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Abstract

Acquiring and developing knowledge about programming is a highly complex process.
This chapter presents a framework for the analysis of programming. It serves as a
backdrop for a discussion of findings on learning. Studies in the field and pedagogical
work both indicate that the processing dimension involved in programming acqui-
sition is mastered best. The representation dimension related to data structuring
and problem modelling is the ‘poor relation’ of programming tasks. This reflects the

current emphasis on the computational programming paradigm, linked to dynamic
mental models.

1 Introduction

Learning to program in any language is not an easy task, and programming teachers
are well aware of the myriad difficulties that beset beginners. Why is it so difficult to
learn or teach programming? How can analysis of these difficulties serve to indicate
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ways of remedying them? The process of teaching and learning not only involve,
learners but a set of situations in which teachers stage knowledge about programming
Teachers need to know more than the mechanisms of human learning in order tc
analyse and structure their teaching. They also must be aware of the fact that wha'
learners learn is dependent on their own conception of the activity of programming
and choices and decisions they as teachers make during instruction.

This chapter presents a framework for the analysis of programming. It serves a:
a backdrop for a discussion of findings on programming learning and is a basis fo:
an understanding of why some programming concepts and procedures are difficult tc
teach and to learn. This framework is based on a conceptual view of programming
Programming, like problem solving activities in other scientific fields such as physic:
or mathematics, can be analysed in terms of expert competence (expertise-orientec
framework), or in terms of a constituted knowledge domain (content-oriented frame
work). Knowledge of this latter type is socially and historically constructed, and i
formed of normative and symbolic representations used for communicative purposes

Studies in the field of programming learning can be categorized by their orien
tation. A number are expertise oriented, where a model of expert knowledge is usec
as a reference to analyse novices’ errors and misconceptions (Bonar and Soloway
1985; Soloway and Ehrlich, 1984). Other studies are content oriented, in that greate)
attention is paid to an analysis of programming knowledge as a domain having it
own concepts, procedures, notations and tools (Pea; Rogalski; Rouchier, Samugay
Taylor and du Boulay). A third category of studies takes no explicit epistemologica
position on the analysis of programming knowledge as a specific task domain. Pro.
gramming is used here primarily as a paradigm which lends itself to the testing o
general models of subjects’ cognitive architectures and learning processes (Andersor
et al., 1984).

This chapter focuses on the acquisition of programming knowledge, as testified tc
by students’ ability to solve ‘programming problems’ at various levels of complexity
Acquisition of programming skills for general educational goals and its developmenta
aspects are discussed in Chapter 2.5. The students referred to here are adults o

- adolescents with general educational backgrounds although they may be complete

novices with respect to programming knowledge. Thus we will be looking at issues
of computer literacy and those related to pre-professional and professional training.

We will be arguing that the teaching process cannot reproduce the real process
of construction of knowledge by scientific or professional people in the classroom
Rather the teaching process creates new ‘objects for teaching’ which need to satisfy
certain functional properties in order to create meaning in learners’ minds. Pair’s
work (see Chapter 1.1) is used as a springboard for showing that the impact on the
teaching process of teachers’ conceptualizations of programming activity leads to the
development of different types of knowledge and strategies in learners.

2 A framework for programming activity

2.1 General framework

Figure 1 presents a general theoretical framework for knowledge representation in the
programming field. It is made up of four related ‘spaces’ the knowledge structure,
problem solving, practice and cognitive tools. This framework is illustrative of the
fact that knowledge is constructed and assessed by problem solving. The knowledge
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Figure 1:  Frame for task analysis.

structure consists of a hierarchical system of concepts, operations on, and relations
between concepts having a set of notations. In any problem in the field, concepts
need to be co-ordinated. For instance a list problem involves variables, iteration
or recursion, list functions, test, inputs and outputs, whatever is the programming
language, and whatever are its semantical and syntactical specificities. Appropriate
notation needs to be selected (even within a programming language, choices must
be made between different control structures). In addition there is a relationship
between types of problems and operative pathways. Sum problems, sort problems, list
or graph processing are related to different classical algorithms. Cognitive activities
in programming tap both prior experience and individuals’ cognitive ‘tool bag’.

