Chapter 4.1

The Psychology of Programming in the
Large: Team and Organizational
Behaviour

Bill Curtis' and Diane Walz?

1 Microelectronics and Computer Technology Corporation (MCC), 9430
Research Boulevard, Austin, TX 78759, USA
2 Assistant Professor, Department of Accounting and Information Systems,
The University of Texas at San Antonio, San Antonio, TX 78285, USA

In its century-old quest to explain human behaviour, psychology has spawned many
subfields to study different phenomena. Several of these psychological specialties,
such as social, organizational, ecological and interactional psychology, focus on how
humans behave in groups and how situational conditions affect them. Disappointingly
little theory and few research paradigms from these fields have been imported into
the psychological study of programming. Most of the empirical research on software
development has been performed on individual programming activities (Curtis, 1985;
Curtis et al., 1986). This orientation toward programming as individual activity
occurred because:

(1) most psychologists studying programmers were not social or organizational

pychologists;

~ (2) experiments on team and organizational factors are difficult and expensive to
conduct.

Psychology of Programming Copyright © 1990 by Academic Press Limited

ISBN 0-12-350772-3 All rights of reproduction in any form reserved



254 B. Curtis and D. Walz

- Business Milieu

Content of analysis =9 Cognition & Group  Organizational
Motivation Dynamics Behavior

Figure 1: The layered behavioural model of software development.

Since software tools and practices are usually designed for individual problem
solving, their benefits often do not scale up on large projects to overcome the impact
of design processes that emerge from the social behaviour of the development team
or the organizational behaviour of the company. Software development must be
studied at several behavioural levels, as indicated in the layered behavioural model in
Figure 1 proposed by Curtis ef al. (1988). This model emphasizes factors that affect
not merely the cognitive processes of software development, but also the social and
organizational processes.

The layered behavioural model is an abstraction for organizing the behavioural
analysis of large software projects. This model is orthogonal to traditional process
models by presenting a cross-section of the behaviour on a project during any selected
development phase. The layered behavioural model encourages researchers to extend
their evaluation of software engineering practices beyond individuals, to determine
if their effects scale up to an impact on the performance of an entire project (Kling
and Scacchi, 1982; Scacchi, 1984). In order to develop a psychology relevant to
programming in the large, we must take the systems view of software development
activities encouraged by this model.

Contrary to most software process models, the layered behavioural model focuses
on the behaviour of the humans creating the artifact, rather than on the evolution-
ary behaviour of the artifact through its developmental stages. At the individual
level, software development is analysed as an intellectual task subject to the effects
of cognitive and motivational processes. When the development task exceeds the
capacity of a single software engineer, a team is convened and social processes in-
teract with cognitive and motivational processes in performing technical work. In
larger projects, several teams must integrate their work on different parts of the sys-
tem, and interteam group dynamics are added on top of intrateam group dynamics.



The Psychology of Programming in the Large 255

Projects must be aligned with company goals and are affected by corporate poli-
tics, culture and procedures. Thus, a project’s behaviour must be interpreted within
the context of its corporate environment. Interaction with other corporations either
as co-contractors or as customers introduces external influences from the business
milieu. The size and structure of the project determine how much influence each
layer has on the development process.

Curtis (1988) described five psychological paradigms that have been used in
studying programming. In the following sections we will review contributions to
the empirical study of software development from two of these paradigms: group dy-
namics and organizational behaviour. Unfortunately, there is little research guided
by these paradigms compared to the literature on the cognitive aspects of program-
ming. Each of these two paradigms will be explored in later sections of this chapter.
Although the senior author has conducted controlled experiments on programming
phenomena (cf. Curtis et al., 1989), the study of team and organizational behaviour
has required different empirical methods, some more characteristic of sociology or
anthropology. In subsequent sections we will describe some of the recent exploratory
studies at MCC of software development projects from which we have tried to iden-
tify important problems that should become the focus of future empirical research
on programming in the large.

1 Group dynamics

1.1 Programming team structure

Organizing programmers into teams superimposes a layer of social behaviour on the
cognitive requirements of programming tasks. Two structures have been proposed for
programming teams based on the centralized versus decentralized team organizations
often studied in group dynamics research.

Mills (1971) and Baker (1972) designed a centralized organization for program-
ming teams that placed primary responsibility for programming on a chief program-
mer. Other team members such as backup programmers, the program librarian and
technical writers were organized as a support team for the chief programmer. Tech-
nical communication was centralized through the chief programmer. The success of
this approach is generally believed to depend on the availability of a stellar technician
to take the role of chief programmer.

In contrast to the chief programmer model, Weinberg (1971) proposed a decen-
tralized team structure. In Weinberg’s egoless team no central authority is posited
in any team member. Different members take leadership responsibility for those
project tasks that match their unique skills. The communication network in this
team structure is decentralized, with technical information flowing freely among all
team members. The key to egoless teams is that no single individual feels private
ownership of any piece of the program. The program is a shared work product and
décisions concerning it are reached by consensus. Weinberg recommended that the
maximum size for this team was about ten members.

