Chapter 3.3

Expért Software Design Strategies

Willemien Visser! and Jean-Michel Hoc?

1INRIA - Ergonomics Psychology Group, Rocquencourt BP 105, F-78153 Le
Chesnay, France
2CNRS - Université de Paris 8, URA 1297: Psychologie Cognitive du
Traztement de ’Information Symbolique, 2, Rue de la Liberté, F-93526
Saint-Denis, Cedez 2, France

Abstract

Early studies on programming have neglected design shategles actually implemented
by expert programmers. Recent studies observing designers in real(istic) situations
show these strategies to be deviating from the top-down and bread th-first prescnptwe
model, and leading to an opportunistically organized -design activity. The main
components of these strategies are presented here. Consequences are drawn from
the results for the specification of design support tools, as well as for programmers’
training.

1~ Introduction

Although the top-down and breadth-first design model is very elegant and rather
simple to describe and to understand, professional programmers are aware of the fact

Psychology of Programming Copyright © 1990 by Academic Press Limited
ISBN 0-12-350772-3 . All rights of reproduction in any form rescrved

236 W, Visser and J.-M. Hoc

that it is difficult to implement it in real software design. When teachers of com-
puter science prescribe this kind of design strategy, they know very well that they
themselves cannot — and do not — implement it in their design practice. Teaching
complex domain knowledge to novices surely requires simplifying the concepts and
the procedures. Simple ideas can guide novices in developing more complex skills.
We have to tell novices, however, that the difficulties they encounter in implementing
these simple ideas are not only due to their lack of knowledge, but also inherently
linked to the simplistic nature of these ideas. In addition, it would be a mistake
to refuse the complexity of expert design strategies when developing design tools
that, otherwise, would only be useful in the simple cases for which elegant strate-
gies are implementable. Moreover, seriously taking into consideration the difficulties
programmers have when implementing these ‘optimal’ strategies could orient tool
designers towards defining tools that could support more efficient strategies.

This approach then requires the identification of the strategies implemented in
real design activity. Relatively few studies in cognitive science handle the question of
software design by experts. Most research in the domain of programming concerns
other activities and other subjects: the activities examined are, in general, conducted
on already existing programs (mostly comprehension and memorization, and to a
lesser degree debugging) and the subjects studied are mostly novices (see Chapter
1.3). Of course these studies can make contributions to design models:

* Comprehension studies, on the one hand, show which representations (often
formalized in terms of ‘schemas’, see Chapter 3.1) the programmer possesseé.
These structures are certainly used in design and they constrain the strategies
which are implemented, but specific design studies have to show how they
are used, and under which conditions. On the other hand, these studies may
contribute to the understanding of comprehension activities involved in design,
that is, the comprehension of problem specifications, of other designs, and of
modules already written in the design in progress.

* Studies comparing novices to experts show differences that may be characteris-
tic of expertise. Their results constrain the definition of objectives for learning
programs and teaching methodologies, and the type of tools and assistance to
be developed.

1.1 Design: resolution of ill-defined problems

The most common conception of design problems is considering them as ‘ill-structured’
ones, in contrast to ‘well-structured’ problems which the psychology of problem solv-
ing has almost exclusively studied until now (Eastman, 1969; Simon, 1973).

Often a task that constitutes a problem for the person who is solving it — that is,
for which this person has a representation that cannot trigger a ready-made procedure
to reach the goal (Hoc, 1988b) — is considered as ‘ill defined’ by this problem solver.
Following the problem space formalism, the main feature of a design problem concerns
1ts solution, that is, the goal to be reached (Hoc, 1988b). This goal (a program in
software design, a blueprint in architectural design, etc.) is objectively ill-defined;
if not-(a program or a blueprint is available), the problem is solved and no design
activity is any more required.