During the process of knowledge acquisition, all four ‘spaces’ evolve. New notions
are acquired through new interactions. For instance, the parameter passing in proce-
dures or functions involves the notion of procedure and a redefinition of variables as
global or local, and thus generates a new level of understanding of the relationship .
between variable, name and value.

Complex data structures gradually become familiar objects (such as tables for be-
ginners in procedural languages for example). The co-ordination of functions or pro-
cedures can be conceptualized in terms of the role they play in the problem, without
reference to mental running with specific values (encapsulated notion of functions).
The set of previously solved problems increases. Certain strategies become directly
available, relating types of problems with operative pathways (compiled strategies).
The complexity of problems that can be tackled increases.

At the start of the acquisition process students necessarily refer to previous
everyday experiences, the acquisition of the first RPS (representation and processing



160 ' J. Rogalski and R. Samurcay
ENTATION
- SRREREERT] PROGRAMMING
OBJECTS & SITUATIONS OBIJECTS & SITUATIONS
in
2 P oncepts:
175]
0
3
&
 J Y
PROBLEM SOLVING - EFFECTIVE PROGRAM
IN THE WORLD IMPLEMENTATION

Figure 2:  The task of programming.

system, see definition in Chapter 2.3) can be built up by such mechanisms as learning
by doing, or by analogy, or from other fields of knowledge such as mathematics (the
prime source), physics, or from exposure to other programming languages. Precursors
of this type can generate both negative as well as positive effects because of similar-
ities and differences in knowledge structures (Rogalski and Vergnaud, 1987). These
effects may account for two types of empirical results. Preprogramming knowledge
is known to be a source of misconceptions (Bonar and Soloway, 1985), and previous
programming knowledge can even constitute an obstacle, requiring an ‘unlearning
process’ (Taylor and du Boulay, 1987; Chapter 4.2). Also, students with mathemat-
ical backgrounds do not need the same amount of teaching (van der-Veer and van
der Wolde, 1983; van der Veer et al., 1986).

2.2 What is programming

Figure 2 presents a schema for analysing the cognitive activities involved in pro-
gramming tasks ‘from a real-world problem to a runnable program text’. In certain
respects this schema is the psychological counterpart of the epistemological analysis
developed in Chapter 1.1.

The crucial dimensions in the activity of programming are processing and rep-
resentation. There are two ways individuals can move from a real-world problem
to program text implementable on a given device. A real-world problem can first
be solved in the domain and then translated into program text. Or, alternatively,
it can be approached in the programming language and applied to the real-world
object. When problem solving takes place on a real-world object, processing pre-
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cedes representation, even if the properties of the objects in the target programming
language intervene in the choice of solution. This approach is closely related to the
‘computational’ programming paradigm where a program is defined as a succession of
computations. The ‘functional’ perspective where the program is seen as a function
that needs to be decomposed is more infrequent. When problem solving initiates in
the programming text, the structuring of data and relationships between pieces of
data is the core of programming activity.

Studies on the acquisition of programming skills are mainly centred on the pro-
cessing dimension. There are at least three reasons for this: (1) the historical role of
procedural languages, (2) the importance of planning in programming design (Hoc,
1988a) and (3) the productive role of organization of actions as a first program-
ming model (Samurgay and Rouchier, 1985). In addition, problems given to novices
are often directly defined in terms of programming entities, such as numerical data
and variables in the well-known sum problems (Spohrer et al., 1985; Soloway et al.,

[ 1982; Soloway and Erhlich, 1984; Samurgay, 1985) or explicitly in terms of a given
programming language, such as: ‘define a function called list-sum. Given a list of

( numbers, list-sum returns the sum of these numbers. For example, list-sum’ (5 10 — 4
27) returns 38. (List-sum’ ()) returns 0’ (Katz and Anderson, 1988).

Few studies have dealt with the representation task related to data structuring
even though a number have reported findings on the effects of problem content or se-
mantics (Ormerod et al., 1988; Widowski and Eyfert, 1986). In procedural languages,
complex data structures are often related to complex problems and the representa-
tion task may only appear crucial for advanced students. However, there is evidence
that program design aids may cause difficulties when the language is insufficiently

, rich in data structures flexible enough to represent the variety of data (Hoc, 1988b).
' In a relational language like Prolog, beginners may run up against two difficulties:
choosing how to represent objects and the relationship between them, and deciding
how general the solution should be (Taylor and du Boulay, 1986). From the cogni-
tive analysis developed by Rosson and Alpert (1988), it can be hypothesized that the
same difficulties could be encountered with object-oriented programming languages.