- Social psychologists have established several results about centralized versus de-

centralized team structures relevant to differences between chief programmer and

egoless teams. Shaw (1971) concluded that empirical evidence generally supported
the following principles of team behaviour:



2

256 B. Curtis and D. Walz

Table 1: Favourable conditions for different team structures.

Chief
Condition programmer Egoless
Difficulty of problem simple complex
Size of program large small
Creativity required low high
Reliability requirements low high
Modularity requirements high low
Schedule tight relaxed
Duration of project short long
Team morale low high
Risk taking low high

* Groups usually produce more and better solutions to problems than individuals
working alone, and their judgements are usually better on tasks involving error.

* A decentralized communication network is more effective for solving complex
problems, whereas a centralized network is better for solving simple ones.

* Leaders emerge more often and organizational development is more rapid in
centralized teams.

% A centralized network is more vulnerable to the saturation of its communication
channels than is a decentralized network.

* Greater conformity and higher morale occur in decentralized teams.

Mantei (1981) used these and other principles to suggest conditions under which
chief programmer and egoless teams would be most effective. An augmentation of
her analysis is presented in Table 1. For instance, chief programmer teams should
be most effective on large, simple, tightly schedule projects of short duration which
do not require highly reliable or creative solutions. Egoless teams, on the other
hand, should be most effective on small, complex projects requiring highly reliable
and creative solutions with some risk performed under relaxed schedules over a long
duration. Rather than being an either-or choice, chief programmer and egoless teams
appear suited for different types of programming projects.

Unfortunately, few programming projects fit neatly into one of the two categories
described above. For instance, many aerospace projects can be described as large,
complex, tightly scheduled efforts spread over a long duration with high reliability
requirements and sections requiring creative solutions. However, in such projects
large portions of the system are not complex and do not require creativity. These
latter components have been developed by the organization on previous projects and
the structure of their solution is familiar to the project team.

A hybrid approach to structuring programming teams might be taken on large
projects that have characteristics favourable to different types of programming teams.



The Psychology of Programming in the Large 257

Portions of the system whose solution does not present a new technical challenge
might be programmed by chief programmer teams. Critical path or innovative por-
tions covered by stringent reliability requirements or requiring creative solutions
would be programmed by egoless teams. Within a single project, tasks would be
assigned to the type of team best suited for them, thus matching the structure of
the team and the task (von Mayrhauser, 1984). This matching is characteristic of
the interactional approach that Sells (1963, 1966) has argued is necessary in making
recommendations for real-world activities based on psychological theory.

In simulating team programming performance, Scott and Simmons (1975) found
that as the amount of communication increased among the members of a five-person
team, the chief programmer team became less productive because of the communica-
tion bottleneck which developed around the chief programmer. When programming
team membership was varied between three and eighteen people, productivity lev-
eled off between nine and twelve people, a level consistent with Weinberg’s (1971)
recommendation for the size of an egoless team.

1.2 The interaction of methodology and team process

Basili and Reiter (1981) were among the first to study actual programming teams
experimentally. They wanted to determine the effects of programming discipline
on team performance. Their experiment involved forty-five advanced students as-
signed to one of three conditions. These conditions were seven three-person teams
trained in a disciplined team methodology, six three-person teams provided with no
methodological training, and six individuals working alone. The task was to de-
velop a compiler for a small, high-level language that was estimated to require two
person-months and 1200 lines of Simpl-T.

Basili and Reiter used automated data collection techniques to amass measures
on both the product and the process. They found almost no differences between
the three development approaches on the product measures at traditional (p < 0.05)
levels of statistical significance. However, differences among the approaches emerged
on the process measures. The disciplined teams required fewer computer job steps,
fewer compilations, fewer executions, and fewer changes than the unorganized teams
or individuals.

Based on these results, Basili and Reiter concluded ‘that methodological disci-
pline is a key influence on the general efficiency of the software development process’.
They believed there was evidence, although weaker, ‘that mental cohesiveness is a
direct influence on the general quality of the software development product...and that
the disciplined methodology offsets the mental burden of organizational overhead [of
working in teams] and enables a disciplined programming team to hehave more like
an indiviudal programmer relative to the developed software product’.

Boehm et al. (1984) studied seven teams of programmers using either a
prototyping or a top-down specification-based methodology for producing a mod-
erate sized application. Although the prototyped application contained less code
and required less development effort, the traditionally specified packages exhibited
‘a more coherent design and were easier to integrate. The prototyped packages were
casier to learn and use, but were less functional and robust. These two approaches
appeared to focus on different attributes of the problem during design. Prototyping
focused on the user, while traditional specification-based approaches focused on the



258 B. Curtis and D, Walz

structural integrity of the program. Deciding which approach is more appropriate
depends on an analysis of various trade-offs during the design process.