Expert Software Design Strategies 237

To reach a suitable goal representation, the designer uses and transforms interme-
diary representations which constitute rough, underspecified, or even inappropriate,
approximations of the goal:

+ generally, initial problem specifications are not sufficient to define the goal, and
stepwise definition of new constraints is necessary;

% the resolution of conflicting constraints, often existing between different levels,
plays an important role;

* specifications or constraints come from different representation and processing
systems (see Chapter 1.3), are often conflicting and have to be translated into
a specific design domain — in software design, this domain corresponds to the
programming language used;

% there is no ‘definite criterion for testing any proposed solution’ (Simon, 1973,
p. 183), such as there typically exists for ‘well-structured’ problems: design
problem solutions are more or less ‘acceptable’ or ‘satisfying’, they are not
either ‘correct’ or ‘incorrect’;

« various different solutions are acceptable, one being possibly more satisfying in
one dimension, another in another dimension.

Software design, which concerns us in this chapter, exhibits these characteristics.
For example :

% the specifications given at the start are never complete or without ambiguity
(that is, in real work situations);

% different programs, implementing different algorithms, may do for solving one
and the same problem, even if one program may be judged ‘better’ than an-
other, often for reasons of execution or maintenance, that is, for machine- or
user-oriented efficiency criteria.

According to the type of software design, certain characteristics are more or less
strongly present: text-processing software is surely less constrained at the outset than
a programmable controller program that is going to govern an automated process.

1.2 Early design studies: sticking to the prescriptions

At the beginning, a trend seen in design studies, but not only there, was to ‘conflate
prescriptive and descriptive remarks’ on the activity, and, rather than to consider
what the activity is really like, to focus on what it should be (Carroll and Rosson,
1985). This led authors especially to describe design as well structured and even
as hierarchically organized. This same tendency is observed in most, but especially
the early, software design studies, such as the one by Jeffries et al. (1981). In
the introduction to their article, the authors describe existing design methodologies,
afguing that:

4 these methodologies are ‘indicative of the guidelines that experts in the field
propose to structure the task’;

238 W. Visser and J.-M. Hoc

* ‘areasonable model of performance ... ought to be related to accepted standards
of good practice’;

* ‘most expert designers are familiar with this literature and may incorporate
facets of these methodologies into their designs’ (p. 256).

As a matter of fact, these methodologies advocate (modular) decomposition and
provide different bases for performing it. As will be seen later, however, studies on
professional programmers show that the theoretically optimal methods whose use
has been learned and recommended need, to be implemented in fact, very particular
conditions, whose realization is often not assured.

2 Software design studies

2.1 Methodology used
2.1.1 Protocol studies

In most of the empirical studies focusing on software design, the data come from
protocol analysis. A limited number of subjects (from one to ten) is asked to think
aloud during their activity. Generally, the verbal protocols of only a subgroup of
these subjects are analysed in detail.

Brooks (1977) was the first author to construct, from the protocols collected on
one programmer writing a large number of short programs, a general model of the
cognitive processes in computer programming.

2.1.2 More or less simple problem statements

Most of these studies (especially Jeffries et al., 1981, and Adelson et al., 1985) use
experimenter-constructed, rather artificially limited problem statements.

Hoc (1988a) uses problem statements that lead to programs of small size, but
which control algorithmic difficulties. These problem statements have been con-
structed in order to represent the categories of a typology of programming problems,
resulting from a previous empirical study on problem classification in relation to the
type of problem-solving strategy.

Guindon et al. (1987) judge the problem they use to be ‘more complex and
realistic ...than [those that have] been given in other studies of software design, yet
not so different that [their] results cannot be easily compared to them’ (p. 66). The
problem they use is, however, incomparable, in complexity and degree of realism,
with real design problems such as studied by Visser (1987).

~ Visser (1987) conducted a rather different, up to now — as far as we know — rather
unique, study. Full-time observations were made on a professional programmer, in
his real working environment (a machine tool factory), for a period of four weeks.
The programmer was solving a real, complex industrial problem (control of a machine
tool installation). Visser observed the programmer’s normal daily activities without
intervening in any way, other than by asking him to verbalize as much as possible
his thoughts about what he was doing. In her data analysis, she focused on the
specificity of the strategies used in real work conditions. Using the same method,
observations were conducted on the mechanical engineer, during his design of the
(functional) specifications for the programmer (see Visser, 1988a,b, 1990).