The acquisition of programming knowledge and skills can be characterized in a
number of ways. Problem solving in programming can be centred on problems in the
real world (research on planning) or on the program as text (research on programming
language and use). Here, schemas are defined as sets of organized knowledge used in
information processing, and plans are defined as organized sets of dynamic procedures
related to static schemas. For a given problem, plans and schemas can be defined at
several levels (strategy, tactics, implementation) (Samurgay, 1987).

- Studies on the construction and instantiation by experts and novices of schemas
(the program-as-text perspective) or plans (the programming-as-an-activity perspec-
tive) can be categorized as a function of these perspectives. Program text studies
are centred on the cognitive activities involved in the understanding or debugging
of written programs (see Chapter 3.1). In these experiments schemas are defined
as standard structures that can be used to achieve small-scale goals such as those
involved in sum problems using variable plans and loop plans. Training research in-
dicates that schemas can be induced by creating analogies between training problems
and programs, but are most efficient in understanding and debugging tasks, and less
efficient in program design.
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We take a slightly different point of view which is more oriented towards the
acquisition of fundamental programming concepts that can be implemented in vari-
ous programming tasks (design, execute, modify or complete programs). One reason
for this emphasis is that bugs in novice programming are mainly conceptual errors
(Spohrer and Soloway, 1986). In the framework presented above (Figure 1) the de-
velopment of strategies is seen as that facet of acquisition related to problem solving,
and is more general than either plan or schema acquisition (see also Chapter 3.2).
There are advantages in seeing plans and schemas as special cases of ‘compiled’
strategies and ‘encapsulated’ notions, related to the set of previously solved prob-
lems: these concepts are valid whatever programming language is concerned (Rosson
and Alpert, 1988). Methods (related to task analysis) may enhance the cognitive
activities involved in strategy research and management and help programmers in
problem solving.

3 Cognitive difficulties in learning programming

Programming as a knowledge domain differs from other neighbour domains such
as mathematics or physics in two ways. First, there are no everyday intellectual
activities that can form the basis for spontaneous construction of mental models of
programming concepts such as recursion or variables, in contrast to such notions as
number or velocity. These concepts, however, are the basis for concept acquisition in
programming. Secondly, programming activity operates on a physical machine which
may not be transparent in its functioning for learners.

Which familiar RPS can be activated in learners for the construction of a new

'RPS that is operational for programming? Which kinds of transformations are needed

for the construction of this new RPS? How do beginners construct the conceptual
invariants related to programming?

The difficulties encountered by novice programmers have been subdivided below
into four areas corresponding to the main conceptual fields novices must acquire
during the learning process. This subdivision has been made purely for readability’s
sake since it is obvious that novices suffer from syndromes rather than from single
misconceptions. All errors arise in conjunction with others and may have multiple
causes as a function of the problem context.

: " ol
3.1 Conceptual representations about the computer device

When designing, understanding, or debugging a program, expert programmers or
software developers refer necessarily to their knowledge of the systems underlying
programming languages, and the programming tools available on these systems. They
are able to move from one system to another and change their representation of the
problem to adapt to new constraints (see current practices of professional program-
mers in Chapter 4.2). This knowledge extends beyond operating rules and involves
the representation of the whole system (editor, operating system, input/output de-
vices, etc.) This is what Taylor and du Boulay have termed the ‘notional machine’.

There are two basic difficulties encountered by novices as concerns conceptual
representations. The first involves the effects of the 1elative complexity of the com-

mand device in the acquisition process. The second is related to the construction of
the notional machine.
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1 input x,y
2if x > y then goto5 || readln (x,y) ; x greater-of (x,x)
i pnr;;’% if x > y then write (x) x greater-of (x,y) if y less x
o o . :
5 Ig)rint % - else write (y) ; y greater-of (x,y) if x less y
6 stop LT
PROLOG

BASIC PASCAL

Figure 3: Examples of programs in Basic, Pascal and Prolog.

