Chapter 2.1

Expert Programmers and Programming
Languages

Marian Petre

Instituut voor Perceptie Onderzoek/IPO, Postbus 513, 5600 MB Eindhoven,
The Netherlands

Abstract

This chapter contrasts cursorily the aspirations of gereral-purpose programming lan-
guage designers with some evidence about expert problem solving and programming
behaviour. The contrast is summarized in a rough wish list of what experts want
from general-purpose programming languages. The programmers’ wish list differs
from the aspirations of language designers less in detail than in emphasis: whereas
- the designers emphasize well-foundedness and correctness, the expert programmers
emphasize utility, control and efficiency. It is argued that a programming language
is a tool, not a panacea; tools make easy the tasks for which they are designed, but
the outcome depends on the intention and expertise of the wielder.

Psychology of Programming Copyright © 1990 by Academic Press Limited
ISBN 0-12-350772-3 All rights of reproduction in any form reserved

104 M. Petre

f

1 Introduction: the language-user/language-designer schism, and
why practitioners complain about new languages

Programming languages, assessed as they tend to be in personal and mystical terms,
attract a tenacious confusion of myth, of variable quality. The accumulation of
programming language myth reflects the evolution of computing. Programming
languages are artefacts developed in mixed environments: technological, social and
philosophical. Assumptions — often unspoken, sometimes accidental — incorporated
in those original environments may survive the environmental constraints that nur-
tured them and may become irrelevant, inappropriate, or even misguided when the
environment changes. Evolution implies changes in truth; myths convenient or per-
tinent at their inception may obscure issues in their continuation.

Programming began in the hands of engineers and hackers who created improve-
ments as needed to provide obvious advantages of speed and power. Other criteria
for languages were personal. The point was to build a tool and exploit it; ‘software’
was a way to build up layers of tool enhancements.

Software has since moved into the hands of theoreticians whose criteria are dif-
ferent from the hackers’. Theoreticians intend to improve languages by design rather
than just by demand and tinkering, and they aspire to make languages that conform
to formal, usually classical, models (e.g. functional languages are based, with vary-
ing mathematical purity, on the lambda-calculus). This evolution produced a schism
between those who use languages (engineers and hackers) and those who design them
(theoreticians). There is a shift of orientation from utility to ‘well-foundedness’.

Early programming languages were clumsy and occasionally dangerous because
they were not well-founded. Modern languages often fail in practice because em-
phasis on theory displaces attention to use. This re-orientation is not inherently
bad, although it can result in impractical languages. The re-orientation is, however,
incomplete and hence misleading; critical decisions (e.g. choice of formal model, pat-
terns of notation or implementation not covered by the model) remain ill-founded.
For example, Kowalski champions logic programming on the disputable grounds that
‘Symbolic logic was first designed as a formalization of natural language and human
reasoning’ and hence ‘Logic reconciles the requirement that the...language be natu-
ral and easy to use with the advantage of its being machine-intelligible’. (Emphasis
added; Kowalski, 1982.) Yet there is evidence to undermine these ‘foundations’ (e.g.
Taylor and du Boulay, 1986; Fung, 1987).

The job now is to reconcile the factions. Foundations must be ascertained and
verified in the context of utility. Models must be chosen that both afford the refine-
ment of high-level reasoning and accommodate real-world constraints. _

This chapter contrasts cursorily the aspirations of the general-purpose program-
ming language designers with some evidence about expert problem solving and pro-
gramming behaviour. The contrast is summarized in a rough ‘wish list’ of what
experts want from general-purpose programming languages.

