Pattern matching

What happens if, at a Unix/Linux shell prompt, you type

$$
\text { ls } *
$$

and press return?
Suppose the current directory contains files called regfla.tex, regfla.aux, regfla.log, regfla.dvi, and (strangely) .aux. What happens if you type
ls *.aux
and press return?

Alphabets

An alphabet is specified by giving a finite set, $\boldsymbol{\Sigma}$, whose elements are called symbols. For us, any set qualifies as a possible alphabet, so long as it is finite.

Examples:

$\Sigma_{1}=\{0,1,2,3,4,5,6,7,8,9\}-10$-element set of decimal digits.
$\Sigma_{2}=\{a, b, c, \ldots, x, y, z\}-26$-element set of lower-case characters of the English language.
$\Sigma_{3}=\left\{S \mid S \subseteq \Sigma_{1}\right\}-2^{10}$-element set of all subsets of the alphabet of decimal digits.

Non-example:
$\mathbb{N}=\{0,1,2,3, \ldots\}$ - set of all non-negative whole numbers is not an alphabet, because it is infinite.

Strings over an alphabet

A string of length $\boldsymbol{n}(\geq \mathbf{0})$ over an alphabet $\boldsymbol{\Sigma}$ is just an ordered \boldsymbol{n}-tuple of elements of $\boldsymbol{\Sigma}$, written without punctuation.

Example: if $\Sigma=\{a, b, c\}$, then $a, a b, a a c$, and $b b a c$ are strings over Σ of lengths one, two, three and four respectively.
$\Sigma^{*} \stackrel{\text { def }}{=}$ set of all strings over Σ of any finite length.
N.B. there is a unique string of length zero over $\boldsymbol{\Sigma}$, called the null string (or empty string) and denoted $\sqrt{\varepsilon}$ (no matter which Σ we are talking about).

Concatenation of strings

The concatenation of two strings $\boldsymbol{u}, \boldsymbol{v} \in \Sigma^{*}$ is the string $\boldsymbol{u v}$ obtained by joining the strings end-to-end.

Examples: If $u=a b, v=r a$ and $w=c a d$, then $v u=r a a b$, $u u=a b a b$ and $w v=c a d r a$.

This generalises to the concatenation of three or more strings.
E.g. $u v w u v=a b r a c a d a b r a$.

Regular expressions over an alphabet Σ

- each symbol $\boldsymbol{a} \in \boldsymbol{\Sigma}$ is a regular expression
- ε is a regular expression
- \emptyset is a regular expression
- if r and s are regular expressions, then so is $(r \mid s)$
- if r and s are regular expressions, then so is $r \boldsymbol{s}$
- if \boldsymbol{r} is a regular expression, then so is $(\boldsymbol{r})^{*}$

Every regular expression is built up inductively, by finitely many applications of the above rules.
(N.B. we assume $\varepsilon, \emptyset,(),, \mid$, and * are not symbols in Σ.)

Matching strings to regular expressions

- u matches $a \in \Sigma$ iff $u=a$
- u matches ε iff $u=\varepsilon$
- no string matches \emptyset
- u matches $r \mid s$ iff u matches either r or s
- \boldsymbol{u} matches $\boldsymbol{r s}$ iff it can be expressed as the concatenation of two strings, $\boldsymbol{u}=\boldsymbol{v} \boldsymbol{w}$, with \boldsymbol{v} matching \boldsymbol{r} and \boldsymbol{w} matching s
- \boldsymbol{u} matches \boldsymbol{r}^{*} iff either $\boldsymbol{u}=\varepsilon$, or \boldsymbol{u} matches \boldsymbol{r}, or \boldsymbol{u} can be expressed as the concatenation of two or more strings, each of which matches r

Examples of matching, with $\Sigma=\{0,1\}$

- $0 \mid \mathbf{1}$ is matched by each symbol in Σ
- $\mathbf{1}(0 \mid 1)^{*}$ is matched by any string in Σ^{*} that starts with a ' 1 '
- $((0 \mid 1)(0 \mid 1))^{*}$ is matched by any string of even length in Σ^{*}
- $(0 \mid 1)^{*}(0 \mid 1)^{*}$ is matched by any string in Σ^{*}
- $(\varepsilon \mid 0)(\varepsilon \mid 1) \mid 11$ is matched by just the strings $\varepsilon, 0,1,01$, and 11
- $\emptyset 1 \mid 0$ is just matched by 0

Languages

A (formal) language L over an alphabet $\boldsymbol{\Sigma}$ is just a set of strings in $\boldsymbol{\Sigma}^{*}$. Thus any subset $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ determines a language over $\boldsymbol{\Sigma}$.

