

Multicore Programming

Lock-free data structures

15 Nov 2010

Peter Sewell Jaroslav Ševčík Tim Harris

What’s wrong with locks?

Lists without locks & linearizability

Lock-free progress

Skiplists

Hashtables

Example: double-ended queue

• “Do the right thing”, even when used by
multiple threads

• Support full set of push/pop on both ends

• Allow concurrency where possible

Left sentinel

Thread 1

10 X

Thread 2

30 X 20

Right sentinel

Ease of use Performance

Applicability

What do people say is wrong with locks?

Deadlock

Difficult to
get right

Inhibit
scaling

Convoy
problems

Cost of some
implementations

Non-
composability

Priority
inversion

Blocking

What’s wrong with locks?

Lists without locks & linearizability

Lock-free progress

Skiplists

Hashtables

What we‟re building

• A set of integers

• Represented by a sorted linked list

• find(int) -> bool

• insert(int) -> bool

• delete(int) -> bool

The building blocks

• read(addr) -> val

• write(addr, val)

• cas(addr, old-val, new-val) -> val

 (I‟ll assume that memory is sequentially
consistent, and ignore allocation / de-
allocation for the moment)

Searching a sorted list

• find(20):

H 10 30 T

20?

 find(20) -> false

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30  20


 insert(20) -> true

Inserting an item with CAS

• insert(20):

H 10 30 T

20

30  20

25

30  25




• insert(25):

Searching and finding together

• find(20)

H 10 30 T

 -> false

20

20?

• insert(20) -> true

This thread saw 20
was not in the set...

...but this thread
succeeded in putting

it in!

• Is this a correct implementation of a set?

• Should the programmer be surprised if this happens?

• What about more complicated mixes of operations?

Correctness criteria

“If it finds like a set,
inserts like a set, and

deletes like a set, then
let’s call it a set...

Sequential specification

• Ignore the list for the moment, and focus
on the set:

find(int) -> bool

insert(int) -> bool

delete(int) -> bool

10, 20, 30

10, 15, 20, 30

10, 15, 30 10, 15, 20, 30

insert(15)->true

insert(20)->false delete(20)->true

Sequential: we’re only
considering one operation

on the set at a time

Specification: we’re saying what
a set does, not what a list does,

or how it looks in memory

Sequential specification

Let‟s add:

deleteany() -> int

10, 20, 30

deleteany()->10

20, 30

deleteany()->20

10, 30

This is still a sequential spec... just
not a deterministic one

System model

Shared object (e.g. “set”)

find/insert/delete

Thread 1 Thread n ...
Threads make

invocations and receive
responses from the set
(~method calls/returns)

Primitive objects (e.g.
“memory location”)

read/write/CAS ...the set is
implemented by making

invocations and
responses on memory

Sequential history

time

T1
: in

sert(1
0

)

->
 t

ru
e

T2
: in

se
rt(2

0
)

->
 t

ru
e

T1
: fin

d
(1

5
)

->
 f

al
se

• No overlapping invocations:

10 10, 20 10, 20

Concurrent history

time

• Allow overlapping invocations:

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

Linearizability

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the
invocations/responses?

Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false
A valid sequential

history: this concurrent
execution is OK

Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true delete(10)->true

find(10)->false
A valid sequential

history: this concurrent
execution is OK

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

Returning to our example

• find(20)

H 10 30 T

 -> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential
history: this concurrent

execution is OK

Recurring technique

• For updates:
– Perform an essential step of an operation by a

single atomic instruction

– E.g. CAS to insert an item into a list

– This forms a “linearization point”

• For reads:
– Identify a point during the operation‟s execution

when the result is valid

– Not always a specific instruction

Adding “delete”

• First attempt: just use CAS
delete(10):

H 10 30 T

10  30 

Delete and insert:

• delete(10) & insert(20):

H 10 30 T

10  30 

20

30  20 



Logical vs physical deletion

• Use a „spare‟ bit to indicate logically

deleted nodes:

H 10 30 T

20

10  30


30  30X




30  20 



Delete-greater-than-or-equal

• DeleteGE(int x) -> int

– Remove “x”, or next element above “x”

H 10 30 T

• DeleteGE(20) -> 30

H 10 T

Does this work: DeleteGE(20)

H 10 30 T

1. Walk does the list, as in a
normal delete, find 30 as

next-after-20

2. Do the deletion as normal:
set the mark bit in 30, then

physically unlink

Delete-greater-than-or-equal

time

Thread 2:

Thread 1:

insert(25)->true insert(30)->false

deleteGE(20)->30

A B

C

A must be after C
(otherwise C
should have
returned 15)

C must be after B
(otherwise B should

have succeeded)

B must be after A
(thread order)

How to realise this is wrong

• See operation which determines result

• Consider a delay at that point

• Is the result still valid?
– Delayed read: is the memory still accessible

(more of this next week)

– Delayed write: is the write still correct to
perform?

