What happens if, at a Unix/Linux shell prompt, you type

ls *

and press return?

Suppose the current directory contains files called regfla.tex, regfla.aux, regfla.log, regfla.dvi, and (strangely) .aux. What happens if you type

ls *.aux

and press return?

An *alphabet* is specified by giving a finite set, Σ , whose elements are called *symbols*. For us, any set qualifies as a possible alphabet, so long as it is finite.

Examples:

$$\begin{split} \Sigma_1 &= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} - 10 \text{-element set of decimal digits.} \\ \Sigma_2 &= \{a, b, c, \dots, x, y, z\} - 26 \text{-element set of lower-case characters} \\ \text{of the English language.} \\ \Sigma_3 &= \{S \mid S \subseteq \Sigma_1\} - 2^{10} \text{-element set of all subsets of the alphabet of} \\ \text{decimal digits.} \end{split}$$

Non-example:

 $\mathbb{N} = \{0, 1, 2, 3, ...\}$ — set of all non-negative whole numbers is not an alphabet, because it is infinite.

A string of length $n \geq 0$ over an alphabet Σ is just an ordered *n*-tuple of elements of Σ , written without punctuation.

Example: if $\Sigma = \{a, b, c\}$, then a, ab, aac, and bbac are strings over Σ of lengths one, two, three and four respectively.

 $\Sigma^* \stackrel{\text{def}}{=}$ set of all strings over Σ of any finite length.

N.B. there is a unique string of length zero over Σ , called the *null string* (or *empty string*) and denoted ε (no matter which Σ we are talking about).

Concatenation of strings

The *concatenation* of two strings $u, v \in \Sigma^*$ is the string uv obtained by joining the strings end-to-end.

Examples: If u = ab, v = ra and w = cad, then vu = raab, uu = abab and wv = cadra.

This generalises to the concatenation of three or more strings. E.g. uvwuv = abracadabra.

- each symbol $a \in \Sigma$ is a regular expression
- ε is a regular expression
- Ø is a regular expression
- if r and s are regular expressions, then so is (r|s)
- if *r* and *s* are regular expressions, then so is *rs*
- if r is a regular expression, then so is $(r)^*$

Every regular expression is built up inductively, by *finitely many* applications of the above rules.

(N.B. we assume ε , \emptyset , (,), , and * are not symbols in Σ .)

Matching strings to regular expressions

- u matches $a \in \Sigma$ iff u = a
- u matches ε iff $u = \varepsilon$
- no string matches Ø
- u matches $r \mid s$ iff u matches either r or s
- u matches rs iff it can be expressed as the concatenation of two strings, u = vw, with v matching r and w matching s
- u matches r^* iff either $u = \varepsilon$, or u matches r, or u can be expressed as the concatenation of two or more strings, each of which matches r

Examples of matching, with $\Sigma = \{0, 1\}$

- 0 1 is matched by each symbol in Σ
- $1(0|1)^*$ is matched by any string in Σ^* that starts with a '1'
- $((0|1)(0|1))^*$ is matched by any string of even length in Σ^*
- $(0|1)^*(0|1)^*$ is matched by any string in Σ^*
- $(\varepsilon|0)(\varepsilon|1)|11$ is matched by just the strings ε , 0, 1, 01, and 11
- 010 is just matched by 0

A (formal) language L over an alphabet Σ is just a set of strings in Σ^* . Thus any subset $L \subseteq \Sigma^*$ determines a language over Σ . The language determined by a regular expression r over Σ is

$$L(r) \stackrel{ ext{def}}{=} \{ u \in \Sigma^* \mid u ext{ matches } r \}.$$

Two regular expressions r and s (over the same alphabet) are equivalent iff L(r) and L(s) are equal sets (i.e. have exactly the same members).

- (a) Is there an algorithm which, given a string u and a regular expression r (over the same alphabet), computes whether or not u matches r?
- (b) In formulating the definition of regular expressions, have we missed out some practically useful notions of pattern?
- (c) Is there an algorithm which, given two regular expressions *r* and *s* (over the same alphabet), computes whether or not they are equivalent? (Cf. Slide 8.)
- (d) Is every language of the form L(r)?