Some programming team research has studied technical reviews. Myers (1978)
found that team walkthroughs consumed twice as many minutes per defect found as
did individual execution testing. However, walkthroughs exhibited much less vari-
ability in results, since the large differences among individuals yielded large differ-
ences in the effectiveness of individual testing sessions. In a further analysis, Myers
found that pooling the results of independent testing sessions was more effective than
team walkthroughs in detecting defects. He observed differences in the focus of these
different testing approaches. Individuals focused too much on normal rather than
abnormal conditions, while walkthrough teams focused too much on logic rather than
input/output problems. A fruitful area of future research concerns how to use a mix
of individual and team processes to focus attention on different aspects of a problem.

Programming team activities offer many opportunities for peer review activities
that may be formal or informal components of the development process. Shneiderman
(1980) reported several brief experiments in having programmers provide anonymous
feedback on the design of each other’s programs. Most programmers indicated that
the experience was educational, although it was naive to expect that anonymity could
be maintained when programmers knew each others’ coding habits from previous ex-

posure. Similar educational benefits for team walkthroughs were observed by Lemos
(1979).

1.3 The MCC object server study

Although existing studies help us begin to build a psychology of programming team
behaviour, we need deeper insight into the actual processes that occur as teams de-
velop programs over extended periods of time. The existing research on programming
teams either studied the quantitative results of a task completed in a short time, or
assessed the output of an extended programming assignment performed by students.
In order to study the behaviour of an actual programming team, we collected lon-
gitudinal data on an MCC team that was building an object server to provide a
repository for the persistent objects created during object-oriented programming.
For a period of three months, we videotaped every group meeting held among cus-
tomers, developers, and combinations of both groups. We transcribed seventy-two
hours of videotapes covering thirty-seven different meetings that ranged from one to
two hours.

The analysis of these videotapes emphasized the project’s information require-
ments and their effect on the group process, especially its information sharing
activities (Walz et al., 1987). We began by assuming that the conflicts within a soft-
ware design team were not solely the result of incompatible goals and/or opinions,
but also represented the natural dialectic through which knowledge was exchanged.
A scheme was developed for coding each utterance by a team member into one of
several categories that reflected the unique characteristics of software design meet-
ings. Analyses of these utterances indicated that the design meetings were generally
dominated by a few individuals on the team to whom fellow participants attributed
the greatest breadth of expertise. These individuals appeared to form a coalition
that controlled the direction of the team. '

An important issue in group dynamics that has not been discussed in the context
of programming teams is the formation of coalitions. A small subset of the design



The Psychology of Programming in the Large 259
30
X A Actual values
K x Curve of best fit
25 A
A
A
20 A
A
Percent of
yerbal acts
indicating 13 A \
agreement // A
A
10 )
i Functional i
A specification
5 delivered
A
0
0 2 4 6 8 10 12 14 16
Meeting
Figure 2: Level of agreement among designers working together on subtasks.

team with superior application domain knowledge often exerts a large impact on the
design. Dailey (1978) found that collaborative problem solving was related to pro-
- ductivity in small, rather than large, research and development teams. Similarly, the
small, but influential, design coalitions we have seen in other design projects repre-
sent the formation inside the larger team of a small team within which collaboration
was more effective. Exceptional designers were often at the heart of these coalitions.
Although teams usually outperform the average team member, the phenomena of
exceptional designers is important because there is little evidence that teams can
outperform the best team member (Hastie, 1987; Kernaghan and Cooke, 1986).

A scheme was developed to categorize each verbal act in the meeting protocols
according to its role in the meeting (Walz, 1988). An interesting pattern in the verbal
acts representing agreement among participants was observed across the seventeen
meetings in the design phase of this project. A simplistic model assuming that co-
operative design activity requires agreement among team members would hypothesize
that such agreement should increase monotonically across meetings. However, as the
data in Figure 2 demonstrate, there was a surprising inverted U-shaped curve (verified
through logistic regression) that characterized verbal acts of agreement. This plot
presents the percentage of agreement among team members working on the same
subtask; a conservative analysis that should produce more consistent and lasting
patterns of agreement than analyses based on the entire team. However, the plot
indicates that agreement increased until the period (meetings 7 to 10) when the
design team released a document presenting its response to customer requirements.
In subsequent meetings the level of agreement began to decrease.

18



260 B. Curtis and D, Walz

Since we analysed data from only a single team, it is difficult to draw conclusions
that we would generalize to other software design episodes. However, there are some
intriguing possibilities that lead to radically new models of how design teams operate.
For instance, we may have observed a phenomena in which a team must reach some
level of agreement in order to produce an artifact, but then reopens conflicts that were
suspended in order to meet a milestone. On the other hand, we may have observed a
phenomena where reaching consensus at one level of abstraction in a top-down design
process does not relieve the conflicts that will result from issues that emerge at the
next level down. Alternatively, we may have observed the impact of a small coalition
that took control of the team during a period of deadline pressure and forced the level
of consensus necessary to produce an artifact, but then dissolved when the deadline
pressure passed, opening the door to renewed disagreement. Finally, we may have
been observing a phenomena isolated to the unique characteristics of this particular
team. We will not be able to make a definitive assessment of conflict resolution in
design teams until we have studied other teams and compared our data to those
produced by other researchers who study design teams longitudinally.

