

Multicore Programming

Transactional memory

29 Nov 2010

Peter Sewell Jaroslav Ševčík Tim Harris

Transactional memory

Bartok-STM prototype

Strong isolation

Current performance

Example: double-ended queue

Left sentinel

Thread 1

10 X

Thread 2

30 X 20

Right sentinel

Example: coarse-grained locking

Class Q {
 Lock qLock = new Lock();
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 QElem e = new QElem(item);
 qLock.Acquire();
 e.right = this.leftSentinel.right;
 e.left = this.leftSentinel;
 this.leftSentinel.right.left = e;
 this.leftSentinel.right = e;
 qLock.Release();
 }

 ...
}

Thread 1 Thread 2

Example: fine-grain locking

Class Q {
 Lock leftLock = new Lock();
 Lock rightRlock = new Lock();
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 QElem e = new QElem(item);
 leftLock.Acquire();
 e.right = this.leftSentinel.right;
 e.left = this.leftSentinel;
 this.leftSentinel.right.left = e;
 this.leftSentinel.right = e;
 leftLock.Release();
 }

 ...
}

Example: fine-grain locking

Left sentinel

 X X 20

Right sentinel

leftLock rightLock

What we want

Hardware

Concurrency primitives

Library Library Library

Library

Library
Library

Library

Libraries build layered
concurrency
abstractions

What we have

Library

Locks and condition
variables
(a) are hard to use and
(b) do not compose

Hardware

Atomic blocks

Hardware

Atomic blocks built over transactional memory
3 primitives: atomic, retry, orElse

Library Library Library

Library

Library
Library

Library

Atomic memory transactions

• To a first approximation, just write the sequential code, and
wrap atomic around it

• All-or-nothing semantics: Atomic commit

• Atomic block executes in Isolation

• Cannot deadlock (there are no locks!)

• Atomicity makes error recovery easy
(e.g. exception thrown inside the PopLeft code)

Item PopLeft() {

 atomic { ... sequential code ... }

}

Like database
transactions

ACID

Atomic blocks compose (locks do not)

• Guarantees to get two consecutive items

• PopLeft() is unchanged

• Cannot be achieved with locks (except by
breaking the PopLeft abstraction)

void GetTwo() {

 atomic {

 i1 = PopLeft();

 i2 = PopLeft();

 }

 DoSomething(i1, i2);

} Composition

is THE way

we build big

programs

that work

Blocking: how does PopLeft wait for data?

• retry means “abandon execution of the atomic block and
re-run it (when there is a chance it‟ll complete)”

• No lost wake-ups

• No consequential change to GetTwo(), even though
GetTwo must wait for there to be two items in the queue

Item PopLeft() {

 atomic {

 if (leftSentinel.right==rightSentinel) {

 retry;

 } else { ...remove item from queue... }

} }

Choice: waiting for either of two
queues

• do {...this...} orelse {...that...} tries to run “this”

• If “this” retries, it runs “that” instead

• If both retry, the do-block retries. GetEither() will thereby
wait for there to be an item in either queue

void GetEither() {

 atomic {

 do { i = Q1.Get(); }

 orelse { i = Q2.Get(); }

 R.Put(i);

} }

Q1 Q2

R

Programming with atomic
blocks

With locks, you think about:

• Which lock protects which data? What data can be mutated
when by other threads? Which condition variables must be
notified when?

• None of this is explicit in the source code

With atomic blocks you think about

• What are the invariants (e.g. the tree is balanced)?

• Each atomic block maintains the invariants

• Purely sequential reasoning within a block, which is
dramatically easier

• Much easier setting for static analysis tools

Summary so far

• Atomic blocks (atomic, retry, orElse) are a real step
forward

• It‟s like using a high-level language instead of
assembly code: whole classes of low-level errors are
eliminated.

• Not a silver bullet:
– you can still write buggy programs;
– concurrent programs are still harder to write than

sequential ones;
– just aimed at shared memory.

• But the improvement is very substantial

State of the art ~ 2003

0

1

2

3

N
o
rm

a
lis

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

Sequential

baseline (1.00x)

Coarse-grained

locking (1.13x)

Fine-grained

locking (2.57x) Traditional STM

(5.69x)

Workload: operations on

a red-black tree, 1

thread, 6:1:1

lookup:insert:delete mix

with keys 0..65535

Implementation techniques

• Direct-update STM
– Allow transactions to make updates in place in the heap
– Avoids reads needing to search the log to see earlier writes that the

transaction has made
– Makes successful commit operations faster at the cost of extra work on

contention or when a transaction aborts

• Compiler integration
– Decompose the transactional memory operations into primitives
– Expose the primitives to compiler optimization (e.g. to hoist concurrency

control operations out of a loop)

• Runtime system integration
– Integration with the garbage collector or runtime system components to

scale to atomic blocks containing 100M memory accesses
– Memory management system used to detect conflicts between

transactional and non-transactional accesses

Results: concurrency control overhead

0

1

2

3

N
o
rm

a
lis

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

Sequential

baseline (1.00x)