Expert Software Design Strategies . 239

This methodological choice of observations on large software design projects 1s
necessary. More often than not, observations or experiments are done on small
software design problems and selection of problem statements is rather anecdotal.
This leads to questioning the ecological validity of the results. Nevertheless, the size
of the program is not the only relevant dimension for evaluating design difficulty. A
large program, if it is familiar to the programmer, can take a long time to write,
without any actual problem-solving activity, but requiring only coding. Conversely,
a small program can accurately represent some problem-solving processes that are
used in the development of large projects. As observations on small programs are
more easily conducted on several programmers, they especially enable the evaluation
of individual differences. Certain features of large software design, however, are
impossible to reproduce when one reduces the program size (for example, the working
memory management).

2.2 Models constructed

From his protocol analysis, Brooks (1977) elaborates a programming model, in which
he distinguishes, next to the coding on which the model focuses, two other types of
activities:

+ understanding, leading to a problem representation;

+ method finding, that is, construction of a plan, a (hierarchically) organized
program representation (using relations between goals and subgoals) — an im-
portant role is occupied here by two kinds of knowledge structures, computer
science and task domain-related schemas.

Adelson et al. (1985) propose a general model of the design activity, functioning
with four components:

* a ‘design meta-script’, that is, a high-level schematic representation whose func-
tion is to drive the design process by setting goals for processing the ‘sketchy
model’;

% the ‘sketchy model’, that is, the current solution state, which becomes progres-
sively less sketchy, that is, more concrete and elaborate, until the implementa-
tion level representation;

% the ‘current long-term memory set’, consisting of all the known solutions ap-
propriate to the aspect of the design that is currently being worked on;

% the ‘demons’, which monitor the state of the ‘sketchy model’, activating ‘things
to remember’, provide elements to elaborate and modify the Sketchy Model
into a final, concrete design solution.

Other authors stress the structures controlling the activity (Jeffries et al., 1981;
Guindon and Curtis, 1988). .

Brooks (1977) and Jeffries et al. (1981) formulate production rules to account
for the activity covered by the protocols. Adelson et al. (1985) use goals and op-
erators organized in a goal hierarchy. Guindon and Curtis (1988) only describe the
components of the model and their articulation. '

240 W. Visser and J.-M. Hoc

3 Different strategies used in designing software

3.1 Variability between experts

Most authors note variations in the design strategies and the solutions they lead to,
not only between levels of expertise when they compare experts and novices, but also
between experts. Rather than considering this variability as a nuisance factor or a
marginal result, we judge it as inherent and characteristic to design, as described in
the introductory section, that is, the development of «, not the, solution to a problem
that is not completely defined at the start. In such conditions, different designers
will proceed in different manners, introducing different solution elements at different
moments (see also Falzon and Visser, 1989, who show that, due to different past task
experiences, different expert designers may exhibit different types of expertise).

3.2 Global control strategy: problem decomposition

Almost all subjects in early design studies are observed to use the same global control
strategy advocated by design methodologies, that is, decomposition of the problem
into subproblems. But several decompositions are possible for a problem, bearing on
rather different principles.

In a study on more or less advanced computer science students, Ratcliff and
Siddiqi (1985) identify two types of problem decomposition:

 data driven — the generation of the program structure is guided by a mental
execution strategy, which bears on a simple representation of the input data,
just sufficient to satisfy processing requirements;

* goal driven — the analysis of the goal structure leads to a non-trivial represen-
tation of the input data, which is more declarative than procedural, resulting
in a quite different problem decomposition.

Two remarks may be formulated concerning the general nature of decomposition.
Firstly, the use of this strategy may depend on expertise. The very beginner observed
by Jeffries et al. (1981) does not succeed at all in decomposing problems, whereas
their advanced students generate decompositions rather in terms of successive pro-
cessing steps, than in terms of modules.

Secondly, as shown by Guindon et al. (1987), there are partial design solutions
that are not the result of a decomposition, but which are, for example, retrieved
‘by recognition’. As a consequence, such solution elements do not always fit into a
balanced global solution.

If Jeffries et al. (1981), and Adelson et al. (1985) even more, stress the ‘neat’ pre-
dictable structure of decomposition strategies, and in general of the problem-solving
activities involved in design, Guindon et al. (1987) and Visser (1988a,b) insist on
the deviations of these structures. Moreover, the ‘breakdowns’ (Guindon and Cur-
tis, 1988) observed do not always reflect deviations from predictable decomposition
structures: many of them are rather caused by the opportunistic character of design.

