languages

A (formal) language L over an alphabet Σ is just a set of strings in Σ∗.

Thus any subset L ⊆ Σ∗ determines a language over Σ.

The language determined by a regular expression r over Σ is

L(r)
def
= {u ∈ Σ∗ | u matches r}.

Two regular expressions r and s (over the same alphabet) are

equivalent iff L(r) and L(s) are equal sets (i.e. have exactly the same

members).

8

Some questions

(a) Is there an algorithm which, given a string u and a regular expression

r (over the same alphabet), computes whether or not u matches r?

(b) In formulating the definition of regular expressions, have we missed

out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions r and s
(over the same alphabet), computes whether or not they are

equivalent? (Cf. Slide 8.)

(d) Is every language of the form L(r)?

9

Example of a finite automaton

q0
a

b

q1

b

a q2

b

a q3

a

b

States: q0, q1, q2, q3.

Input symbols: a, b.

Transitions: as indicated above.

Start state: q0.

Accepting state(s): q3.

10

L(M), language accepted by a finite automaton M

consists of all strings u over its alphabet of input symbols satisfying

q0
u
−→∗ q with q0 the start state and q some accepting state. Here

q0
u
−→∗ q

means, if u = a1a2 . . . an say, that for some states

q1, q2, . . . , qn = q (not necessarily all distinct) there are transitions

of the form

q0
a1−→ q1

a2−→ q2
a3−→ · · ·

an−→ qn = q.

N.B.

case n = 0: q
ε
−→∗ q′ iff q = q′

case n = 1: q
a
−→∗ q′ iff q

a
−→ q′.

11

A non-deterministic finite automaton (NFA), M ,

is specified by

• a finite set StatesM (of states)

• a finite set ΣM (the alphabet of input symbols)

• for each q ∈ StatesM and each a ∈ ΣM , a subset

∆M(q, a) ⊆ StatesM (the set of states that can be reached

from q with a single transition labelled a)

• an element sM ∈ StatesM (the start state)

• a subset AcceptM ⊆ StatesM (of accepting states)

12

Example of a non-deterministic finite automaton

Input alphabet: {a, b}.

States, transitions, start state, and accepting states as shown:

q0

a

b

a q1
a q2

a q3

a

b

The language accepted by this automaton is the same as for the

automaton on Slide 10, namely

{u ∈ {a, b}∗ | u contains three consecutive a’s}.

13

A deterministic finite automaton (DFA)

is an NFA M with the property that for each q ∈ StatesM and

a ∈ ΣM , the finite set ∆M(q, a) contains exactly one element—call

it δM(q, a).

Thus in this case transitions in M are essentially specified by a

next-state function , δM , mapping each (state, input symbol)-pair

(q, a) to the unique state δM(q, a) which can be reached from q by a

transition labelled a:

q
a
−→ q′ iff q′ = δM(q, a)

14

An NFA with ε-transitions (NFAε)

is specified by an NFA M together with a binary relation, called the

ε-transition relation , on the set StatesM . We write

q
ε
−→ q′

to indicate that the pair of states (q, q′) is in this relation.

Example (with input alphabet = {a, b}):

q1
a q2

a q3
ε

q0

ε

ε

a

b

q7

a

bq4
b

q5
b

q6
ε

15

L(M), language accepted by an NFA ε M

consists of all strings u over the alphabet ΣM of input symbols

satisfying q0
u
⇒ q with q0 the initial state and q some accepting state.

Here ·
−
⇒ · is defined by:

q
ε

⇒ q′ iff q = q′ or there is a sequence q
ε
−→ · · · q′ of one or more

ε-transitions in M from q to q′

q
a
⇒ q′ (for a ∈ ΣM) iff q

ε
⇒ ·

a
−→ ·

ε
⇒ q′

q
ab
⇒ q′ (for a, b ∈ ΣM) iff q

ε
⇒ ·

a
−→ ·

ε
⇒ ·

b
−→ ·

ε
⇒ q′

and similarly for longer strings

16

Example of the subset construction

M :

q1

a

q0

ε

ε

a

q2

b

δPM : a b

∅ ∅ ∅

{q0} {q0, q1, q2} {q2}

{q1} {q1} ∅

{q2} ∅ {q2}

{q0, q1} {q0, q1, q2} {q2}

{q0, q2} {q0, q1, q2} {q2}

{q1, q2} {q1} {q2}

{q0, q1, q2} {q0, q1, q2} {q2}

17

Theorem. For each NFAε M there is a DFA PM with the same

alphabet of input symbols and accepting exactly the same strings as

M , i.e. with L(PM) = L(M)

Definition of PM (refer to Slides 12 and 14):

• StatesPM
def
= {S | S ⊆ StatesM}

• ΣPM
def
= ΣM

• S
a
−→ S′ in PM iff S′ = δPM(S, a), where

δPM(S, a)
def
= {q′ | ∃q ∈ S (q

a
⇒ q′ in M)}

• sPM
def
= {q | sM

ε
⇒ q}

• AcceptPM

def
=

{S ∈ StatesPM | ∃q ∈ S (q ∈ AcceptM)}

18

Definition

A language is regular iff it is the set of strings accepted by some

deterministic finite automaton.