Coarse-grained

locking (1.13x)

Fine-grained

locking (2.57x)

Direct-update

STM (2.04x)

Direct-update STM +

compiler integration

(1.46x)

Traditional STM

(5.69x)

Workload: operations on

a red-black tree, 1

thread, 6:1:1

lookup:insert:delete mix

with keys 0..65535

Scalable to multicore

Transactional memory

Bartok-STM prototype

Strong isolation

Current performance

Direct update STM

• Transactional write:

– Lock objects before they are written to (abort if another thread
has that lock)

– Log the overwritten data – we need it to restore the heap case of
retry, transaction abort, or a conflict with a concurrent thread

• Transactional read:

– Log a version number we associate with the object

• Commit:

– Check the version numbers of objects we‟ve read

– Increment the version numbers of object we‟ve written

Example: contention between transactions

atomic {

 t = c1.val;

 t ++;

 c1.val = t;

}

Thread T2

int t = 0;

atomic {

 t += c1.val;

 t += c2.val;

}

Thread T1

 T1’s log:

ver = 200

val = 40

c2

ver = 100

val = 10

c1

 T2’s log:

Example: contention between transactions

atomic {

 t = c1.val;

 t ++;

 c1.val = t;

}

Thread T2

int t = 0;

atomic {

 t += c1.val;

 t += c2.val;

}

Thread T1

c1.ver=100

T1’s log:

ver = 200

val = 40

c2

ver = 100

val = 10

c1

 T2’s log:

T1 reads from c1:

logs that it saw

version 100

Example: contention between transactions

atomic {

 t = c1.val;

 t ++;

 c1.val = t;

}

Thread T2

int t = 0;

atomic {

 t += c1.val;

 t += c2.val;

}

Thread T1

c1.ver=100

T1’s log:

ver = 200

val = 40

c2

ver = 100

val = 10

c1

c1.ver=100

T2’s log:

T2 also reads from

c1: logs that it saw

version 100

Example: contention between transactions

atomic {

 t = c1.val;

 t ++;

 c1.val = t;

}

Thread T2

int t = 0;

atomic {

 t += c1.val;

 t += c2.val;

}

Thread T1

c1.ver=100

c2.ver=200

T1’s log:

ver = 200

val = 40

c2

ver = 100

val = 10

c1

c1.ver=100

T2’s log:

Suppose T1 now

reads from c2, sees it

at version 200

Example: contention between transactions

atomic {

 t = c1.val;

 t ++;

 c1.val = t;

}

Thread T2

int t = 0;

atomic {

 t += c1.val;

 t += c2.val;

}

Thread T1

c1.ver=100

c2.ver=200

T1’s log:

ver = 200

val = 40

c2

locked:T2

val = 10

c1

c1.ver=100

lock: c1, 100

T2’s log:

Before updating c1, thread

T2 must lock it: record old

version number

Example: contention between transactions

atomic {

 t = c1.val;

 t ++;

 c1.val = t;

}

Thread T2

int t = 0;

atomic {

 t += c1.val;

 t += c2.val;

}

Thread T1

c1.ver=100

c2.ver=200

T1’s log:

ver = 200

val = 40

c2

locked:T2

val = 11

c1

c1.ver=100

lock: c1, 100

c1.val=10

T2’s log:

(1) Before updating c1.val,

thread T2 must log the data

it’s going to overwrite

(2) After logging the old

value, T2 makes its update in

place to c1

Example: contention between transactions

atomic {

 t = c1.val;

 t ++;

 c1.val = t;

}

Thread T2

int t = 0;

atomic {

 t += c1.val;

 t += c2.val;

}

Thread T1

c1.ver=100

c2.ver=200

T1’s log:

ver = 200

val = 40

c2

ver=101

val = 10

c1

T2’s log:

c1.ver=100

lock: c1, 100

c1.val=10 (1) Check the version we

locked matches the version

we previously read

(2) T2’s transaction commits

successfully. Unlock the object,

installing the new version number

Example: contention between transactions

atomic {

 t = c1.val;

 t ++;

 c1.val = t;

}

Thread T2

int t = 0;

atomic {

 t += c1.val;

 t += c2.val;

}

Thread T1

c1.ver=100

c2.ver=100

T1’s log:

ver = 200

val = 40

c2

ver=101

val = 10

c1

T2’s log:

(1) T1 attempts to commit. Check the

versions it read are still up-to-date.

(2) Object c1 was updated from version

100 to 101, so T1’s transaction is

aborted and re-run.