The design behaviours we observed in the meetings we videotaped suggested a
three-stage process. During the first stage the team focused on determining require-
ments through learning about the application. The second stage involved communi-
cating requirements among team members and with customers in order to develop
a common understanding of the system to be built. In the third stage the group
focused on creating artifacts that satisfied the requirements. Although the first and
third stages are typical in most models of the software development process, the sec-
ond stage involving a dialectic to surface misunderstandings is rarely made explicit.

Our observational study raised important questions that we need to study further
in order to improve software development methods and process models. Consensus
decisions are best achieved when a team reaches common understandings about their
disagreements on interpreting requirements and how different architectural models of
the system might operate. Our observations suggest the importance of explicit stages
for training in the application domain and surfacing assumptions about the design.
In these stages group conflict may be an important precursor to establishing group
consensus. Formal requirements analysis methods may need process components that
indicate when to enter and exit these various stages.

1.4 Team behaviour summary

Unfortunately, there has been too little research on software development teams in
relation to their impact on software productivity and quality. If we assume that
the conceptual unity of the program design is critical to the success of the software
project, then teams must co-ordinate their work to make it appear as the work of one
individual. The advantage of teams is their ability to bring divergent perspectives
to bear in designing a program architecture. The process of synthesizing diverging
design opinions on a programming team into a consensus involves conflict. Far from
being a destructive force within the team, conflict can be a creative force if managed
properly. Team methodologies must focus on co-ordinating the tasks and product
concept. The structure of programming teams should: (1) reflect the nature of the
task rather than the organization, (2) allow members to speak as if with one mind,
and (3) determine the tasks the team can effectively handle.



The Psychology of Programming in the Large 261

2 Behaviour in programming organizations

2.1 The impact of organizational factors on programming

Although the primary focus for increasing software productivity and quality has been
on improved methods, tools and environments, their impact in empirical studies of
software productivity and quality on large projects from several industrial environ-
ments has been disappointing compared to the impact of factors characterizing the
behaviour of the organization. For instance:

* In IBM Federal Division, Walston and Felix (1977) found that the complexity
of the customer interface, the users’ involvement with requirements definition,
and the experience of the project team had more productivity impact than the
use of software methods and tools.

* In the Defense and Space Group at TRW, Boehm (1981) found that the capa-
bility of the team assigned to the project had twice the productivity impact of
the complexity of the product, and four times the impact of software tools and
practices.

* In identifying a broad set of factors that acounted for two-thirds of the variation
in software productivity, Vosburgh et al. (1984) argued that half of this varia-
tion was affected by factors over which project management had little control
(factors other than the use of software engineering practices and tools).

In these studies human and organizational factors presented boundary conditions
that limited the situations in which methods, tools and environments could increase
software productivity and quality.

Many of the technologies purported to improve software productivity and quality
only affect a few of the factors that exert the most influence over outcomes on large
projects (Brooks, 1987). As the size of the system increases, the social organization
required to produce it grew in complexity and the factors controlling productivity and
quality may change in their relative impact. Technologies that enhance productivity
on medium-sized systems may have less influence on large projects where factors
that, while benign on medium systems, ravage project performance when unleashed
by a gargantuan system that may involve the co-ordination of many companies. A
great danger on large projects is that management will be deceived by the simplicity
of the prescribed processes and will not understand what pitfalls are likely to await
them (Fox, 1982).

Most of the organizational research on computing organizations has been on the
effect of computing systems on the structure and functioning of the organizations
that use the systems. Far less research has been performed on how organizational
behaviour affects those who produce the systems. In part, this is because the cost
of conducting experimental studies on these whole divisions is prohibitive. One of
the few topics investigated has been the power and influence of information ser-
vices departments in large organizations. Lucas (1984) reported several reasons that
information services departments are perceived to have lower power than other de-
partments in a company and carry less influence in decision making than might be
expected. Srinivasan and Kaiser (1987) warn about the level of exposure that the
programming team is allowed from outside sources. However, these studies have



262 ~ B. Curtis and D, Walz

given us little insight into the problems that corporations experience in designing
large, complex computer systems.

2.2 The MCC field study

In order to obtain insight into large system development problems, members of the
software empirical research team at MCC conducted a field study of large software
development projects (Curtis et al., 1988). The field study was designed to pro-
vide detailed descriptions of development problems in such processes as problem
formulation, requirements definition and analysis, and software architectural design.
We sought to study projects that involved at least ten people, were past the de-
sign phase, and involved real-time, distributed or embedded applications. We inter-
viewed projects from nine companies in such businesses as computer manufacturing,
telecommuncations, consumer electronics and aerospace. Our objective was to get
software development personnel to describe the organizational conditions that af-
fected their work. From their descriptions we hoped to gain insight that could lead
to better models of actual development processes at several levels of analysis, espe-
cially the team and organizational levels of the layered behavioural model presented
in Figure 1.