The language determined by a regular expression \boldsymbol{r} over $\boldsymbol{\Sigma}$ is

$$
L(r) \stackrel{\text { def }}{=}\left\{u \in \Sigma^{*} \mid u \text { matches } r\right\}
$$

Two regular expressions r and s (over the same alphabet) are equivalent iff $L(r)$ and $L(s)$ are equal sets (i.e. have exactly the same members).

Some questions

(a) Is there an algorithm which, given a string \boldsymbol{u} and a regular expression \boldsymbol{r} (over the same alphabet), computes whether or not \boldsymbol{u} matches \boldsymbol{r} ?
(b) In formulating the definition of regular expressions, have we missed out some practically useful notions of pattern?
(c) Is there an algorithm which, given two regular expressions r and s (over the same alphabet), computes whether or not they are equivalent? (Cf. Slide 8.)
(d) Is every language of the form $L(r)$?

Example of a finite automaton

States: $\boldsymbol{q}_{\mathbf{0}}, \boldsymbol{q}_{1}, \boldsymbol{q}_{\mathbf{2}}, \boldsymbol{q}_{\mathbf{3}}$.
Input symbols: $\boldsymbol{a}, \boldsymbol{b}$.
Transitions: as indicated above.
Start state: \boldsymbol{q}_{0}.
Accepting state(s): \boldsymbol{q}_{3}.

$L(M)$, language accepted by a finite automaton M

consists of all strings \boldsymbol{u} over its alphabet of input symbols satisfying $q_{0} \xrightarrow{\boldsymbol{u}} \boldsymbol{q} \boldsymbol{q}$ with \boldsymbol{q}_{0} the start state and \boldsymbol{q} some accepting state. Here

$$
q_{0} \xrightarrow{u} * q
$$

means, if $u=a_{1} a_{2} \ldots a_{n}$ say, that for some states
$\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots, \boldsymbol{q}_{\boldsymbol{n}}=\boldsymbol{q}$ (not necessarily all distinct) there are transitions of the form

$$
q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \xrightarrow{a_{3}} \cdots \xrightarrow{a_{n}} q_{n}=q .
$$

N.B.
case $n=0: \quad q \xrightarrow{\varepsilon}{ }^{*} q^{\prime} \quad$ iff $\quad q=q^{\prime}$
case $n=1: \quad q \xrightarrow{a} q^{\prime} \quad$ iff $\quad q \xrightarrow{a} q^{\prime}$.

A non-deterministic finite automaton (NFA), M, is specified by

- a finite set States $_{M}$ (of states)
- a finite set $\boldsymbol{\Sigma}_{M}$ (the alphabet of input symbols)
- for each $\boldsymbol{q} \in$ States $_{M}$ and each $\boldsymbol{a} \in \boldsymbol{\Sigma}_{M}$, a subset $\Delta_{M}(q, a) \subseteq$ States $_{M}$ (the set of states that can be reached from \boldsymbol{q} with a single transition labelled \boldsymbol{a})
- an element $s_{M} \in$ States $_{M}$ (the start state)
- a subset Accept $_{M} \subseteq$ States $_{M}$ (of accepting states)

Example of a non-deterministic finite automaton

Input alphabet: $\{a, b\}$.
States, transitions, start state, and accepting states as shown:

The language accepted by this automaton is the same as for the automaton on Slide 10, namely

$$
\left\{u \in\{a, b\}^{*} \mid u \text { contains three consecutive } a \text { 's }\right\}
$$

A deterministic finite automaton (DFA)

is an NFA M with the property that for each $\boldsymbol{q} \in$ States $_{M}$ and $a \in \Sigma_{M}$, the finite set $\Delta_{M}(q, a)$ contains exactly one element-call it $\delta_{M}(q, a)$.
Thus in this case transitions in M are essentially specified by a next-state function, δ_{M}, mapping each (state, input symbol)-pair (q, a) to the unique state $\delta_{M}(q, a)$ which can be reached from q by a transition labelled a :

$$
q \xrightarrow{a} q^{\prime} \quad \text { iff } \quad q^{\prime}=\delta_{M}(q, a)
$$

An NFA with ε-transitions $\left(\mathrm{NFA}^{\varepsilon}\right)$

is specified by an NFA M together with a binary relation, called the ε-transition relation, on the set States $_{M}$. We write

$$
q \xrightarrow{\varepsilon} q^{\prime}
$$

to indicate that the pair of states $\left(q, q^{\prime}\right)$ is in this relation.