The very elementary level of construction of a RPS by beginners for simple com-
mand devices has been described in Chapter 2.3. This first RPS constructed ‘by
doing’ and by analogy is, however, not sufficient for full conceptualization of the no-
tional machine with respect to the command device. The notion of ‘complexity’ of a
command device is itself a highly relative concept. Learning a text editor, how to use
a pocket calculator, or a programming language are not analogous tasks because of
the features inherent to the problems each device can be used to solve. Even in pro-
gramming languages, the conceptualization of a ‘Basic machine’ a ‘Pascal machine’
or a ‘Prolog machine’ will not involve the same cognitive operations. For instance,
compare the programs in Figure 3 written in these three languages that will print
the larger of two input numbers.

Basic and Pascal programs describe how a result is computed; they specify actions
to be performed by the machine. The Prolog program describes what is true of the
problem solution, leaving it up to the computer to sort out the steps involved in
finding the solution. In the case of imperative languages, a first, although extremely
limited RPS can be built on the representation of actions.and their sequential control.
In languages like Prolog this representation requires the concept of logical truth and
a representation of how Prolog evaluates this truth. Thus the RPS that beginners
must construct with Prolog involves objects such as truth values and relations that
are conceptually far removed from the objects involved in imperative languages.
Moreover, as Taylor and du Boulay (1987) point out, mastery of these objects in the
pure logic domain is not enough. The way Prolog processes to evaluate the truth of
predicates (backtracking) has no counterpart in ‘manual’ logic.

There are two dimensions to the relative complexity of the command device: the
proximity of the control, and the existence of virtual entities (virtual memories, vari-
ables, files, etc.) simulating entities which have no physical identity. It is believed
that the command device increases in complexity for learners as a function of the
distance of the control and the variety of virtual entities. For example, assembler
language and Prolog constitute extremes in this case. Prolog is used here for purposes
of illustration of a language that differs from imperative ones and identical analysis
could be made of object-oriented languages such as Smalltalk. It would be worth-
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program

user computer

Figure 4:  Relationships involved in program running.

while to investigate how experts deal with virtual entities, which are an important
component of ‘high-level’ programming languages.

In program design, beginners also need to construct mental models of the func-
tional relationships between program, user (who will enter the data) and the com-
puter device the program is run on (Figure 4). _

Misrepresentations of these relationships interfere with planning activity in be-
ginners. They also affect the meaning beginners assign to the results of execution
and to error messages. Novices’ erroneous representations of the notional machine
can be analysed from two points of view.

The first concerns language-independent conceptual bugs which disrupt the way
in which novices program and understand programs. Several terms have been coined
to describe these misconceptions: ‘superbugs’ (Pea, 1986), ‘meta-analysis’ (Hook et
al., 1988), ‘preprogramming knowledge’ (Bonar and Soloway, 1985), ‘wrong RPS
transfer’ (Hoc and Nguyen-Xuan, Chapter 2.3). These mainly characterize errors in
communication rules involving computer jumps into the real-world domain, or false
expectations that the program will flow from top to bottom and left to right.

A number of studies have focused on these errors. Rogalski and Hé (1989) present
a model (‘PRES’) implemented by novices when dealing with conditional problems
in a Basic-like language. In this model novices assume that ‘in a conditional part
of a program when condition A has been processed the other instruction is applied
in the notA situation (it is unnecessary to specify the latter condition notA in the
program text); conversely as long as the processing of situation A"is not terminated,
the instruction should be applied to case A ’. This model illustrates an inadequate
representation of sequentiality and is based on natural communication rules. It,
however, applies successfully to CASE-OF problems (where there is no sequentiality
problem) but fails with NEST-style conditional problems.

Effects of misconceptions have also been observed in simple iterative programs
designed by novices (Laborde et al., 1985; Samurgay and Rouchier, 1985: Bonar
and Soloway, 1985). A common error consists of writing the operations in the order
‘description of actions/repeat mark’ which again reflects the fact that communication
with the computer is considered to be an instance of natural language communication.
Even when beginners acknowledge that there is no mind inside the computer they
still credit it with semantic abilities including presupposition and interpretation of
the content of communication with the user.