Expert Software Design Strategies 241

3.3 Top-down and bottom-up strategies

The top-down strategy consists in descending the solution tree from the most abstract
level down to the lowest, concrete level, never coming back up to a higher level (top-
down refinement).

Based on his observations, Brooks (1977) expected that, only if a programmer
is working on a problem with which he is very familiar and if he resolves it in a
programming language in which he has considerable experience, he may proceed
sequentially, without backtracking, through the three stages identified by the author
(understanding, method-finding and coding). That is, only expert programmers, and
even they only in these particular conditions, may proceed in a strictly top-down
fashion.

Most design studies confirm this prediction.

For example, professional programmers working with a computer support to top-
down processing that renders plan revision tedious generate non-optimal solutions:
planning errors are sometimes rescued by awkwardly modifying modules at a very
low level (Hoc, 1988a).

In the study of Jeffries et al. (1981), only one expert (out of four) showed a
systematic implementation of a top-down strategy. The other experts deviated more
or less from this ‘optimal’ strategy. The authors note that a designer may choose to
deviate from the advocated order when he realizes that a component has a known
solution, is critical for success, or presents special difficulties. This is typically one
of the ways of proceeding qualified by Visser (1987) as ‘opportunistic’ (Section 3.5).

3.4 Breadth-first and depth-first strategies

Design methodologies describe and advocate the use of a breadth-first strategy —
combined with a top-down strategy — for decomposition: when decomposing the
current level solution, one should develop all the elements of the new solution at
the same level of the solution ‘tree’ and integrate them into a new global structure,
rather than refining, until its final solution elements, one or several particular solution
branches (which would be depth-first processing).

All three experts observed by Adelson et al. (1985) implemented this strategy
(called ‘balanced development’ by the authors).

The one expert (out of four) in the study of Jeffries et al. (1981) observed to
proceed systematically top down, did so in combination with a breadth-first strategy.
Other experts were observed to follow a rather depth-first strategy, starting, for
example, their decomposition by a top-down processing of only some branches of the
tree, handling the other ones afterwards.

For handling interaction, breadth-first processing is of course very useful, even if
the detection of potential interactions may require descending branches in anticipa-
tion.

Handling a problem at one level, one may think of related elements at another
level. Sometimes, experts are capable of maintaining these kinds of elements in mem-
ory and retrieving them at the appropriate moment. Adelson et al. (1985) observe
their experts making ‘notes to themselves’ (concerning constraints, partial solutions
or potential inconsistencies) and the authors posit the existence of ‘demons’ remind-
ing the designer to incorporate this information into the design once the appropriate
level of analysis has been reached.

242 W. Visser and J.-M. Hoc

Hoc (1988a) and Guindon et al. (1987) observe, however, that even experts
have difficulties considering and maintaining simultaneously all problem or possible
solution elements at one level of abstraction. They observed subjects engaged in
bottom-up processing activities and noticed the difficulties these subjects encoun-
tered, such as backtracking of subproblems whose solution had been postponed or
whose solution had to be modified. In the situation analysed, Hoc ascribes these
difficulties to the nature of the environment. Following a top-down strategy, the
language and the editor used in this experiment constrain the subjects to express
too precise expressions in the design. For example, when one is considering an iter-
ative structure for a module at a high level in the tree, a precise representation of
the adequate control structure can be unavailable. If the environment imposes the
choice too early, the users have to analyse the problem at the next level. Then they
write the result of this analysis in order to preserve their memory load and adopt a
depth-first strategy. .

In a study on expert programmers, Petre and Winder (1988) confirm the need for
languages that can support different levels of analysis in the course of design. They
notice that, before introducing the constraints of actual programming languages,
experts very often use a personal pseudo-code.

3.5 Opportunistic strategies

As noticed above (see Section 3.3), only one expert (out of four) in the study of
Jeffries et al. (1981) implements a ‘pure’ top-down strategy. The other three have
been observed to display the following behaviours:

* starting the decomposition in the middle of the tree;
* working simultaneously on two distinct branches;

* making interruptions for digressions at other than the current level, for exam-
ple, to deal with other subproblems or to define primitive operations, that is,
elements at the lowest level;

* descending in the decomposition tree, but coming back up afterwards, for ex-
ample to introduce a whole new solution decomposition level.