– Delayed CAS: does the value checked by the
CAS determine the result?

What’s wrong with locks?

Lists without locks & linearizability

Lock-free progress

Skiplists

Hashtables

Progress:
is this a good “lock-free” list?

static volatile int MY_LIST = 0;

bool find(int key) {
 // Wait until list available
 while (CAS(&MY_LIST, 0, 1) == 1) {
 }

 ...

 // Release list
 MY_LIST = 0;
}

OK, we’re not calling
pthread_mutex_lock... but
we’re essentially doing the

same thing

“Lock-free”

• A specific kind of non-blocking progress
guarantee

• Precludes the use of typical locks
– From libraries

– Or “hand rolled”

• Often mis-used informally as a synonym for
– Free from calls to a locking function

– Fast

– Scalable

Extending the system model

Shared object (e.g. “set”)

find/insert/delete

Thread 1 Thread n ...
Threads make

invocations and receive
responses from the set
(~method calls/returns)

Primitive objects (e.g.
“memory location”)

read/write/CAS ...the set is
implemented by making

invocations and
responses on memory

time

Execution model

• Threads start/finish operations

• Threads execute steps in the implementation

Start

Fin
ish

Start

Fin
ish

Start

Fin
ish

time

Wait-free

• A thread finishes its own operation if it
continues executing steps

Start

Start

Fin
ish

Fin
ish

Start

Fin
ish

Implementing wait-free algorithms

• A few special cases

• Hybrids (e.g., wait-free find)

• Queuing and helping strategies: everyone
ensures oldest operation makes progress

• Niches, e.g., bounded-wait-free in real-
time systems

time

Lock-free

• Some thread finishes its operation if threads
continue taking steps

Start

Start

Fin
ish

Fin
ish

Start

Start

Fin
ish

Implementing lock-free algorithms

• Ensure that one thread (A) only has to
repeat work if some other thread (B) has
made “real progress”

– e.g., insert(x) starts again if it finds that a
conflicting update has occurred

• Use helping to let one thread finish
another‟s work

– e.g., physically deleting a node on its behalf

time

Obstruction-free

• A thread finishes its own operation if it runs in
isolation

Start

Start

Fin
ish

 Interference here can prevent
any operation finishing

Building obstruction-free
algorithms

• Ensure that none of the low-level steps
leave a data structure “broken”

• On detecting a conflict:

– Help the other party finish

– Get the other party out of the way

• Use contention management to reduce
likelihood of live-lock

Lock-freedom

• Lock-free (progress criteria)

• Written without using locks

• Written for scalable and perf

What’s wrong with locks?

Lists without locks & linearizability

Lock-free progress

Skiplists

Hashtables

Hash tables

0 16 24

5

3 11

Bucket array:
8 entries in

example

List of items with
hash val modulo 8 == 0

Hash tables: Contains(16)

0 16 24

5

3 11

1. Hash 16.
Use bucket 0

2. Use normal
list operations

Hash tables: Delete(11)

0 16 24

5

3 11

1. Hash 11.
Use bucket 3

2. Use normal
list operations

Lessons from this hashtable

• Informal correctness argument:

– Operations on different buckets don‟t conflict:
no extra concurrency control needed

– Operations appear to occur atomically at the
point where the underlying list operation
occurs

• (Not specific to lock-free lists: could use
whole-table lock, or per-list locks, etc.)

Practical difficulties:

• Key-value mapping

• Population count

• Iteration

• Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structures
(e.g., skip lists)

What’s wrong with locks?

Lists without locks & linearizability

Lock-free progress

Skiplists

Hashtables

Skip lists

5 11 16 24 0 3

Each node is a “tower” of
random size. High levels

skip over lower levels

All items in a single list: this
defines the set’s contents

Skip lists: Delete(11)

5 11 16 24 0 3

Principle: lowest list is the truth

1. Find “11” node, mark it
logically deleted

2. Link by link remove “11”
from the towers

3. Finally, remove “11”
from lowest list