Similar errors have also been reported for Prolog novices on tracing problems,
or analysis of the result of trace functions. Novices tend to Jump into the real-world
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domain in order to solve the problem; this model works in restricted circumstances
(meaningful variable names, simple and familiar problem domain) but fails when
the problem cannot be solved without a minimal understanding of the backtracking
mechanism (Hook et al., 1988). Novices may also introduce certain features of their
reading skills, for instance by assuming that control flow through a clause or through
a program always goes from left to right (Taylor and du Boulay, 1987).

The second type of error related to representations of the notional machine has
to do with the system as a whole. Novices not only have problems with the rep-
resentation of the machine underlying programming languages but also encounter
difficulties with the computing system they are working with. Beginners need to dif-
ferentiate which elements of this system belong to the language, and which are system
entities. Prolog novices frequently alter their programs and forget to reload or recon-
sult the new file; alternatively they may inadvertently assert what are meant to be
queries, thereby accidentally altering the program/database (Taylor and du Boulay,
1987). They have comparable difficulties maintaining the distinction between the
Prolog program/database they can see on the terminal screen and the version of
the program/database Prolog will process. Even in imperative languages where the
distinction is clearer between program and data, novices do not discriminate clearly
‘who’ is controlling the input/output commands when the program is running, or
the functional role of outputs on the screen with respect to memory management
(Rogalski and Samurgay, 1986).

3.2 Control structures

One of the major points made by Pair (Chapter 1.1) is that programming can be
conceptualized in a variety of ways including describing calculations (computational
paradigm), describing functions (functional paradigm), or defining and processing
relations between objects (relational paradigm). Regardless of the type of conceptu-
alization or type of language, programs must be able to describe: (1) an undefined
number of processings which remain to be described in a finite manner; (2) a general
solution for a set of infinite data. Conditional and iterative or recursive structures
are built as responses to these requirements in various forms depending on the lan-
guage. The prime characteristic of control structures is the fact that they disrupt
the linearity of the program text.

Control structures can be analysed and taught in different ways as a function
of conceptualization. They can be seen (and taught) as computational models (ori-
ented towards the description of calculations in the program), or as functional models
(oriented towards analysis of the function of the program with respect to the prob-
lem). This distinction does not entirely mirror the declarative versus the procedural
distinction since objects as well as processings are involved in both.

In the majority of studies describing early acquisition processes, as well as in
programming tutoring systems, the computational approach dominates. Few studies
have examined the acquisition of programming from the functional point of view.
Research on the acquisition of control structures by novices has mainly centred on
conditionals, iterative and recursive statements, and procedural languages. There is
no explicit conditional statement in Prolog, and conditional treatments have to be
handled via logical conditions (such as conjunctions, negation, etc.), and backtracking
controlling (such as ‘cut’). The problems novices encounter in the conceptualization
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of backtracking is illustrative of the level of difficulty they face in the conceptualiza-
tion of control structures (Taylor and du Boulay, 1986, 1987).

3.2.1 Conditional statements

The earliest studies in this field examined the elaboration of programming languages
and compared programming styles such as JUMP style using the GOTO statement,
NEST style using the embedded alternatives IF .. THEN .. ELSE, CASE-OF style
using a succession of positive conditions (IF... THEN). Overall these studies indicate
that the JUMP style, although seemingly easier in terms of expression, is more dif-
ficult to control than the NEST style (Green, 1980) and that styles using positive
alternatives present fewer difficulties for acquisition. In addition, syntactic mark-
ers such as BEGIN..END defining the scope of the THENs and ELSEs and spatial
organization of the text make conditional structures easier to learn and use (Sime
et al., 1977). However, difficulties in understanding conditional statements are also
related to the type of question, which can be either conditional or sequential (Green,
1980), and the organization of logical cases. Depth of nesting of conditionals also
increases difficulty. This set of studies also shows that there is no uniform ‘mental
language’ used by novices in acquiring conditional structures (Gilmore and Green,
1984).

In terms of the acquisition of notions, logical and mathematical precursors have
been shown to play an important role. At a global level, students with more ground-
ing in mathematics learn new structures more rapidly (van der Veer et al., 1986; van
der Veer and van der Wolde, 1983). The ability to use logical connectors (AND, OR,
and NOT) and represent structured cases are necessary for the acquisition of con-
ditionals, but they are not sufficient in themselves because of the role played by an
inappropriate model of sequentiality of execution by the ‘computer device’ (Rogalski

and Hé, 1989).