Example (with input alphabet $=\{a, b\}$):

$L(M)$, language accepted by an NFA ${ }^{\varepsilon} M$

consists of all strings u over the alphabet Σ_{M} of input symbols satisfying $\boldsymbol{q}_{0} \stackrel{u}{\Rightarrow} \boldsymbol{q}$ with \boldsymbol{q}_{0} the initial state and \boldsymbol{q} some accepting state. Here $\cdot \bar{\Longrightarrow}$ - is defined by:
$\boldsymbol{q} \stackrel{\varepsilon}{\Rightarrow} \boldsymbol{q}^{\prime}$ iff $\boldsymbol{q}=\boldsymbol{q}^{\prime}$ or there is a sequence $\boldsymbol{q} \xrightarrow{\varepsilon} \cdots \boldsymbol{q}^{\prime}$ of one or more ε-transitions in M from q to q^{\prime}
$q \xrightarrow{a} q^{\prime}\left(\right.$ for $\left.a \in \Sigma_{M}\right)$ iff $q \stackrel{\varepsilon}{\Rightarrow} \cdot \stackrel{a}{\longrightarrow} \cdot \stackrel{\varepsilon}{\Rightarrow} q^{\prime}$
$q \stackrel{a b}{\Rightarrow} q^{\prime}\left(\right.$ for $\left.a, b \in \Sigma_{M}\right)$ iff $q \xlongequal{\varepsilon} \cdot \xrightarrow{a} \cdot \stackrel{\varepsilon}{\Rightarrow} \cdot \xrightarrow{b} \cdot \stackrel{\varepsilon}{\Rightarrow} q^{\prime}$
and similarly for longer strings

Example of the subset construction

M:

$\delta_{P M}:$	a	b
	\emptyset	\emptyset
$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{2}\right\}$
$\left\{q_{1}\right\}$	$\left\{q_{1}\right\}$	\emptyset
$\left\{q_{2}\right\}$	\emptyset	$\left\{q_{2}\right\}$
$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{2}\right\}$
$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{2}\right\}$
$\left\{q_{1}, q_{2}\right\}$	$\left\{q_{1}\right\}$	$\left\{q_{2}\right\}$
$\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{2}\right\}$

Theorem. For each NFA ${ }^{\varepsilon} \boldsymbol{M}$ there is a DFA $\boldsymbol{P} \boldsymbol{M}$ with the same alphabet of input symbols and accepting exactly the same strings as M, i.e. with $L(P M)=L(M)$

Definition of $\boldsymbol{P} \boldsymbol{M}$ (refer to Slides 12 and 14):

- States ${ }_{P M} \stackrel{\text { def }}{=}\left\{S \mid S \subseteq\right.$ States $\left._{M}\right\}$
- $\Sigma_{P M} \stackrel{\text { def }}{=} \Sigma_{M}$
- $S \xrightarrow{a} S^{\prime}$ in $P M$ iff $S^{\prime}=\delta_{P M}(S, a)$, where

$$
\delta_{P M}(S, a) \stackrel{\text { def }}{=}\left\{q^{\prime} \mid \exists q \in S\left(q \stackrel{a}{\Rightarrow} q^{\prime} \text { in } M\right)\right\}
$$

- $s_{P M} \stackrel{\text { def }}{=}\left\{q \mid s_{M} \stackrel{\varepsilon}{\Rightarrow} q\right\}$
- Accept $_{P M} \stackrel{\text { def }}{=}$

$$
\left\{S \in \text { States }_{P M} \mid \exists q \in S\left(q \in \text { Accept }_{M}\right)\right\}
$$

Definition

A language is regular iff it is the set of strings accepted by some deterministic finite automaton.

Kleene's Theorem

(a) For any regular expression $\boldsymbol{r}, \boldsymbol{L}(\boldsymbol{r})$ is a regular language (cf. Slide 8).
(b) Conversely, every regular language is the form $L(\boldsymbol{r})$ for some regular expression r.