In this study we employed field research methods characteristic of sociology and
anthropology (Bouchard, 1976). This field study consisted of interviews with ninety-
seven project team members from seventeen large system development projects. We
conducted hour-long structured interviews on-site with systems engineers, senior soft-
ware designers, the project manager, and occasionally the division general manager,
customer representatives, or the testing/QA manager. Participants were guaranteed
anonymity, and the information reported was ‘sanitized’ so that no individual person,
project, or company could be identified. The data we collected lend themselves to
the creation of the case studies that Benbasat et al. (1987) and Swanson and Beath
(1988) recommended for use in research on information systems development and
project management.

Three of the most important problems we uncovered in this study were the thin
spread of application domain knowledge on the software development staff, fluctuat-
ing and conflicting requirements, and communication and co-ordination breakdowns.
We will describe one of the problems we investigated — breakdowns in communication
and co-ordination — as a fertile source of opportunities for psychological research on
programming in the large at the organizational level.

2.3 Communication and co-ordination breakdowns

One of the major problems in organizational behaviour that we identified in the field
study was breakdowns in project communication and co-ordination. A large number
of groups had to co-ordinate their activities, or at least share information, during
software development. Figure 3 presents some of the groups mentioned during field
study interviews, clustered into behavioural layers according to their remoteness from
communication with individual software engineers (cf. Tushman, 1977). Remoteness
involved the number of nodes in the formal communication channel that information
must pass through in order to link the two sources. The more nodes that information
had to traverse before communication was established, the less likely communication
was to occur.



The Psychology of Programming in the Large 263

BUSINESS |
MILIEU - .
. ()
7/ (" Federal e e Sub-
" \regulators COMPANY contractor

[ — /[ “systems
/( Standards engineering
A\.groups_ ; ;
50 ¢ Quality T BBA
assurance/ o~
\J.\udltors. a5 Hardwaai'e
_—_ f(marketing ) / engl.ltleer. 9
'

~ Senior \ _
.management / Business
prospect

¢ Configuration
management

___\ (Ppersonnel

Figure 3: Remoteness of communications expressed in the layered behavioural model.

The model in Figure 3 implies that a software engineer normally communicated
most frequently with team members, slightly less frequently with other teams on
the project, much less often with corporate groups, and except for rare cases, very
infrequently with external groups. Communication channels cross these levels were
often preconditioned to filter some messages (e.g. messages about the difficulty of
making changes) and to alter the interpretation of others (e.g. messages about the
actual needs of users). In addition to the hindrances from the formal communication
structure, communication difficulties were also due to the geographic separation, to
cultural differences, and to environmental factors. '

Organizational boundaries to communication among groups both within compa-
nies and in the business milieu inhibited the integration of knowledge about the sys-
tem. These communication barriers were often ignored since the artifacts produced
by one group (e.g. marketing) were assumed to convey all the information needed by
the next group (e.g. system design). However, designers complained that constant
verbal communication was needed between customer, requirements and engineering
groups. For instance, organizational structures that separated engineering groups
(hardware, software and systems) often inhibited timely communication about appli-
cation functionality in one direction, and feedback about implementation problems
that resulted from system design in the other direction.

Most project members had several networks of people they talked with to gather
information on issues affecting their work. Similar to communication structures ob-
served by Allen (1970) in research and development laboratories, each network might
involve different sets of people and cross organizational boundaries. Each network



e L

264 B. Curtis and D. Walz

supported a different flow of information; for example, information about the appli-
cation domain, the system architecture, and so forth. When used effectively, these
sources helped co-ordinate dependencies among project members and supplemented
their knowledgte, thus reduced learning time. Thus, integrating information from
these different sources was crucial to the performance of individual project members
(Allen, 1986). These networks lend themselves to the network analysis described by
Rogers and Kincaid (1981).

Some communication breakdowns between project teams were avoided when one
or more project members spanned team or organizational boundaries (Adams, 1976).
One type of boundary spanner was the chief system engineer, who translated customer
needs into terms understood by software developers. Boundary spanners translated
information from a form used by one team into a form that could be used by other
teams. Boundary spanners had good communication skills and a willingness to en-
gage in constant face-to-face interaction; they often became hubs for the information
networks that assisted a project’s technical integration. In addition, they were of-
ten crucial in keeping communication channels open between rival implementation
teams. ‘

On most large projects, the customer interface was also an organizational commu-
nications issue and this interface too often restricted opportunities for developers to
talk with end users. The formal chain of communication between the developer and
the end user was often remote because the communication chain traversed through
the programmer’s team leader, the team leader’s project manager, the project man-
ager’s marketing organization, marketing’s contact with the purchasing manager, and
ultimately the end user for which the system was being purchased (Figure 4). Notice
that four nodes have been placed between the programmer and the end user.

This tortuous chain of communication links was usually set up to solve two com-
munication problems. First, the marketing group wanted to control the customer’s
access to the developers so that any attitudes or personal habits of the programming
staff that would shake the customer’s confidence in the development organization
are not observed. Secondly, the marketing group wanted to establish a single point
of contact for the customer, so that consistent messages would be sent to the cus-
tomer through a single source. However, at the same time the interface was often
cluttered with communications from non-user groups such as auditors, finance and
standards groups in the customer’s organization, each with its particular concerns.
Typically, development organizations could not get a single point of customer con-
tact for defining system requirements. Since no single group served as the sole source
of requirements in either commercial or government environments, organizational
communications became crucial to managing the project.