3.2.2 Iteration

The construction of an iterative plan involves the identification of elementary ac-
tions/rules which must be repeated, and the condition governing end or continuation
of the repetition. There are three operations entering into the construction of an
iterative plan: construction and expression of the loop invariant (updating), identi-
fication of the end control and its place in the loop plan (test), and identification of
the initial state of the variables (initialization).

There are two types of iterative problems. In the first, the end control is a
constant, whereas in the second the end control is a value of a variable computed in
the loop. In the latter instance, two plans are possible with respect to goal attainment

process variable/test variable
or

test variable/process variable

These two forms are not equally accessible in a the novice’s existing plan catalogue
(Soloway et al., 1982; Samurgay, 1985). Novices’ ‘spontaneous’ iterative models have
the following structure: description of actions, repetition counter, repetition mark
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and expression of the end control. Anticipation and explicitation of the end control
are not spontaneously available (Laborde et al., 1985; Samurcay and Rouchier, 1985),
probably because this control is implicit in ordinary action plans. These features
make it more difficult for novices to deal with ‘test/ process’ plans (e.gﬁhe WHILE
loop in Pascal). Difficulty stems from representing and expressing a condition about
an object on which they have not yet operated (Soloway et al., 1982).

A didactic study shows that in a set of teaching situations where a variety of
sum problems involving different types of constraints were introduced, novices could
successfully be guided in the construction of an adequate representation of different
loop plans (Samurgay, 1986). However, these representations are unstable and fail
on new problems; novices return to step-by-step construction. In other words, the
novice model is based on a representation of a succession of actions (dynamic model)
rather than on a representation of the invariant relationship between the different
states of variables (static model).

A typical loop plan implemented by novice programmers is given below:

----------------

sum := 0-+ number
counter := 1

sum := number1+number2
counter := 2

repeat

.................

This fragment of protocol reveals two types of difficulties. The first is the con-
struction of the loop invariant (sum:=sum- number and counter :=counter+ 1)
and the second is related to the designation of variables. The novice tends to use
different names at each step in execution to label the same functional variable.

As indicated above, most research work, as well as tutoring systems such as
Bridge (Bonar, 1984) or Proust (Johnson and Soloway, 1983), on the acquisition
of the iterative control structure has been conducted from a computational point
of view. It is likely that computational teaching reinforces the novices’ dynamic
model. This model fails when novices encounter new problems because they have
not acquired how to search and construct the ‘loop invariant’ (relations must be
conserved between variables during execution). The representation of the succession
of variables and specific training on search for relationships between them could
have positive impact on the learning process. Even with object-oriented language, it
was observed difficulties on ‘iterative methods used for scheduling objects, especially
those in which iteration counter is used as a variable in the computation’ (Goldberg
and Kay, 1977).

3.2.3 Recursion

Recursive functions are defined in terms of themselves. The well-known factorial
function for example is defined recursively by:

fact (0)
fact (n)

; |
fact (n—1)*n
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Whereas iterative programming is based on the descriptions of actions modifying
the situation, recursive programming describes the relationships between successive
states, without expressing the computation strategy. The most important function-
ality of recursive procedures intervenes in program decomposition, i.e. in the repre-
sentation of the problem domain as a part-whole relationship. This decomposition
calls for two kinds of conceptual constructs: autoreference (declarative aspect) and
nesting (procedural aspect) (Rouchier, 1987).

Recursive programming is very hard to learn and to teach. Studies have consis-
tently shown that even on very simple problems students have enormous difficulty
learning recursion. Beginners tend to use an iterative model of recursion (Kurland
and Pea, 1983; Kessler and Anderson, 1986; Pirolli, 1986; Rouchier, 1987; Wieden-
beck, 1989). This type of model is compatible with tail recursion (the recursive calls
are not nested when executed) but fails for full recursion (the recursive calls are
nested when executed). The reasons for these difficulties are two-fold. First, there is
no natural everyday activity that can serve as a precursor for recursion. Second, the
dynamic model of iteration is (overly) salient and constitutes an obstacle for students
in moving to this new program schema (Kessler and Anderson, 1986). A dynamic
model may at times be useful for program design (Pirolli, 1986). The learning mecha-
nisms such as ‘by doing’ or ‘by example’ are not sufficient for thorough understanding
of recursion. This kind of situation reinforces novices’ existing dynamic models.