NFAs for atomic regular expressions

just accepts the one-symbol string a

just accepts the null string, ε

accepts no strings

$\operatorname{Union}\left(M_{1}, M_{2}\right)$

Set of accepting states is union of $\boldsymbol{A c c e p t}_{M_{1}}$ and $\boldsymbol{A c c e p t}_{M_{2}}$.

$\operatorname{Concat}\left(M_{1}, M_{2}\right)$

Set of accepting states is $\operatorname{Accept} \boldsymbol{M}_{2}$.

Star (M)

The only accepting state of $\operatorname{Star}(\boldsymbol{M})$ is \boldsymbol{q}_{0}.

Lemma Given an NFA M, for each subset $Q \subseteq$ States $_{M}$ and each pair of states $q, q^{\prime} \in$ States $_{M}$, there is a regular expression $r_{q, q^{\prime}}^{Q}$ satisfying

$$
L\left(r_{q, q^{\prime}}^{Q}\right)=\left\{u \in\left(\Sigma_{M}\right)^{*} \mid q \xrightarrow{u}^{*} q^{\prime} \text { in } M\right. \text { with all inter- }
$$ mediate states of the sequence in $Q\}$.

Hence $L(M)=L(r)$, where $r=r_{1}|\cdots| r_{k}$ and
$k=$ number of accepting states,
$r_{i}=r_{s, q_{i}}^{Q}$ with $Q=$ States $_{M}$,
$s=$ start state,
$q_{i}=i$ th accepting state.
(In case $\boldsymbol{k}=\mathbf{0}$, take \boldsymbol{r} to be the regular expression \emptyset.)

Example

Direct inspection yields:

| $r_{i, j}^{\{0\}}$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | $r_{i, j}^{\{0,2\}}$ | 0 | 1 | 2 | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | | | | 0 |
| 1 | \emptyset | ε | a | |
| | a^{*} | $a^{*} b$ | | |
| 2 | $a a^{*}$ | $a^{*} b$ | ε | |
| | 2 | | | |
| | | | | |
| | | | | |

$\operatorname{Not}(M)$

- States $_{N o t(M)} \stackrel{\text { def }}{=}$ States $_{M}$
- $\Sigma_{N o t(M)} \stackrel{\text { def }}{=} \Sigma_{M}$
- transitions of $\operatorname{Not}(M)=$ transitions of M
- start state of $\operatorname{Not}(M)=$ start state of M
- $^{\text {Accept }_{\text {Not }(M)}}=\left\{q \in\right.$ States $_{M} \mid q \notin$ Accept $\left._{M}\right\}$.

Provided \boldsymbol{M} is a deterministic finite automaton, then \boldsymbol{u} is accepted by $\operatorname{Not}(M)$ iff it is not accepted by M :

$$
L(N o t(M))=\left\{u \in \Sigma^{*} \mid u \notin L(M)\right\}
$$

$\operatorname{And}\left(M_{1}, M_{2}\right)$

- states of $\boldsymbol{A n d}\left(M_{1}, M_{2}\right)$ are all ordered pairs $\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right)$ with $q_{1} \in$ States $_{M_{1}}$ and $q_{2} \in$ States $_{M_{2}}$
- alphabet of $\operatorname{And}\left(M_{1}, M_{2}\right)$ is the common alphabet of M_{1} and M_{2}
- $\left(q_{1}, q_{2}\right) \xrightarrow{a}\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$ in $\operatorname{And}\left(M_{1}, M_{2}\right)$ iff $q_{1} \xrightarrow{a} q_{1}^{\prime}$ in M_{1} and $q_{2} \xrightarrow{a} q_{2}^{\prime}$ in M_{2}
- start state of $\operatorname{And}\left(M_{1}, M_{2}\right)$ is $\left(s_{M_{1}}, s_{M_{2}}\right)$
- $\left(q_{1}, q_{2}\right)$ accepting in $\operatorname{And}\left(M_{1}, M_{2}\right)$ iff \boldsymbol{q}_{1} accepting in M_{1} and q_{2} accepting in M_{2}.