2 Design aspirations

Hoare wrote in 1973: ‘..good language design may be summarized in five catch
phrases: simplicity, security, fast translation, efficient object code, and readability’.
These provide a good centre for more recent aspirations, although, as Hoare antici-

v

Expert Programmers and Programming Languages 105

pated: ‘...many language designers have adopted alternative principles which belittle
the importance of some or all of these criteria, perhaps those which their own lan-
guages have failed to achieve’. Much language theory (e.g. denotational semantics)
is concerned with separating the basic semantic description of a language from the
notion, however abstract, of an evaluating mechanism or computer. This theoretical
goal has infiltrated design attitudes: fast translation and efficient object code are
‘implementation issues’ considered separable from (and often subordinate to) quali-
ties of the language model. Hence, these will not be discussed in this section. Hoare’s
three remaining ‘catch phrases’ will lead this (by no means exhaustive) discussion
onto other design aspirations popular in the literature.

2.1 Simplicity

By simplicity, Hoare means a small range of instructions with uniform format, each

) having a simple effect that can be described and understood independently of other
instructions. Terseness or simplicity of syntax is a common goal, one supported by
studies of notations (e.g. Green, 1977) and reflected to some extent in recent designs
(e.g. Miranda).

2.2 Orthogonality

Related to simplicity is orthogonality: the notion that there should not be more
than one way of expressing any action in the language, and that all language compo-
nents are mutually independent (cf. Denvir’s more comprehensive examination of the
notion, 1979). In a truly orthogonal language, a small set of basic facilities may be
combined without arbitrary restrictions according to systematic rules. Orthogonality
may result in arbitrary complexity via this unrestricted combination. It is endorsed
in the literature in a limited role: as a principle for eliminating redundant expressions
and hence for contributing to overall simplicity. This limited orthogonality is implied
above in Hoare’s meaning of simplicity.

2.3 Security

Hoare’s principle is that only syntactically correct programs should be accepted by
the compiler and that results (or error messages) should be predictable and com-
prehensible in terms of the source language program. No program should cause the
computer to ‘run wild’ The classic examples for this aspiration are Pascal, a ‘secure’,
strongly typed language, and C, a ‘dangerous’ one that produces occasional ‘nasty
surprises’. Building on the principle of security is correctness.

2.4 Correctness

This is the notion that a program can be proven to conform to a specification or
to exhibit specified properties. This goal drives the aspiration to develop languages
that conform to formal models and so are amenable to formal manipulation. Indeed,
the pursuit of correctness is one of the principal aspirations of recent designs. '

106 M. Petre

2.5 Readability

Hoare argues, simply, that programs are read by people, and that the programming
language should encourage clarity. He asserts: “The readability of programs is immea-
surably more important than their writeability’. Unfortunately, a certain amount of
myth adheres to readability: ‘Authors choose stylistic factors commonly thought to
influence style with little or no supporting evidence demonstrating the importance or
effect of that characteristic on program comprehension and maintainability’ (Oman
and Cook, 1988). This notion leads to another: clarity of structure. -

2.6 Clarity of Structure

Language designers aspire to express the intended solution structure visibly, without
artificial imposition of extraneous structure, including artificial sequentiality. A re-
lated goal is to express any inherent parallelism (and to exploit it via the language
implementation).

2.7 Modularity

One of the techniques for structuring larger programs is to segment or divide them
into manageable pieces. Modularity allows programs to be segmented into indepen-
dent chunks or modules which have locality, that is, which have internal scope and
which interact with other modules via a defined interface. (cf., for example, Hughes,
1984.) The independence of the chunks is important, permitting separate compila-
tion, separate debugging, independent testing, and reasonably easy replacement or
modification. The independence and locality of modules is sometimes interpreted as
‘hiding’ an enforced rather than notional restriction of access to internals.

2.8 Abstraction

The motivation behind many language design decisions is to spare the programmer
the ‘messy’ bits, the low-level, machine-oriented details of programming. The em-
phasis is on high-level operation, with the idea that high-level expression matches
more closely the problem domain. As will be discussed later, this is a restrictive
interpretation of abstraction.