Data is scarce or virtually non-existent on how expert programmers design and
understand complex recursive programs. However, a crucial factor in programming
recursion appears to be the use of static representations of situations in a functional
or relational point of view of programming. It seems difficult to start a training
process with novices directly with this type of representation. There is some empir-
ical evidence, however, suggesting that more appropriate teaching situations can be
designed. In particular these should not employ an iterative model but rather should
start with full recursion problems (in contrast to the Kessler and Anderson (1986)
suggestion to use iteration as a source of analogy. These would make the relationship
between the structure of the programs and the structure of the problem explicit (for
instance in a Logo procedure the places of recursive calls in the text of the program
are related to the order in which the objects are produced). In these situations
the emphasis is on the static properties of the procedure. In this case students can
succeed in constructing more-effective strategies in program design (Rouchier, 1987).

3.3 Variables, data structures and data representation

Variables are the (proverbial) tip of the iceberg of the various entities that can be
defined and managed in the programming process. Whatever the programming lan-
guage, programmers must deal with the questions of available primitive entities (ob-
Jects and operations on them), and how such entities should be modified to represent
the elements of the domain problem. A key factor in the acquisition of programming
knowledge is mastery of the relationship between the functional role of entities and
their successive values during program running. This involves the acquisition of no-
tions organized in a hierarchical fashion with strong connections between the notions
of functions and variables (or predicates and variables in logical languages such as
Prolog, objects and messages in object-oriented languages).

Numerous errors found in novice control structure protocols can be accounted for
by the conception novices have of variables. Defining a variable as a name (related
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to the role played in the domain problem) or as an address (related to the role played
in the program) is the first step towards understanding (Samurgay, 1989). When the
value of a variable is modified, its naming and the functional relationship with other
program elements remain invariant. At this level some of the errors made by novices
involve the use of local rather than functional properties.

Variables also differ with regard to their functional meaning in student planning.
‘External’ variables correspond to the values controlled by the program user, i.e. they
are explicit inputs (data) or outputs (results) of the domain problem. ‘Internal’ vari-
ables are controlled by the programmer, and produce intermediary results. Internal
variables may be irrelevant for ‘hand solutions’, which is a source of error in novice
programming (Samurcay, 1989). When a variable plays more than one role in the
problem, errors are observed on the program fragment it appears in (Spohrer et al.,
1985). '

A higher-level concept is required when variables occur in iterative or recursive
programs in imperative languages. In this case, the variable is no longer an address
(with a value) but needs to be seen as a function of execution, or a sequence of values.
At this stage, the algebraic model of variable and equality novices may transfer from
physics or mathematics fails as a mental model. A similar interaction has been
observed in Prolog between ‘logical’ definitions and effective values of variables and
functions. Novices encounter difficulties in understanding that the specific function
defined in a given clause is determined by the instantiation of the inputs (Taylor and
du Boulay, 1987). -

This feature is closely related to difficulties teachers frequently notice when try-
ing to clarify the difference between local and global variables, although one of the
requirements for computer literacy is the learning of the use of procedures and func-
tions to write modular programs. What is masked behind the distinction between
local and global variables is the notion of context. Its acquisition calls for a thorough
understanding of the ‘notional machine’. Understanding backtracking as well as full
recursion are related to the acquisition of this complex notion.

Dupuis and Guin (1989) have analysed how students use coding variables in
a complex programming task that introduces recursive procedures in Logo. Two
modes of coding were observed: a ‘descriptive’ code (different objects correspond
to independent different variables) and an ‘analytic’ one (expressions with a single
variable can be used to represent various related objects). The choice of mode is
dependent on the mental model students generate of the computer device. In the
descriptive mode coding variables are managed by the programmer, and are linked to
an executive model. In the analytic mode, computing the values of variables is under
computer control. This mode is related to a more static model of programming and
is the only mode compatible with recursivity.