Examples of non-regular languages

- The set of strings over $\{(), a, b,, \ldots, z\}$ in which the parentheses '(' and ')' occur well-nested.
- The set of strings over $\{a, b, \ldots, z\}$ which are palindromes, i.e. which read the same backwards as forwards.
- $\left\{a^{n} b^{n} \mid n \geq 0\right\}$

The Pumping Lemma

For every regular language L, there is a number $\ell \geq 1$ satisfying the pumping lemma property:
all $\boldsymbol{w} \in L$ with length $(\boldsymbol{w}) \geq \ell$ can be expressed as a concatenation of three strings, $\boldsymbol{w}=\boldsymbol{u}_{1} \boldsymbol{v} \boldsymbol{u}_{2}$, where $\boldsymbol{u}_{1}, \boldsymbol{v}$ and \boldsymbol{u}_{2} satisfy:

- length $(v) \geq 1$
(i.e. $\boldsymbol{v} \neq \varepsilon$)
- length $\left(u_{1} v\right) \leq \ell$
- for all $n \geq 0, u_{1} v^{n} u_{2} \in L$
(i.e. $u_{1} u_{2} \in L, u_{1} v u_{2} \in L$ [but we knew that anyway],
$u_{1} v v u_{2} \in L, \quad u_{1} v v v u_{2} \in L$, etc).

If $\boldsymbol{n} \geq \ell=$ number of states of M, then in

$$
s_{M}=\underbrace{q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \cdots \stackrel{a_{\ell}}{\longrightarrow} q_{\ell}}_{\ell+1 \text { states }} \cdots \xrightarrow{a_{n}} q_{n} \in \text { Accept }_{M}
$$

q_{0}, \ldots, q_{ℓ} can't all be distinct states. So $\boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{q}_{\boldsymbol{j}}$ for some $0 \leq i<j \leq \ell$. So the above transition sequence looks like

$$
s_{M}=q_{0} \xrightarrow{u_{1}} * \overbrace{i}=\stackrel{\downarrow}{q}_{j}^{*} \xrightarrow{u_{2}} * q_{n} \in \operatorname{Accept}_{M}
$$

where

$$
u_{1} \stackrel{\text { def }}{=} a_{1} \ldots a_{i} \quad v \stackrel{\text { def }}{=} a_{i+1} \ldots a_{j} \quad u_{2} \stackrel{\text { def }}{=} a_{j+1} \ldots a_{n}
$$

How to use the Pumping Lemma to prove that a language L is not regular

For each $\ell \geq 1$, find some $w \in L$ of length $\geq \ell$ so that
(\dagger no matter how \boldsymbol{w} is split into three, $\boldsymbol{w}=\boldsymbol{u}_{\boldsymbol{1}} \boldsymbol{v} \boldsymbol{u}_{\boldsymbol{2}}$, with length $\left(u_{1} v\right) \leq \ell$ and length $(v) \geq 1$, there is some $\boldsymbol{n} \geq \mathbf{0}$ for which $\boldsymbol{u}_{\boldsymbol{1}} \boldsymbol{v}^{\boldsymbol{n}} \boldsymbol{u}_{\boldsymbol{2}}$ is not in \boldsymbol{L}.

Examples

(i) $L_{1} \stackrel{\text { def }}{=}\left\{a^{n} b^{n} \mid \boldsymbol{n} \geq 0\right\}$ is not regular.
[For each $\ell \geq 1, a^{\ell} b^{\ell} \in L_{1}$ is of length $\geq \ell$ and has property (\dagger) on Slide 31.]
(ii) $L_{2} \stackrel{\text { def }}{=}\left\{w \in\{a, b\}^{*} \mid w\right.$ a palindrome $\}$ is not regular.
[For each $\ell \geq 1, a^{\ell} b a^{\ell} \in L_{1}$ is of length $\geq \ell$ and has property (\dagger).]
(iii) $L_{3} \stackrel{\text { def }}{=}\left\{a^{p} \mid p\right.$ prime $\}$ is not regular.
[For each $\ell \geq 1$, we can find a prime p with $p>2 \ell$ and then $a^{p} \in L_{3}$ has length $\geq \ell$ and has property (\dagger).]