States: q_0 , q_1 , q_2 , q_3 . Input symbols: a, b.

Transitions: as indicated above.

Start state: q_0 .

Accepting state(s): q_3 .

consists of all strings u over its alphabet of input symbols satisfying $q_0 \xrightarrow{u} q_0 \xrightarrow{u} q_0$ with q_0 the start state and q some accepting state. Here

$$q_0 \stackrel{u}{
ightarrow} q$$

means, if $u = a_1 a_2 \dots a_n$ say, that for some states

 $q_1, q_2, \ldots, q_n = q$ (not necessarily all distinct) there are transitions of the form

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_3} \cdots \xrightarrow{a_n} q_n = q.$$

N.B.

case n = 0: $q \xrightarrow{\varepsilon} q'$ iff q = q'case n = 1: $q \xrightarrow{a} q'$ iff $q \xrightarrow{a} q'$.

A *non-deterministic finite automaton* (NFA), M, is specified by

- a finite set $States_M$ (of states)
- a finite set Σ_M (the alphabet of *input symbols*)
- for each $q \in States_M$ and each $a \in \Sigma_M$, a subset $\Delta_M(q, a) \subseteq States_M$ (the set of states that can be reached from q with a single *transition* labelled a)
- an element $s_M \in States_M$ (the start state)
- a subset $Accept_M \subseteq States_M$ (of accepting states)

Input alphabet: $\{a, b\}$.

States, transitions, start state, and accepting states as shown:

The language accepted by this automaton is the same as for the automaton on Slide 10, namely

 $\{u \in \{a,b\}^* \mid u ext{ contains three consecutive } a$'s $\}$.

A deterministic finite automaton (DFA)

is an NFA M with the property that for each $q \in States_M$ and $a \in \Sigma_M$, the finite set $\Delta_M(q, a)$ contains exactly one element—call it $\delta_M(q, a)$.

Thus in this case transitions in M are essentially specified by a *next-state function*, δ_M , mapping each (state, input symbol)-pair (q, a) to the unique state $\delta_M(q, a)$ which can be reached from q by a transition labelled a:

$$q \stackrel{a}{
ightarrow} q'$$
 iff $q' = \delta_M(q,a)$.

An **NFA** with ε -transitions (NFA $^{\varepsilon}$)

is specified by an NFA M together with a binary relation, called the ε -transition relation, on the set $States_M$. We write

 $q \xrightarrow{\varepsilon} q'$

to indicate that the pair of states (q, q') is in this relation.

Example (with input alphabet = $\{a, b\}$):

L(M), language accepted by an NFA $^arepsilon M$

consists of all strings u over the alphabet $\sum_{M} of$ input symbols satisfying $q_0 \stackrel{u}{\Rightarrow} q$ with q_0 the initial state and q some accepting state. Here $\cdot \stackrel{-}{\Rightarrow} \cdot$ is defined by:

 $q \stackrel{\varepsilon}{\Rightarrow} q'$ iff q = q' or there is a sequence $q \stackrel{\varepsilon}{\to} \cdots q'$ of one or more ε -transitions in M from q to q'

 $q \stackrel{a}{\Rightarrow} q'$ (for $a \in \Sigma_M$) iff $q \stackrel{arepsilon}{\Rightarrow} \cdot \stackrel{a}{\rightarrow} \cdot \stackrel{arepsilon}{\Rightarrow} q'$