Kleene’s Theorem

(a) For any regular expression r, L(r) is a regular language

(cf. Slide 8).

(b) Conversely, every regular language is the form L(r) for some

regular expression r.

19

NFAs for atomic regular expressions

q0
a q1

just accepts the one-symbol string a

q0

just accepts the null string, ε

q0

accepts no strings

20

Union(M1, M2)

sM1 M1

q0

ε

ε
sM2 M2

Set of accepting states is union of AcceptM1
and AcceptM2

.

21

Concat(M1, M2)

sM1 M1
ε sM2 M2

Set of accepting states is AcceptM2
.

22

Star(M)

q0
ε sM M

ε

The only accepting state of Star(M) is q0.

23

Lemma Given an NFA M , for each subset Q ⊆ StatesM and

each pair of states q, q′ ∈ StatesM , there is a regular expression

rQ
q,q′ satisfying

L(rQ
q,q′) = {u ∈ (ΣM)∗ | q

u
−→∗ q′ in M with all inter-

mediate states of the sequence

in Q}.

Hence L(M) = L(r), where r = r1| · · · |rk and

k = number of accepting states,

ri = rQ
s,qi

with Q = StatesM ,

s = start state,

qi = ith accepting state.

(In case k = 0, take r to be the regular expression ∅.)

24

Example

1

a0

b
a

2

b

a

Direct inspection yields:

r
{0}
i,j 0 1 2

0

1 ∅ ε a

2 aa∗ a∗b ε

r
{0,2}
i,j 0 1 2

0 a∗ a∗b

1

2

25

Not(M)

• StatesNot(M)
def
= StatesM

• ΣNot(M)
def
= ΣM

• transitions of Not(M) = transitions of M

• start state of Not(M) = start state of M

• AcceptNot(M) = {q ∈ StatesM | q /∈ AcceptM}.

Provided M is a deterministic finite automaton, then u is accepted by

Not(M) iff it is not accepted by M :

L(Not(M)) = {u ∈ Σ∗ | u /∈ L(M)}.

26

And(M1, M2)

• states of And(M1, M2) are all ordered pairs (q1, q2) with

q1 ∈ StatesM1
and q2 ∈ StatesM2

• alphabet of And(M1, M2) is the common alphabet of M1 and

M2

• (q1, q2)
a
−→ (q′

1, q′
2) in And(M1, M2) iff q1

a
−→ q′

1 in M1

and q2
a
−→ q′

2 in M2

• start state of And(M1, M2) is (sM1
, sM2

)

• (q1, q2) accepting in And(M1, M2) iff q1 accepting in M1

and q2 accepting in M2.

27

Examples of non-regular languages

• The set of strings over {(,), a, b, . . . , z} in which the

parentheses ‘(’ and ‘)’ occur well-nested.

• The set of strings over {a, b, . . . , z} which are palindromes,

i.e. which read the same backwards as forwards.

• {anbn | n ≥ 0}

28

The Pumping Lemma

For every regular language L, there is a number ℓ ≥ 1 satisfying the

pumping lemma property :

all w ∈ L with length(w) ≥ ℓ can be expressed as a concatenation

of three strings, w = u1vu2, where u1, v and u2 satisfy:

• length(v) ≥ 1
(i.e. v 6= ε)

• length(u1v) ≤ ℓ

• for all n ≥ 0, u1vnu2 ∈ L
(i.e. u1u2 ∈ L, u1vu2 ∈ L [but we knew that anyway],

u1vvu2 ∈ L, u1vvvu2 ∈ L, etc).

29

If n ≥ ℓ = number of states of M , then in

sM = q0
a1−→ q1

a2−→ q2 · · ·
aℓ−→ qℓ

︸ ︷︷ ︸

ℓ+1 states

· · ·
an−→ qn ∈ AcceptM

q0, . . . , qℓ can’t all be distinct states. So qi = qj for some

0 ≤ i < j ≤ ℓ. So the above transition sequence looks like

sM = q0
u1−→∗ qi

v

∗
= qj

u2−→∗ qn ∈ AcceptM

where

u1
def
= a1 . . . ai v

def
= ai+1 . . . aj u2

def
= aj+1 . . . an.