Example of a non-regular language

 that satisfies the 'pumping lemma property'$$
\begin{aligned}
L \stackrel{\text { def }}{=} & \left\{c^{m} a^{n} b^{n} \mid m \geq 1 \text { and } n \geq 0\right\} \\
& \cup \\
& \left\{a^{m} b^{n} \mid m, n \geq 0\right\}
\end{aligned}
$$

satisfies the pumping lemma property on Slide 29 with $\ell=1$.
[For any $\boldsymbol{w} \in L$ of length ≥ 1, can take $u_{1}=\varepsilon, v=$ first letter of w, $u_{2}=$ rest of w.]

But L is not regular. [See Exercise ??.]

Lemma If a DFA M accepts any string at all, it accepts one whose length is less than the number of states in M.

Proof. Suppose M has ℓ states (so $\ell \geq 1$). If $L(M)$ is not empty, then we can find an element of it of shortest length, $a_{1} a_{2} \ldots a_{n}$ say (where $\boldsymbol{n} \geq 0$). Thus there is a transition sequence

$$
s_{M}=q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \ldots \xrightarrow{a_{n}} q_{n} \in \text { Accept }_{M} .
$$

If $\boldsymbol{n} \geq \boldsymbol{\ell}$, then not all the $\boldsymbol{n}+\mathbf{1}$ states in this sequence can be distinct and we can shorten it as on Slide 30. But then we would obtain a strictly shorter string in $L(M)$ contradicting the choice of $a_{1} a_{2} \ldots a_{n}$. So we must have $n<\ell$.

```
    SENTENCE }->\mathrm{ SUBJECT VERB OBJECT
    SUBJECT }->\mathrm{ ARTICLE NOUNPHRASE
    OBJECT }->\mathrm{ ARTICLE NOUNPHRASE
        ARTICLE }->\mathrm{ a
        ARTICLE }->\mathrm{ the
NOUNPHRASE }->\mathrm{ NOUN
NOUNPHRASE }->\mathrm{ ADJECTIVE NOUN
    ADJECTIVE }->\mathrm{ big
    ADJECTIVE }->\mathrm{ small
    NOUN }->\mathrm{ cat
    NOUN }->\mathrm{ dog
    VERB }->\mathrm{ eats
```


A derivation

SENTENCE \rightarrow SUBJECT VERB OBJECT

\rightarrow ARTICLE NOUNPHRASE VERB OBJECT
\rightarrow the NOUNPHRASE VERB OBJECT
\rightarrow the NOUNPHRASE eats OBJECT
\rightarrow the ADJECTIVE NOUN eats OBJECT
\rightarrow the big NOUN eats OBJECT
\rightarrow the big cat eats OBJECT
\rightarrow the big cat eats ARTICLE NOUNPHRASE
\rightarrow the big cat eats a NOUNPHRASE
\rightarrow the big cat eats a ADJECTIVE NOUN
\rightarrow the big cat eats a small NOUN
\rightarrow the big cat eats a small dog

Example of Backus-Naur Form (BNF)

Terminals:

$$
\mathrm{x}^{\prime}+-*(\quad)
$$

Non-terminals:
id op exp

Start symbol:

$$
\exp
$$

Productions:

A context-free grammar for the language

$$
\left\{a^{n} b^{n} \mid n \geq 0\right\}
$$

Terminals:

$$
a \quad b
$$

Non-terminal:

$$
I
$$

Start symbol:

$$
I
$$

Productions:

$$
I::=\varepsilon \mid a I b
$$

Every regular language is context-free

Given a DFA \boldsymbol{M}, the set $L(M)$ of strings accepted by M can be generated by the following context-free grammar:
set of terminals $=\Sigma_{M}$
set of non-terminals $=$ States $_{M}$
start symbol = start state of M
productions of two kinds:

$$
\begin{array}{ll}
q \rightarrow a q^{\prime} & \text { whenever } q \xrightarrow{a} q^{\prime} \text { in } M \\
q \rightarrow \varepsilon & \text { whenever } q \in \text { Accept }_{M}
\end{array}
$$

Definition A context-free grammar is regular iff all its productions are of the form

$$
x \rightarrow u y
$$

or

$$
\boldsymbol{x} \longrightarrow \boldsymbol{u}
$$

where \boldsymbol{u} is a string of terminals and \boldsymbol{x} and \boldsymbol{y} are non-terminals.

Theorem

(a) Every language generated by a regular grammar is a regular language (i.e. is the set of strings accepted by some DFA).
(b) Every regular language can be generated by a regular grammar.

Example of the construction used in the proof of the Theorem on Slide 40