Guindon et al. (1987) noticed, at least, two types of returns: on the one hand, to
tentative solutions proposed earlier. On the other hand, they observed that subjects,
in an advanced design phase, re-examined the specifications to understand them.
The designers studied by Visser (1988a,b) in their real working environment also
proceeded to such re-examinations; however, they modified not only the specifica-
tions they received, but even those having governed anterior design stages and thus
underlying their specifications.

At the onset of his design, the professional programmer observed by Visser (1987)
decomposed the problem into functional modules which he planned to handle in a
top-down way. Afterwards he often deviated from this plan, organizing his activity
rather opportunistically (see Hayes-Roth and Hayes-Roth, 1979). Two important
factors determining the guidance of his problem solving — causing the activity to be
opportunistic — were the cognitive cost of actions and their importance (see Visser,
1990). Examples illustrating each one of these factors are the following:

Expert Software Design Strategies 243

On the one hand, if information required for handling the current design com-
ponent was not, not yet, or not easily available, its processing was often postponed —
because it would have been ‘expensive’ — leaving unfinished modules at the current
level of the design. On the other hand, information was sometimes processed only
because its processing was ‘cheaper’ than proceeding to the according-to-the-plan
action. An example is the processing of the information provided by the information
source at hand, rather than looking for thé information required to handle the cur-
rent design component. This then might lead to the programmer defining modules
in anticipation and/or at other levels of detail and abstraction than the current one.

An action may be important because of the type of action or because of the
object concerned by the action. For example, ‘verifying’ is an important action only
if the verification concerns certain objects.

3.6 Prospective and retrospective, procedural and declarative strategies

The two types of problem decomposition identified by Ratcliff and Siddiqi (1985) were
explained with reference to two design strategies: data driven or goal driven. After
a study of problem classification by professional programmers in relation to design
strategies, Hoc (1988b) proposed a more complex framework to classify problems and
strategies from this point of view.

Data-driven strategies, as observed by Ratcliff and Siddiqi (1985), are of a pro-
cedural kind: the program is generated following a mental execution strategy. The
statements are written in the order of execution and the writing is guided by an
available procedure. This is a prospective procedural strategy very often encoun-
tered when the problem statements trigger a quite familiar procedure (for instance,
execution by hand). ’

But a prospective strategy can be more declarative. This is the case, for exam-
ple, in management problems where the complex structure of the input files and the
relationships between them introduce strong and complex constraints on the pro-
gram structure. Then a static representation guides the design. In other problems,
the guide can be provided by the structure of the output files and their relation-
ships: the program can be written following the reverse order and the strategy 18
retrospective declarative. These declarative strategies are quite well supported by
diverse management programming methodologies (for example, Jackson or Warnier
methods).

A retrospective strategy can be more procedural than declarative when guidance
is given rather by goal-subgoal or preconditions relationships than by a static output
file structure. This retrospective procedural strategy is often implemented by novices,
as has been observed in physics problem solving (Larkin and Reif, 1979). The novices
start from unknowns, they search for definitions of these variables in their data base,
generate new unknowns (intermediary results), etc., until reaching given values. On
the contrary, experts can classify problems in categories for which they have available
procedures: they may then develop prospective procedural strategies.

In the experiment cited, Hoc (1988a) used this classification of problems and
strategies to assess a programming environment especially designed to help profes-
sional programmers developing a structured, top-down and retrospective program-
ming method. Although prospective strategies were not hindered by the environment,
the experiment shows that retrospective strategies were strongly induced by the en-
vironment (whatever the type of problem). Prospective problems were solved with

et ey v A

244 _ W. Visser and J.-M. Hoc

greater difficulties than retrospective ones. Nevertheless, retrospective problems were
not so easy to solve in the environment: difficulties appeared to be explained by the
lack of appropriate data structures in the language. When following a retrospective
strategy, guidance cannot be given by the mental execution of the procedure and
must be provided by data structures and relationships between them.