3.4 Programming methods

A method can be defined as an explicit aid for strategy research and management
in solving problems of a given class. Implementing a method is dependent upon
the relationship between type of problem and programming paradigm, and on the
programmer’s knowledge. Methods can provide help on various subtasks in program
design (from the initial problem analysis to program documentation) and at various
levels of problem decomposition (see Chapter 4.2). Up to now programming methods
have only been used in training professional programmers, although there are needs
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' for programming methods even in early acquisition. Van Someren has stressed this

point for languages like Prolog which are not process oriented (van Someren, 1985).

Existing methods share a number of points. All prescribe a top-down strategy which

necessitates working on high-level before low-level structures. In terms of problem

solving they are either prospective (analysis oriented by input data) or retrospective

, (analysis oriented by results). A recent overview of programming methods (Rogalski

' et al., 1988) indicates that this particular area is characterized by its disproportion-
ately low empirical data with respect to the high number of unanswered questions.

Studies on the use of methods by beginner programmers (Hoc, 1983; Morais and

[ Visser, 1987) show that ‘top-down’ structured methods are difficult to use because

beginners’ spontaneous strategies are based on mental execution (from the input

data). Rist (1986) reports that in the early stages of learning programming, the plan

structures used by novices are action oriented (rather than object oriented as in expert

plan structures). Even programmers familiarized with structured programming resort

to decomposition oriented by processing and linked to mental execution in cases of

increased problem difficulty (Hoc, 1981; Ratcliff and Siddigi, 1985). Professional

programmers may also experience difficulty in using aids for program design because

they lack sufficiently rich and flexible data structures to handle the requirements of

a retrospective strategy (Hoc, 1988b).

‘These two points suggest that: (1) the representation and processing dimensions
involved in the programming task (Figure 2) both enter into the issues surrounding
teaching and learning methods; (2) an overly dominant dynamic model of program-
ming can be an obstacle to the use of existing aids including models. Introducing
models early on in training may help prevent negative reinforcement of the sponta-
neous computational programming paradigm.

Data from fields other than programming (mathematics and emergency manage-
ment) indicate that methods can be taught to novice students in certain conditions.
With respect to programming, the most critical condition is the existence of sufficient
prior knowledge in the student (computer literacy) and use of teaching of situations
containing relatively complex problems which call for making choices in data struc-
turing, task organization and task distribution among students. This might involve a

- transposition of certain properties of ‘programming at large’ which would encompass
the programming task as a whole and would lend meaning to programming methods
and tools,

4 Conclusion

Acquiring and developing knowledge about programming is a highly complex pro-
cess. It involves a variety of cognitive activities, and mental representations related
to program design, program understanding, modifying, debugging (and document-
ing). Even at the level of computer literacy, it requires construction of conceptual
knowledge, and the structuring of basic operations (such as loops, conditional state-
ments, etc.) into schemas and plans. It requires developing strategies flexible enough
to derive benefits from programming aids (programming environment, programming
: methods). '

i - Taking the effective device into account calls for the construction of new sys-
i tems of representation and processing in order to conceptualize the properties of the
‘notional machine’ and lead to appropriate human-computer interaction in program-
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ming. The familiar RPS related to action execution is a precursor that plays both a
positive ‘productive’ role and a negative ‘reductionist’ one, assigning meaning to ini-
tial programming notions and becoming an obstacle when more static representations
are needed.

Studies in the field and pedagogical work both indicate that the processing di-
mension involved in programming acquisition is mastered best. The representation
dimension related to data structuring and problem modelling is the ‘poor relation’
of programming tasks. This reflects the current emphasis on the computational
programming paradigm, linked to dynamic mental models, where programs are con-
sidered to be dynamic data processing, and procedures and functions are analysed
as operations modifying data instead of defining new entities.

More research is needed on the acquisition of adequate ‘static’ representations,
clearly required for the acquisition of functional or relational languages, but also
necessary for efficient use of the powerful recursive tool. The recent stress on the
necessity of some ‘unlearning’ by professional programmers testifies to the fact that
focusing on dynamic aspects of programming may constitute an obstacle to further
acquisitions. The major challenge today lies in the design of new paradigms in
casual and professional programmers’ training that will enable them to become more
aware of the existence of various programming paradigms, more familiar with them,
and more flexible in their representations, in order to open up the field of possible
programming choices.
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