Designers needed operational scenarios of system use to understand the applica-
tion’s behaviour and its environment. Unfortunately, these scenarios were too seldom
passed from the customer to the developer. Customers often generated many such
scenarios in determining their requirements, but did not record them and abstracted
them out of the requirements document. Lacking good scenarios of intended system
use, designers worked from the obvious scenarios of application use and were un-
able to envision problematic exception conditions or subtleties the customer would
ultimately want. In some cases, classified documents contained operational scenario
information, but the software designers could not obtain the documents from the
customer, because developers were not considered to have a need to know. There



The Psychology of Programming in the Large 265

BUSINESS
MILIEU
( Ao Prime
\_managers / contractor,
s SUb_
Federal
egulat ‘a COMPANY
Systems Senior
Standards engineering management Business
groups # prospects
Quality Other
- ~ PROJECT
d
Hardware Configuration
engineering management

TEAM (. ’ <D,
‘

factors
VAl AM,Q&;'%@.

Figure 4: The long path from the programmer to the end user.

might have been less need for system prototypes meant to collect customer reactions
if information generated by potential users had been made available to the project
team. That is, many projects spent tremendous time rediscovering information that,
in many cases, had already been generated by customers, but not transmitted.

Large projects required extensive communication that was not reduced by docu-
mentation. When groups such as marketing, systems engineering, software develop-
ment, quality assurance and maintenance reported to different chains of command,
they often failed to share enough information. This problem is not surprising in a
government environment where security requires tactical information about a system
to be classified. However, even on commercial projects information was occasionally
withheld from a development group for reasons ranging from political advantage to
product security.

Project staff found the dialectic process crucial for clarifying issues. Partic-
ularly during early project phases, teams spent considerable time defining terms,
co-ordinating representational conventions, and creating channels for the flow of in-
formation. Artificial, often political, barriers to communication among project teams
created a need for individuals to span team boundaries and to create informal com-
munication networks. The complexity of the customer interface hindered the estab-
lishment of stable requirements, and increased the communication and negotiation
costs of the project.



1

s e T Ty - -

i R et S ey S5

266 . B. Curtis and D. Walz

2.4 Software development questions for organizational psychologists

The paradigm of organizational behaviour provides multiple levels for analysing ex-
ternal impacts on programming teams. These levels include the parent organiza-
tion, the local division, the customers, the business marketplace, the management
structure, the administrative procedures, the physical environment, the psychologi-
cal environment, the professional environment, etc. Although there is a large body
of empirical research on organizational behaviour (Dunnette, 1976), little of it has
been performed in programming organizations. Most current thinking on organiza-
tional processes in software development comes from accounts in books like those by
Weinberg (1971), Brooks (1975), Kidder (1981), Fox (1982) and DeMarco and Lister
(1987). This area badly needs new research, especially with the growing size and
complexity of software products, and their effect on the size and complexity of the
organizations that build them. Some of the most important questions concerning
how organizational processes affect software development are:

* What is the most effective way to structure a. programming organization, tall
(many layers of management) or flat (large span of management control)?

* Does matrix management provide greater control over programming projects
or does it reduce motivation by denying programmers a sense of ownership and
pride in the software product?

* Under what conditions does a technical career path which parallels that of the
management path help retain top programming talent?

* What are the major factors affecting the morale and climate of programming
organizations?

* Which programming functions (e.g. testing, quality assurance, documentation,
etc.) should be managed in groups separated organizationally from the software
development group?

* How should the physical environment be arranged to maximize performance?

* Under what conditions will flex hours, quality circles, and other quality-of-
work-life techniques be effective in software oganizations?

* How should development organizations interact with their customers, especially

when the customer is a complex organization like the US Department of De-
fense?

Introductions to these issues can be found in many books on organizational be-
haviour and industrial psychology, and the results of current research can be perused
in such journals as Administrative Science Quarterly, the Journal of Occupational
Psychology, the Journal of Applied Psychology, Personnel Psychology, Organiza-
tional Behavior and Human Decision Processes, Human Relations, the Journal of
Management, the Academy of Management Journal and the IEEE Transactions on
Engineering Management.



The Psychology of Programming in the Large 267

3 Conclusion

Programming in the large is, in part, a learning, negotiation, and communication
process. These processes have only rarely been the focus of psychological research
on programming. The fact that this field is usually referred to as the ‘psychology
of programming’ rather than the ‘psychology of software development’ reflects its
primary orientation to the coding phenomena that constitute rarely more than 15%
(Jones, 1986) of a large project’s effort. As a result, less empirical data has been
collected on the team and organizational aspects of software development.