Results of this kind show that sticking to a too rigid design methodology, sup-
posed to be valid whatever the type of problem (or subproblem), is to be avoided.
The domain of validity of a methodology should rather explicitly be defined in terms
of a typology of problems. d

3.7 Simulation

Adelson et al. (1985) stress the frequent occurrence of this strategy and its impor-
tance for the experts they observed. The mental models their subjects constructed
were run as they were elaborated at different levels of abstraction. These simulation
runs are supposed to assist the designer on, at least, two points:

* predicting potential interactions between elements of the design;

* pointing out elements of the solution state that need expansion. -

Maintaining the balanced development is considered by the authors to serve these
simulations, which require all elements of the model that is run to be at the same
level of detail.

Simulation may serve different objectives:

* comprehension, when the designer explores and simulates the problem environ-
ment; B

* evaluation, when he runs simulations of tentative solutions, and selects between
them, for example, on criteria of efficiency.

Guindon et al. (1987) observed that these ‘exploratory’ design strategies are used
for (sub)problems for which specialized design schemas cannot be evoked. They insist
especially on the high frequency of occurrence of the simulation-for-comprehension
strategy in their study compared to the results obtained in other design studies.

The programmer observed by Visser (1987) used simulation of the program’s
execution, mainly to understand the specifications.. Simulation of the installation’s
operation, generally considered to characterize novices, was sometimes used by this
experienced programmer to check modules of the part of the program he had already
written. These simulations were among the rare moments the programmer verbalized
his thoughts spontaneously.

3.8 Reduction of complexity

Considering a problem under its most typical form, modifying it only later to take
into account its specific conditions, is a cognitive economical strategy. It requires,
however, that the designer has at his disposal categories of problems and associated
solutions (‘schemas’), differentiating these different elements by their appropriate
attributes. So it seems to be reserved to expert designers.

Expert Software Design Strategies 245

Various authors observed this kind of strategy. So did Hoc (1988a), but he noticed
the environment precluding the implementation of such a generalization strategy.
Indeed, this approach made it difficult to modify an initially developed solution with
the editor used in his experiment.

The designers observed by Guindon et al. (1987) used another type of com-
plexity reduction strategy, when they generate simplifying assumptions which they
afterwards evaluate for their plausibility.

3.9 Considering users of the system to be designed

Both Adelson et al. (1985) and Visser (1987) observe their subjects to be guided,
more or less, by such considerations, but with different functions in the two studies.

In the first one, mental simulation of a user’s interaction with the system helped
the designer to think of elements to be included in the design.

For the programmer observed by Visser, the ease of use for future users (system
operators as well as maintenance personnel) was a criterion of evaluation of his
design: considering homogeneity an important factor of ease of use, this led him to
make the program as homogeneous as posstble.

One may suppose that this strategic consideration has not been observed to be
implemented in more studies, because of its link to — and perhaps dependency on —
real work situations. Adelson et al. (1985) noted it, however, even if — contrary to
Visser (1987) — they made their observations in a restricted laboratory setting.

3.10 Use of past experience and other knowledge

The use of knowledge has been examined much more in program comprehension
studies (see Chapter 3.1) than in the design studies presented here.

3.10.1 Use of software design knowledge

Solutions, next to being constructed in an actual problem-solving activity, may be
arrived at by retrieval — and of course adaptation — of a stored solution, which may
be modified or not. The retrieved solution may come:

+ from memory — for example, algorithms learned by using them in the past, or
a published algorithm that has been retained (Jeffries et al., 1981);

« from an external source — for example, an earlier written program (Jeffries et

al., 1981).

Visser (1987) observed the programmer relying heavily on existing (partial) so-
lution instantiations (that is, listings of programs written in the past and parts of
the program-in-progress). Once again, one may think that most psychological stud-
ies paying so little attention to this reuse — contrary to software engineering, which
considers it to be a major problem to be solved — is due to their rather artificially
limited context making reuse difficult to implement: to reuse a design module in
the resolution of a problem, this problem must be similar to those the designer has
processed in the past.

246 W. Visser and J.-M. Hoc

3.10.2 Use of problem domain knowledge

Knowledge about exemplars of the kind of system to be designed or about functional
requirements of systems in general may be used to constrain the definition of the
design-in-progress or to retrieve solution elements (Adelson et al., 1985).