 $q \stackrel{ab}{\Rightarrow} q'$ (for $a, b \in \Sigma_M$) iff $q \stackrel{\varepsilon}{\Rightarrow} \cdot \stackrel{a}{\rightarrow} \cdot \stackrel{\varepsilon}{\Rightarrow} \cdot \stackrel{b}{\rightarrow} \cdot \stackrel{\varepsilon}{\Rightarrow} q'$

and similarly for longer strings

$oldsymbol{M}$:	$oldsymbol{\delta_{PM}}$:	\boldsymbol{a}	b
	Ø	Ø	Ø
(q_1)	$\{q_0\}$	$\{q_0,q_1,q_2\}$	$\{q_2\}$
	$\{q_1\}$	$\{q_1\}$	Ø
ε	$\{q_2\}$	Ø	$\{q_2\}$
$\longrightarrow (q_0) a$	$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$	$\{q_2\}$
ε	$\{q_0,q_2\}$	$\{q_0,q_1,q_2\}$	$\{q_2\}$
	$\{q_1,q_2\}$	$\{q_1\}$	$\{q_2\}$
42	$\{q_0,q_1,q_2\}$	$\{q_0,q_1,q_2\}$	$\{q_2\}$
b			

Theorem. For each NFA^{ε} M there is a DFA PM with the same alphabet of input symbols and accepting exactly the same strings as M, i.e. with L(PM) = L(M)

Definition of \mathbf{PM} (refer to Slides 12 and 14):

- $States_{PM} \stackrel{\mathrm{def}}{=} \{S \mid S \subseteq States_M\}$
- $\Sigma_{PM} \stackrel{\mathrm{def}}{=} \Sigma_M$
- $S \xrightarrow{a} S'$ in PM iff $S' = \delta_{PM}(S, a)$, where $\delta_{PM}(S, a) \stackrel{\text{def}}{=} \{q' \mid \exists q \in S \ (q \xrightarrow{a} q' \text{ in } M)\}$

$$\bullet \; s_{PM} \stackrel{\mathrm{def}}{=} \{q \mid s_M \stackrel{\varepsilon}{\Rightarrow} q\}$$

•
$$Accept_{PM} \stackrel{\text{def}}{=} \{S \in States_{PM} \mid \exists q \in S \ (q \in Accept_M)\}$$

Definition

A language is *regular* iff it is the set of strings accepted by some deterministic finite automaton.

Kleene's Theorem

(a) For any regular expression r, L(r) is a regular language (cf. Slide 8).

(b) Conversely, every regular language is the form L(r) for some regular expression r.

NFAs for atomic regular expressions

just accepts the one-symbol string \boldsymbol{a}

just accepts the null string, ϵ

accepts no strings

$Union(M_1, M_2)$

Set of accepting states is union of $Accept_{M_1}$ and $Accept_{M_2}$.

 $Concat(M_1, M_2)$

Set of accepting states is $Accept_{M_2}$.

Star(M)

The only accepting state of Star(M) is q_0 .

Lemma Given an NFA M, for each subset $Q \subseteq States_M$ and each pair of states $q, q' \in States_M$, there is a regular expression $r_{q,q'}^Q$ satisfying

 $L(r_{q,q'}^Q) = \{ u \in (\Sigma_M)^* \mid q \xrightarrow{u} q' \text{ in } M \text{ with all inter-} \$ mediate states of the sequence in $Q \}.$

Hence L(M) = L(r), where $r = r_1 | \cdots | r_k$ and

k = number of accepting states,

$$r_i = r^Q_{s,q_i}$$
 with $Q = States_M$,

s = start state,

 $q_i = i$ th accepting state.

(In case k = 0, take r to be the regular expression \emptyset .)

Example

Direct inspection yields:

$r_{i,j}^{\{0\}}$	0	1	2	$r_{i,j}^{\{0,2\}}$	0	1	2
0				0	a^*	a^*b	
1	Ø	ε	\boldsymbol{a}	1			
2	$\emptyset aa^*$	a^*b	ε	2			

Not(M)

• $States_{Not(M)} \stackrel{\text{def}}{=} States_M$

•
$$\Sigma_{Not(M)} \stackrel{\text{def}}{=} \Sigma_M$$

- transitions of Not(M) = transitions of M
- start state of Not(M) = start state of M
- $Accept_{Not(M)} = \{q \in States_M \mid q \notin Accept_M\}.$

Provided M is a *deterministic* finite automaton, then u is accepted by Not(M) iff it is not accepted by M:

 $L(Not(M)) = \{ u \in \Sigma^* \mid u \notin L(M) \}.$

$And(M_1, M_2)$

- states of $And(M_1,M_2)$ are all ordered pairs (q_1,q_2) with $q_1 \in States_{M_1}$ and $q_2 \in States_{M_2}$
- ullet alphabet of $And(M_1,M_2)$ is the common alphabet of M_1 and M_2
- $(q_1, q_2) \xrightarrow{a} (q'_1, q'_2)$ in $And(M_1, M_2)$ iff $q_1 \xrightarrow{a} q'_1$ in M_1 and $q_2 \xrightarrow{a} q'_2$ in M_2
- start state of $And(M_1, M_2)$ is (s_{M_1}, s_{M_2})
- (q_1, q_2) accepting in $And(M_1, M_2)$ iff q_1 accepting in M_1 and q_2 accepting in M_2 .

Examples of non-regular languages

- The set of strings over {(,), a, b, ..., z} in which the parentheses '(' and ')' occur well-nested.
- The set of strings over {a, b, ..., z} which are palindromes,
 i.e. which read the same backwards as forwards.
- $\{a^nb^n \mid n \ge 0\}$

For every regular language L, there is a number $\ell \geq 1$ satisfying the *pumping lemma property*:

all $w \in L$ with $length(w) \ge l$ can be expressed as a concatenation of three strings, $w = u_1 v u_2$, where u_1 , v and u_2 satisfy:

- $length(v) \geq 1$ (i.e. $v \neq \varepsilon$)
- $length(u_1v) \leq \ell$
- for all $n \ge 0$, $u_1 v^n u_2 \in L$ (i.e. $u_1 u_2 \in L$, $u_1 v u_2 \in L$ [but we knew that anyway], $u_1 v v u_2 \in L$, $u_1 v v v u_2 \in L$, etc).

If $n \geq \ell =$ number of states of M, then in

$$s_{M} = \underbrace{q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} q_{2} \cdots \xrightarrow{a_{\ell}} q_{\ell}}_{\ell+1 \text{ states}} \cdots \xrightarrow{a_{n}} q_{n} \in Accept_{M}$$

 q_0, \ldots, q_ℓ can't all be distinct states. So $q_i = q_j$ for some $0 \le i < j \le \ell$. So the above transition sequence looks like

$$s_M = q_0 \xrightarrow{u_1}{\longrightarrow} q_i = q_j \xrightarrow{u_2}{\longrightarrow} q_n \in Accept_M$$

where

 $u_1 \stackrel{\mathrm{def}}{=} a_1 \dots a_i \quad v \stackrel{\mathrm{def}}{=} a_{i+1} \dots a_j \quad u_2 \stackrel{\mathrm{def}}{=} a_{j+1} \dots a_n.$

How to use the Pumping Lemma to prove that a language *L* is *not* regular

For each $\ell \geq 1$, find some $w \in L$ of length $\geq \ell$ so that

(†) $\begin{cases} \text{ no matter how } w \text{ is split into three, } w = u_1 v u_2, \\ \text{ with } length(u_1 v) \leq \ell \text{ and } length(v) \geq 1, \\ \text{ there is some } n \geq 0 \text{ for which } u_1 v^n u_2 \text{ is not in } L. \end{cases}$

(i) $L_1 \stackrel{\text{def}}{=} \{a^n b^n \mid n \ge 0\}$ is not regular.

[For each $\ell \geq 1$, $a^{\ell}b^{\ell} \in L_1$ is of length $\geq \ell$ and has property (†) on Slide 31.]

- (ii) $L_2 \stackrel{\text{def}}{=} \{ w \in \{a, b\}^* \mid w \text{ a palindrome} \}$ is not regular. [For each $\ell \ge 1$, $a^{\ell}ba^{\ell} \in L_1$ is of length $\ge \ell$ and has property (†).]
- (iii) $L_3 \stackrel{\text{def}}{=} \{a^p \mid p \text{ prime}\}$ is not regular.