Although there are cognitive questions involved in programming in the large
(Curtis et al., 1988), they must be investigated with an understanding of the social
and organizational processes involved. For instance, given the amount of knowledge
to be integrated in designing a large software system, and given the inability of current
technology to automate this integration (Rich and Waters, 1988), the talent available
to a project is frequently the most significant determinant of its productivity (Boehm,
1981; McGarry, 1982). But contributions by good people come not just from their
ability to design and implement programs. Good people must become involved in
myriad social and organizational processes such as resolving conflicting requirements,
negotiating with the customer, ensuring that the development staff shares a consistent
understanding of the design, and providing communications between two contending
groups.

The constant need to share and integrate information on a software project sug-
gests that just having smart people is not enough. The communication needed to

* develop a shared vision of the system’s structure and function, and the co-ordination
needed to support dependencies and manage changes on large system projects are
team and organizational issues. Individual talent operates within the framework of
these larger social and organizational processes. The influence of exceptional design-
ers is exercised through their impact on other project members, and through their
ability to create a shared vision to organize the team’s work (Brooks, 1975). Recruit-
ing and training must be coupled with team building (Thamhain and Wilemon, 1987)
to translate individual talent into project success. Thus, the impact of processes at
one level of the layered behavioural model presented in Figure 1 must be interpreted
by their impact on processes at other levels.

The requirements levied on advanced software systems are growing rapidly
(Boehm, 1987). Larger organizations — often webs of organizations — are required
for producing systems that can require well over 10 000 000 lines of code. Companies
often bet their future in a particular market on their ability to create a large soft-
ware system rapidly. For instance, in 1986 I'T'T Corporation sold off their traditional
telecommunications business because of difficulties in developing System 12, a fully
distributed digital switch. The issues of how to organize programmers into teams
and how to manage large programming organizations are crucial to many compa-
nies’ success. Unfortunately most of the information available for guiding decisions
about social and organizational structure in software organizations is anecdotal or is
an extrapolation of results found with student teams in laboratories. The scientific
_community performing empirical research on programming must approach software
development from more than a cognitive paradigm, and should begin performing re-
search on the social and organizational aspects. At the same time corporations must
make their software development organizations available for research, so that they



T e T e e e e e

268 B. Curtis and D. Walz

are not forced to discount results obtained on undergraduate student teams. Better
research on team and organizational factors may increase our ability to account for

variation in software productivity and quality, and thus our ability to manage large
systems development.

References

Adams, J. S. (1976). The structure and dynamics of behavior in organizational boundary
roles. In M. D. Dunnette (Ed.), Handbook of Industrial and Organization Psychology.
Chicago: Rand-McNally, pp. 1175-1199.

Allen, T. J. (1970). Communication networks in R&D laboratories. R&D Management,
1(1), 14-21. b

Allen, T. J. (1986). Organizational structure, information technology, and R&D produc-
tivity. IEEE Transactions on Engineering Management, 33(4), 212-217.

Baker, F. T. (1972). Chief programmer team management of production programming.
IBM Systems Journal, 11(1), 56-73.

Basili, V. R. and Reiter, R. W. (1981). A controlled experiment quantitatively comparing

software development approaches. IEEE Transactions on Software Engineering, 7(3),
299-320.

Benbasat, I., Goldstein, D. K. and Meand, M. (1987). The case research strategy in studies
of information systems. MIS Quarterly, 11(3), 369-386.

Boehm, B. W. (1981). Software Engineering Economics. Englewood Cliffs, NJ: Prentice-
Hall

Boehm, B. W., Gray, T. E. and Seewaldt, T. (1984). Prototyping versus specifying: a

multiproject experiment. JEEE Transactions on Software Engineering, 10(3), 290-
302.

Boehm, B. W. (1987). Improving software productivity. I[EEE Computer, 20(9), 43-57.

Bouchard, T. J. (1976). Field research methods. In M. D. Dunnette (Ed.), Handbook of
Industrial and Organization Psychology. Chicago: Rand-McNally, pp. 363-413.

Brooks, F. P. (1975). The Mythical Man-Month. Reading, MA: Addison-Wesley.
Brooks, F. P. (1987). No silver bullet. IEEE Computer, 20(4), 10-19.

Curtis, B. (Ed)., (1985). Human Factors in Software Development, 2nd edn. Washington,
DC: IEEE Computer Society.

Curtis, B. (1988). Five paradigms in the psychology of programming. In M. Helander

(Ed.), Handbook of Human-Computer Interaction. Amsterdam: Elsevier North-
Holland, pp. 87-105.

Curtis, B., Soloway, E., Brooks, R., Black, J., Ehrlich, K., and Ramsey, H. R. (1986).

Software psychology: the need for an interdisciplinary program. Proceedings of the
IEEE, 74(8), 1092-1106.



The Psychology of Programming in the Large 269

Curtis, B., Krasner, H. and Iscoe, N. (1988). A field study of the software design process
for large systems. Communications of the ACM, 31(11), 1268-1287.

Curtis, B., Sheppard, S. B., Kruesi-Bailey, E., Bailey, J. and Boehm-Davis, D. (1989).
Experimental evaluation of software documentation formats. J ournal of Systems and
Software, 9(1), 1-41.

Dailey, R. C. (1978). The role of team and task characteristics in R&D team collaborative
problem solving and productivity. Management Science, 24(15), 1579-1588.