Visser (1987) noted that schema-guided information processing could explain
certain errors made by the programmer, for example, when he violated the speci-
fications for an ‘atypical’ function, by defining it as a completely typical function.
The programmer’s expectations — based on prototypical schema slot values — were
probably so strong that he did not take into account the values which were given (in
the specification document) (see Détienne, 1990).

4 Assistance to the design activity

The results of the presented studies provide a rationale for the specification of assis-
tance tools to support designers.

4.1 Displays for helping the management of working memory

One may think of tools enabling parallel presentation of intra- or inter-level infor-
mation (see the difficulties on breadth-first decomposition) or presentation of all
constraints on the solution order or maintaining a trace of postponed subproblems
needing backtracking (see the ‘Design Journal’ suggested by Guindon and Curtis,
1988, which could have still other functions).

4.2 Libraries of design schemas

Visser (1987) noticed the importance of examples and of past designs reuse for the
programmer she observed. As long as a designer wishes to use his own past produc-
tions, such libraries are not too difficult to realize. But the interest of this function
lies especially in providing designers with the experience of colleagues. In this case,
problems of indexing, for example, arise.

4.3 Assistance for the articulation of top-down and bottom-up compo-
nents

As a purely top-down decomposition is rarely implemented, such assistance would be
useful. In the environment evaluated by Hoc (1988a), the articulation between these
two components was really precluded.

4.4 Assistance to prospective strategies

As Hoc (1988a) concludes, this kind of assistance is more difficult to implement than
assistance to retrospective strategies (as provided in the environment he evaluated).
Subjects’ goals are indeed more difficult to infer than the prerequisites of explicitly
enunciated goals.

Structure-based editors have been proposed in order to aid prospective strategies.

Expert Software Design Strategies 247

4.5 Assistance to simulation

Given the importance of simulation in progressively developed design, assistance to
this function would also be useful. As simulation often involves holding simultane-
ously several variables in mind, one could think of supporting the management of this
memory load — a function that would not be particular to, but especially important
for, simulation assistance.

The development of all these tools requires more research into the processes and
components of the strategies to be assisted.

5 Conclusion

The different studies presented in this chapter did not all come up with the same
results. Especially between those of Jeffries et al. (1981) and Adelson et al. (1985),
on one side, and those of Guindon et al. (1987) and Visser (1987), on the other
side; an important difference concerns the systematic use of rather ‘optimal’ decom-
position strategies, such as top-down and breadth-first processing, which the first
authors noticed to characterize their designers. Guindon et al. (1987) and Visser
(1987) seemed to observe many more deviations from these strategies, leading them
to consider ‘opportunism’ as an important factor of design activity.

An explanation for this difference might be found in the type of design prob-
lem to be solved: real design problems (as used by Visser, 1987, and approximated
by Guindon et al., 1987) or restricted problems (as used by the others). Further
studies of expert design activity on more or less realistic problems could confirm this
hypothesis. Working on a computational geometry algorithm design, Kant (1985) no-
tices that ‘control [of design activity] ...comes out of responding to the data and out
of the problems and opportunities arising during execution’ (p. 1366). Ullman et al.
(1987) conclude that ‘mechanical designers progress from systematic to opportunistic
behaviour as the design evolves’ (p. 157).

However, the difference we notice may also be due (to some extent) to the per-
spective the authors take on their data. As mentioned in the introductory section,
early design studies often stuck strongly to the normative viewpoint. Both studies
concluding on the systematic nature of top-down and breadth-first strategies (Jeffries
et al.,1981; Adelson et al., 1985) are among the first studies conducted on expert
software design. Psychologists know the.role expectations play on the processing of
information.

References

Adelson, B., Littman, D., Ehrlich, K., Black, J. and Soloway, E. (1985). Novice-expert
differences in software design. In B. Shackel (Ed.), Human-Computer Interaction —
INTERACT 84. Amsterdam: North-Holland.

Brooks, R. (1977). Towards a theory of the cognitive processes in computer programming.
International Journal of Man-Machine Studies, 9, T37-751.