30

How to use the Pumping Lemma to prove

that a language L is not regular

For each ℓ ≥ 1, find some w ∈ L of length ≥ ℓ so that

(†)

no matter how w is split into three, w = u1vu2,

with length(u1v) ≤ ℓ and length(v) ≥ 1,

there is some n ≥ 0 for which u1v
nu2 is not in L.

31

Examples

(i) L1
def
= {anbn | n ≥ 0} is not regular.

[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†) on

Slide 31.]

(ii) L2
def
= {w ∈ {a, b}∗ | w a palindrome} is not regular.

[For each ℓ ≥ 1, aℓbaℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(iii) L3
def
= {ap | p prime} is not regular.

[For each ℓ ≥ 1, we can find a prime p with p > 2ℓ and then ap ∈ L3

has length ≥ ℓ and has property (†).]

32

Example of a non-regular language

that satisfies the ‘pumping lemma property’

L
def
= {cmanbn | m ≥ 1 and n ≥ 0}

∪

{ambn | m, n ≥ 0}

satisfies the pumping lemma property on Slide 29 with ℓ = 1.

[For any w ∈ L of length ≥ 1, can take u1 = ε, v = first letter of w,

u2 = rest of w.]

But L is not regular. [See Exercise ?? .]

33

Lemma If a DFA M accepts any string at all, it accepts one whose

length is less than the number of states in M .

Proof. Suppose M has ℓ states (so ℓ ≥ 1). If L(M) is not empty,

then we can find an element of it of shortest length, a1a2 . . . an say

(where n ≥ 0). Thus there is a transition sequence

sM = q0
a1−→ q1

a2−→ q2 · · ·
an−→ qn ∈ AcceptM .

If n ≥ ℓ, then not all the n + 1 states in this sequence can be distinct

and we can shorten it as on Slide 30. But then we would obtain a strictly

shorter string in L(M) contradicting the choice of a1a2 . . . an. So

we must have n < ℓ.

34

Some production rules for ‘English’ sentences

SENTENCE → SUBJECT VERB OBJECT

SUBJECT → ARTICLE NOUNPHRASE

OBJECT → ARTICLE NOUNPHRASE

ARTICLE → a

ARTICLE → the

NOUNPHRASE → NOUN

NOUNPHRASE → ADJECTIVE NOUN

ADJECTIVE → big

ADJECTIVE → small

NOUN → cat

NOUN → dog

VERB → eats

35

A derivation

SENTENCE → SUBJECT VERB OBJECT

→ ARTICLE NOUNPHRASE VERB OBJECT

→ the NOUNPHRASE VERB OBJECT

→ the NOUNPHRASE eats OBJECT

→ the ADJECTIVE NOUN eats OBJECT

→ the big NOUN eats OBJECT

→ the big cat eats OBJECT

→ the big cat eats ARTICLE NOUNPHRASE

→ the big cat eats a NOUNPHRASE

→ the big cat eats a ADJECTIVE NOUN

→ the big cat eats a small NOUN

→ the big cat eats a small dog

36

Example of Backus-Naur Form (BNF)

Terminals:

x ′ + − ∗ ()

Non-terminals:

id op exp

Start symbol:

exp

Productions:

id ::= x | id′

op ::= + | − | ∗

exp ::= id | exp op exp | (exp)

37

A context-free grammar for the language

{anbn | n ≥ 0}

Terminals:

a b

Non-terminal:

I

Start symbol:

I

Productions:

I ::= ε | aIb

38

Every regular language is context-free

Given a DFA M , the set L(M) of strings accepted by M can be

generated by the following context-free grammar:

set of terminals = ΣM

set of non-terminals = StatesM

start symbol = start state of M

productions of two kinds:

q → aq′ whenever q
a
−→ q′ in M

q → ε whenever q ∈ AcceptM

39

Definition A context-free grammar is regular iff all its productions are of

the form

x → uy

or

x → u

where u is a string of terminals and x and y are non-terminals.

Theorem

(a) Every language generated by a regular grammar is a regular

language (i.e. is the set of strings accepted by some DFA).

(b) Every regular language can be generated by a regular grammar.

40

Example of the construction used

in the proof of the Theorem on Slide 40

regular grammar:

S→abX

X→bbY

Y →X

X→a

Y →ε

(start symbol = S)

 NFAε:

S

a

Y

ε

q1
b

X
b

a

q2

b

q3

41