DeMarco, T. and Lister, T. A. (1987). Peopleware. New York: Dorset.

Dunnette, M.D.(Ed)., (1976). Handbook of Industrial and Organization Psychology. Chicago:
Rand-McNally.

Fox, J. M. (1982). Software and Its Development. Englewood Cliffs, NJ: Prentice-Hall.

Hastie, R. (1987). Experimental evidence on group accuracy. In G. Owen and B. Grofman
(Eds), Information Processing and Group Decision-Making. Westport, CT: JAI
Press, pp. 129-157.

Jones, C. (1986). Programming Productivity. New York: McGraw-Hill.

Kernaghan, J. A. and Cooke, R. A. (1986). The contribution of the group process to
successful group planning in R&D settings. JEEE Transactions on Engineering Man-
agement, 33(3), 134-140.

Kidder, T. (1981). The Soul of a New Machine. Boston: Little, Brown.

Kling, R. and Scacchi, W. (1982). The web of computing: Computer technology as social
organization. Advances in Computers, vol. 21. Reading, MA: Addison-Wesley, pp.
1-90.

Kraft, P. (1977). Programmers and Managers: The Routinization of Computer Program-
ming in the United States. New York: Springer-Verlag.

Lemos, R. S. (1979). An implementation of structured walkthroughs in teaching Cobol
programming. Communications of the ACM, 22(6), 335-340.

Lucas, H. C. (1984). Organization power and the information services department. Com-
munications of the ACM, 27(1), 58-65.

Mantei, M. (1981). The effect of programming team structures on programming tasks.
Communications of the ACM, 24(3), 106-113.

McGarry, F. E. (1982). What have we learned in the last six years? Proceedings of
the Seventh Annual Software Engineering Workshop (SEL-82-007). Greenbelt, MD:
NASA-GSFC. :

Mills, H. D. (1971). Chief Programmer Teams: Principles and Procedures. Technical
Report IBM-FSC 71-5108. Gaithersburg, MD: IBM Federal Systems Division.

Myers, G. J. (1978). A controlled experiment in program testing and code
walkthroughs/inspections. Communications of the ACM, 21(9), 760-768.

Rich, C. and Waters, R. C. (1988). Automatic programming: Myths and prospects. IEEE
Computer, 21(8), 40-51,



270 B. Curtis and D, Walz

Rogers, E. M. and Kincaid, D. L. (1981). Communication Networks: Toward a New
Paradigm for Research. New York: Free Press.

Scacchi, W. (1984). Managing software engineering projects: A social analysis. IEEE
Transactions on Software Engineering, 10(1), 49-59.

Scott, R. F. and Simmons, D. B. (1975). Predicting programming group productivity: A
communicatons model. JEEE Transactions on Software Engineering, 1(4), 411-414.

Sells, S. B. (1963). An interactionist looks at the environment. American Psychologist, 18
(11), 696-702.

Sells, S. B. (1966). Ecology and the science of psychology. Multivariate Behavioral Re-
search, 1, 131-144.

Shaw, M. E. (1971). Group Dynamics: The Psychology of Small Group Behavior. New
York: McGraw-Hill.

Shneiderman, B. (1980). Group processes in programming. Datamation, 26(1), 138-141.

Srinivasan, A. and Kaiser, K. M. (1988). Relationships between selected organizational
factors and systems development. Communications of the ACM, 30(6), 556-562.

Swanson, E. B. and Beath, C. M. (1988). The use of case study data in software manage-
ment research. Journal of Systems and Software, 8(1), 63-71.

Thamhain, H. J. and Wilemon, D. L. (1987). Building high performance engineering
project teams. IEEE Transactions on Engineering Management, 34(3), 130-137.

Tushman, M. L. (1977). Special boundary roles in the innovation process. Administrative
Science Quarterly, 22(4), 587-605.

von Mayrhause, A. (1984). Selecting a software development team structure. Journal of
Capital Management, 2(3), 207-225.

Vosburgh, J., Curtis, B., Wolverton, R., Albert, B., Malec, H., Hoben, S. and Liu, Y.
(1984). Productivity factors and programming environments. Proceedings of the Sev-
enth International Conference on Software Engineering. Washington, DC: IEEE Com-
puter Society, pp. 143-152.

Walston, C. E. and Felix, C. P. (1977). A method of programming ﬁleasurement and
estimation. IBM Systems Journal, 16(1), 54-73. ' -

Walz, D. (1988). A longitudinal study of group design of computer systems: Unpublished
Doctoral Dissertation. Austin: Department of Management Science and Information
Systems, The University of Texas.

Walz, D., Elam, D., Krasner, H. and Curtis, B. (1987). A methodology for studying
software design teams: An investigation of conflict behaviors in the requirements
definition phase. In G. Olsen, E. Soloway and S. B. Sheppard (Eds), Empirical
Studies of Programmers: Second Workshop. Norwood, NJ: Ablex, pp. 83-99.

Weinberg, G. M. (1971).  The Psychology of Computer Programming. New York: Van
Nostrand Reinhold.



