Part 2

Language Design and
Acquisition of Programming






101

One important consequence of the increasing number of programming languages and
the evolution of program design environments is the number of new issues they raise.
As developed in the first part of this volume this evolution is due both to the ne-
cessity to solve new classes of problems and to have more powerful tools to support
the programming activity. However, this evolution does not necessarily make the
programming activity more easy to practice and to learn. Are some languages really
better than others? If so, what for? What kind of languages are better for learn-
ing and/or for educational purposes? What kind of support environment is really
efficient for professionals?

This section examines programming languages, their design, their use, their struc-
tural and semantic properties and their learning. It raises what are hoped to be
relevant issues for language designers and educators through presentation of data on
the ways in which experts and novices behave in programming. What is common
to both is that no one programming language (or a programming environment) is a
panacea. Rather they are tools that facilitate certain tasks by supporting expert and
novice programming behaviour in an appropriate manner, while in some cases they

may constitute an obstacle to efficient planning activities.

The first two chapters deal with language design. In Chapter 2.1 Petre dis-
cusses the distance separating language designers’ and expert programmers’ criteria
of what constitutes a ‘good’ programming language. Key features differentiating
them involves the interpretation of abstraction: designers prefer high-level expres-
sions, whereas the experts feel the need to choose their level of abstraction and to
be able to manipulate hardware when necessary. Designers tend to emphasize ‘well-
foundedness’ and correctness, whereas expert programmers stress utility, control and
efficiency. Chapter 2.2 by Green concentrates on the detail of language design and
describes how notational aspects influence the process of programming. A program
‘s viewed as an information structure. The programmer is the user of this structure
who is called upon to accomplish different tasks: obtain information from a program,
add new information, re-organize it, debug it, modify it, etc. The main argument is
that the structure of information should match the structure of the task. A set of
cognitive dimensions of notation is developed in order to analyse how a combination
of a notation and the environment in which it is used affect usability. There is no
universally good notation system, only adequate notations for specific tasks. These
dimensions can be seen as initial guidelines to cognitive requirements in language
design.

The next two chapters explore learning issues. The relationship between task
structure and programming language semantics is discussed as a critical component
of programming learning in Chapter 2.3 by Hoc and Nguyen-Xuan. Novices must
learn not only new notations and new means of expression but also the operating rules
of the processing device that underlies the language. It is argued that learning by
doing and learning by analogy are privileged mechanisms of acquisition of these rules.
The notion of the representation and processing system (RPS) is developed in order
to identify and analyse the gap between novices’ existing RPSs and those they have
to construct and to suggest the training situations that facilitate the development
- of RPSs. The acquisition of operating rules is only the first step in programming
learning: novices have to also learn programming concepts and structures. Chapter
2.4 by Rogalski and Samurgay examines the cognitive difficulties encountered by
novices in learning the concepts and structures commonly presented in introductory



102

/

programming classes. It is shown how dynamic mental models related to action
execution act as precursors by playing both productive and reductionist roles, and
become an obstacle when more static representations are needed. It is argued that
training paradigms tend to place emphasis on the computational and procedural
aspects of programming which prevents novices from. learning problem modelling
and programming as a function specification.

Chapter 2.5 by Mendelsohn, Green and Brna discusses issues related to the use
of computers for general educational purposes. After examining the ‘transfer of
competence’ and ‘acquisition of new knowledge’ hypotheses, the authors put forward
an alternative proposition: the new representation and processing system that people
acquire via programming may modify their strategy in analysing the objects on which
they have programmed.

All the chapters in this part analyse current issues in programming learning
and the cognitive requirements of programming activity in language design. The
study of learning mechanisms is faced with unresolved theoretical and methodological
problems. Observation of learning activities is generally too short to assess the real
characteristics of activity—with obvious consequences on validity (the importance
and duration of errors, etc.). ‘

A number of questions still remain open. Although we know that individual
differences are important factors affecting the learning process and performancein the
use of specific programming languages and environments, very few concepts have been
defined to characterize these differences systematically. Little work has been done as
well on the retraining of professional programmers. How quickly and thoroughly can
they acquire a new language or a design environment? How do previously acquired
representations and procedures affect ease of acquisition of new knowledge?