Transactional memory

Bartok-STM prototype

Strong isolation

Current performance

Zombie transactions

atomic {
 x = 1;
 y = 1;
}

• temp==0 is the only correct result here if these
blocks really are atomic

temp = z;
atomic {
 if (x != y) z = 1;
}

Initially: x==y==z==0

Zombie transactions

atomic {
 x = 1;
 y = 1;
}

• x == 0

• y == 0

• z == 0

temp = z;
atomic {
 if (x != y) z = 1;
}

Direct update, lazy conflict detection

Zombie transactions

atomic {
 x = 1;
 y = 1;
}

temp = z;
atomic {
 if (x != y) z = 1;
}

• x == 0

• y == 0

• z == 0

0

Direct update, lazy conflict detection

Zombie transactions

atomic {
 x = 1;
 y = 1;
}

temp = z;
atomic {
 if (x != y) z = 1;
}

• x == 1

• y == 1

• z == 0

0

Direct update, lazy conflict detection

Zombie transactions

atomic {
 x = 1;
 y = 1;
}

temp = z;
atomic {
 if (x != y) z = 1;
}

• x == 1

• y == 1

• z == 1

0 1

Direct update, lazy conflict detection

Zombie transactions

atomic {
 x = 1;
 y = 1;
}

temp = z;
atomic {
 if (x != y) z = 1;
}

• x == 1

• y == 1

• z == 1

1
0 1

Direct update, lazy conflict detection

Strong isolation

• Add a mechanism to detect conflicts between
tx and normal accesses
– e.g. „z‟ in this example

• We would like:
– Implementation flexibility – e.g. different STMs

– No overhead on non-transactional accesses

– Predictable performance

– Little overhead over weak atomicity

Strong isolation: implementation

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

Writes from atomic blocks

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

1. Atomic block attempts
to write to a field of an

object

Writes from atomic blocks

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

2. Revoke direct access
to the page holding the
direct view of the object

Writes from atomic blocks

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

3. Use underlying STM
write primitives

Writes from atomic blocks

Physical
address

space

Virtual
address

space

Tx-heap Normal-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

4A. Restore direct access
once the underlying

transaction has finished

Conflicting normal access

Physical
address

space

Virtual
address

space

Tx-heap Direct-heap

Normal
memory
accesses

Memory
accesses

from
atomic
blocks

4B. Access violation (AV)
delivered to a normal
thread accessing that

page: wait for TX

Transactional memory

Bartok-STM prototype

Strong isolation

Current performance

Labyrinth

• STAMP v0.9.10

• 256x256x3 grid

• Routing 256 paths

• Almost all execution inside atomic
blocks

• Atomic blocks can attempt 100K+
updates

• C# version derived from original C

• Compiled using Bartok, whole
program mode, C# -> x86 (~80%
perf of original C with VS2008)

• Overhead results with Core2 Duo
running Windows Vista

s1

e1

“STAMP: Stanford Transactional Applications for Multi-Processing”
Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , IISWC 2008

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1
-t

h
re

ad
, n

o
rm

al
iz

e
d

 t
o

 s
e

q
. b

as
e

lin
e

Sequential overhead

STM implementation supporting static separation
In-place updates

Lazy conflict detection
Per-object STM metadata

Addition of read/write barriers before accesses
Read: log per-object metadata word

Update: CAS on per-object metadata word
Update: log value being overwritten

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1
-t

h
re

ad
, n

o
rm

al
iz

e
d

 t
o

 s
e

q
. b

as
e

lin
e

Dynamic filtering to remove redundant logging

Log size grows with #locations accessed
Consequential reduction in validation time

1st level: per-thread hashtable (1024 entries)
2nd level: per-object bitmap of updated fields

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1
-t

h
re

ad
, n

o
rm

al
iz

e
d

 t
o

 s
e

q
. b

as
e

lin
e

Data-flow optimizations

Remove repeated log operations
Open-for-read/update on a per-object basis

Log-old-value on a per-field basis
Remove concurrency control on newly-allocated objects

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1
-t

h
re

ad
, n

o
rm

al
iz

e
d

 t
o

 s
e

q
. b

as
e

lin
e

 Inline optimized filter operations

Re-use table_base between filter operations
Avoids caller save/restore on filter hits

mov eax <- obj_addr

and eax <- eax, 0xffc

mov ebx <- [table_base + eax]

cmp ebx, obj_addr

Scaling – Labyrinth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

Ex
e

cu
ti

o
n

 t
im

e
 /

 s
e

q
. b

as
e

lin
e

#Threads

Weak isolation
Strong isolation

1.0 = wall-clock execution
time of sequential code

without concurrency control

Scaling – Delaunay

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8

Ex
e

cu
ti

o
n

 t
im

e
 /

 s
e

q
. b

as
e

lin
e

#Threads

Weak isolation
Strong isolation

Scaling – Genome

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

Ex
e

cu
ti

o
n

 t
im

e
 /

 s
e

q
. b

as
e

lin
e

#Threads

Weak isolation
Strong isolation

Scaling – Vacation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8

Ex
e

cu
ti

o
n

 t
im

e
 /

 s
e

q
. b

as
e

lin
e

#Threads

Weak isolation
Strong isolation

Conclusion

• What are atomic blocks good for?

– Shared memory data structures

• Implementations involve work throughout the
software stack

– Language design

– Compiler

– Language runtime system

– OS-runtime-system interfaces

• Two different experiences

– STM-Haksell

– STM.Net