[For each $\ell \geq 1$, we can find a prime p with $p > 2\ell$ and then $a^p \in L_3$ has length $\geq \ell$ and has property (†).]

Example of a non-regular language that satisfies the 'pumping lemma property'

$$egin{array}{ll} L \stackrel{
m def}{=} & \{c^ma^nb^n \mid m \geq 1 ext{ and } n \geq 0 \} \ & igcup \ & \{a^mb^n \mid m, n \geq 0 \} \end{array}$$

satisfies the pumping lemma property on Slide 29 with $\ell = 1$.

[For any $w \in L$ of length ≥ 1 , can take $u_1 = \varepsilon$, v = first letter of w, $u_2 =$ rest of w.]

But *L* is not regular. [See Exercise ??.]

Lemma If a DFA M accepts any string at all, it accepts one whose length is less than the number of states in M.

Proof. Suppose M has ℓ states (so $\ell \geq 1$). If L(M) is not empty, then we can find an element of it of shortest length, $a_1a_2 \dots a_n$ say (where $n \geq 0$). Thus there is a transition sequence

$$s_M = q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \cdots \xrightarrow{a_n} q_n \in Accept_M.$$

If $n \ge \ell$, then not all the n + 1 states in this sequence can be distinct and we can shorten it as on Slide 30. But then we would obtain a strictly shorter string in L(M) contradicting the choice of $a_1a_2 \dots a_n$. So we must have $n < \ell$.

```
SENTENCE \rightarrow SUBJECT VERB OBJECT
    SUBJECT \rightarrow ARTICLE NOUNPHRASE
      OBJECT \rightarrow ARTICLE NOUNPHRASE
    ARTICLE \rightarrow a
    ARTICLE \rightarrow the
NOUNPHRASE \rightarrow NOUN
NOUNPHRASE \rightarrow ADJECTIVE NOUN
 ADJECTIVE \rightarrow big
 ADJECTIVE \rightarrow small
         NOUN \rightarrow cat
         NOUN \rightarrow dog
         VERB \rightarrow eats
```

A derivation

$\underline{\text{SENTENCE}} \rightarrow \underline{\text{SUBJECT}} \text{ VERB OBJECT}$

- \rightarrow <u>ARTICLE</u> NOUNPHRASE VERB OBJECT
- \rightarrow the NOUNPHRASE <u>VERB</u> OBJECT
- \rightarrow the <u>NOUNPHRASE</u> eats OBJECT
- \rightarrow the <u>ADJECTIVE</u> NOUN eats OBJECT
- \rightarrow the big <u>NOUN</u> eats OBJECT
- \rightarrow the big cat eats <u>OBJECT</u>
- \rightarrow the big cat eats <u>ARTICLE</u> NOUNPHRASE
- \rightarrow the big cat eats a <u>NOUNPHRASE</u>
- \rightarrow the big cat eats a <u>ADJECTIVE</u> NOUN
- \rightarrow the big cat eats a small <u>NOUN</u>
- \rightarrow the big cat eats a small dog

A context-free grammar for the language $\{a^nb^n\mid n\geq 0\}$

Terminals:	a b
Non-terminal:	a b
Start symbol:	Ι
Productions:	Ι
	$I ::= arepsilon \mid aIb$

Given a DFA M, the set L(M) of strings accepted by M can be generated by the following context-free grammar:

set of terminals = Σ_M set of non-terminals = $States_M$ start symbol = start state of Mproductions of two kinds: $q \rightarrow aq'$ whenever $q \xrightarrow{a} q'$ in M $q \rightarrow \varepsilon$ whenever $q \in Accept_M$ **Definition** A context-free grammar is *regular* iff all its productions are of the form

 $x \rightarrow uy$

or

 $x \rightarrow u$

where u is a string of terminals and x and y are non-terminals.

Theorem

(a) Every language generated by a regular grammar is a regular language (i.e. is the set of strings accepted by some DFA).

(b) Every regular language can be generated by a regular grammar.

Example of the construction used

in the proof of the Theorem on Slide 40