Carroll, J. M. and Rosson, M. B. (1985). Usability specifications as a tool in iterative
development. In H. R. Hartson (Ed.), Advances in Human-Computer Interaction,
vol. 1. Norwood, NJ: Ablex.)

248 : W. Visser and J.-M. Hoc

Détienne, F. (1990). Program understanding and knowledge organization: the influence
of acquired schemata. In P. Falzon (Ed.), Cognitive Ergonomics: Learning and
Designing HCI. London: Academic Press, pp. 245-256.

Eastman, C.M. (1969). Cognitive processes and ill-defined problems: a case study from
design. In D. E. Walker and L. M. Norton (Eds), Proceedings of the First Joint
International Conference on Artificial Intelligence. Bedford, MA: MITRE.

Falzon, P. and Visser, W. (1989). Variations in expertise: implications for the design
of assistance systems. In G. Salvendy and M. Smith (Eds), Designing and Using
Human-Computer Interfaces and Knowledge Based Systerns. Amsterdam: Elsevier.

Guindon, R. and Curtis, B. (1988). Control of cognitive processes during software design:
What tools are needed? In E. Soloway, D. Frye and S. S. Sheppard (Eds), CHI’88
Conference Proceedings. Reading, MA: Addison-Wesley.

Guindon, R., Krasner, H. and Curtis, B. (1987). Breakdowns and processes during the
early activities of software design by professionals. In G. Olson, S. Sheppard and
E. Soloway (Eds), Empirical Studies of Programmers: Second Workshop. Norwood,
NJ: Ablex.

Hayes-Roth, B. and Hayes-Roth, F. (1979). A cognitive model of planning. Cognitive
Science, 3, 275-310.

Hoc, J. -M. (1988a). Towards effective computer aids to planning in computer program-
ming. Theoretical concern and empirical evidence drawn from assessment of a pro-
totype. In G. C. van der Veer, T. R. G. Green, J. M. Hoc and D. Murray (Eds),
Working with Computers: Theory Versus Quicomes. London: Academic Press.

Hoc, J.M. (1988b). Cognitive Psychology of Planning. London: Academic Press.

Jeffries, R., Turner, A. A., Polson, P. G. and Atwood, M. E. (1981). The processes
involved in designing software. In J.R. Anderson (Ed.), Cognitive Skills and Their
Acquisition. Hillsdale, NJ: Exlbaum.

Kant, E. (1985). Understanding and automating algorithm design. IEEE Transactions on
Software Engineering, 11, 1361-1374.

Larkin, J. H. and Reif, F. (1979). Understanding and teaching problem solving in physics.
European Journal of Science Education, 1, 191-203.

Petre, M. and Winder, R. (1988). Issues governing the suitability of programming lan-
guages for programming tasks. Paper presented at ECCE4 - Fourth Furopean Con-
ference on Cognitive Ergonomics. Cambridge, September 1988.

Ratcliff, B. and Siddiqi, J.I.A. (1985). An empirical investigation into problem decom-
position strategies used in program design. International Journal of Man-Machine
Studies, 22, 77-90.

Simon, H. A. (1973). The structure of ill-structured problems. Artificial Intelligence, 4,
181-201.

Ullman, D., Staufer, L. A. and Dietterich, T. G. (1987). Preliminary results of an experi-
mental study of the mechanical design process. Proceedings of the Workshop on the
. Study of the Design Process. Oakland, CA, February 1987.

Expert Software Design Strategies 249

Visser, W. (1987). Strategies in programming programmable controllers: a field study on a
professional programmer. In G. Olson, S. Sheppard and E. Soloway (Eds), Empirical
Studies of Programmers: Second Workshop. Norwood, NJ: Ablex.

Visser, W. (1988a). Giving up a hierarchical plan in a design activity. Research Report
No. 814. Rocquencourt: INRIA.

Visser, W. (1988b). Towards modelling the activity of design: an observational study on
a specification stage. Proceedings of the IFAC/IFIP/IEA /IFORS Conference Man-
Machine Systems. Analysis, Design and Ewvaluation, vol. 1. Oulu, Finland, June
1988. '

Visser, W. (1990). More or less following a plan during design: opportunistic deviations
in specification. International Journal of Man-Machine Studies (special issue on
empirical studies of programmers), in press.