3 The influence of the programming language on programfning
(that is, on devising solutions)

-

‘Computer scientists have recognized that the features of a programming language
can have a significant effect upon the ease with which reliable programs can be
developed. It has also been observed that certain languages and language features
are particularly well suited for the use of systematic programming techniques, while
others hinder or discourage such discipline’ (Wasserman, 1975, with reference to the
then-recent structured programming techniques). The usual way to interpret this sort
of statement is that the programming language guides the solution. Indeed, many
of the arguments of modern designers are based on a conviction that programming
languages influence the sorts of solutions that programmers will devise and that good
languages guide the programmer’s thinking (into whatever avenue is endorsed by the

Expert Programmers and Programming Languages 107

particular language model). Associated with this conviction is a certain amount of
evangelism about how programmers should think.

Vet it is a vain hope that the programming language itself will provoke good code.
(Just about everyone knows someone who can write Fortran in any language.) Flon’s
axiom (1975) states the case strongly: ‘There does not now, nor will there ever, exist
a programming language in which it is the least bit hard to write bad programs’.
Experience with expert programmers (described in Section 4.2) offers an alternative
interpretation of Wasserman’s observations: that the programming language may
facilitate clear expression of a solution, or it may obstruct it, but that the language
does not influence strongly the nature of the solution strategy.

In the general case, language is a tool. Tools make easy the tasks for which they
are designed, but the outcome depends on the intention and expertise of the wielder.
Whereas a language can provide convenient categories, the support and heuristics
for choosing the right abstractions in solving the problem are at best only implied.
The user mediates the relationship between language and programming (i.e. devising
solutions): individual expertise can compensate for deficiencies in language, whereas
language cannot wholly compensate for deficiencies in use.

As summarized by Hoare (1981): ‘I have regarded it as the highest goal of pro-
gramming language design to enable good ideas to be elegantly expressed’. (Em-
phasis added.) Similarly, Dijkstra (1976) wrote: ‘I view a programming language
primarily as a vehicle for the description of (potentially highly sophisticated) ab-
stract mechanisms’. (Again, emphasis added.) The goal of designers should not be
to influence thinking but to reflect it clearly, to remove obstructions and restrictions.
As Zemanek (1985) argues (as part of his case for formal definition): ‘One cannot
standardize thinking and one should not even attempt to do so’.

The following sections justify this more moderate view of the role of the pro-
gramming language by considering some evidence about how experts solve problems
and how expert programmers program. ‘

4 How experts behave

4.1 Expert problem solving

Expertise in problem solving has been studied in a variety of domains, and results
tend to be consistent across domains (for reviews, see Kaplan et al., 1986; Allwood,
1986). Studies typically contrast novice with expert performance in solving problems.
Experts differ from novices in both their breadth and their organization of knowl-
edge: experts store information in larger chunks organized in terms of underlying .
abstractions. This organization apparently facilitates quick recognition of problem
types and recall of associated solution strategies.

Experts sort problems in terms of underlying principles or abstract features (e.g.
Chi et al., 1981; Weiser and Shertz, 1983), whereas novices rely on surface features.
Recall exercises (e.g. Chase and Simon, 1973; Shneiderman, 1976; Adelson, 1981,
1984; McKeithen et al., 1981) have shown that experts are better able to recon-
struct realistic domain configurations, such as chess positions or computer programs,
although they perform no better than novices with random or scrambled stimuli.
The interpretation for programming is that experts represent programs in terms of
semantic structure, whereas novices encode them syntactically.

108 . M. Petre

\

Experts tend to spend more time than novices planning and evaluating. Experts
run programs more frequently while debugging than novices do (Gugerty and Olson,
1986). Experts are better able to form overviews, but thereafter they take longer
to develop their understanding and representations, and they consider more fully
interactions among functions or components of a system (Adelson et al., 1984). Ex-
perts form a detailed conceptual model of a system and tend to incorporate abstract
entities rather than the concrete objects specific to the problem statement (Larkin,
1983). Their models accommodate multiple levels and are rich enough to support
mental simulations (Jeffries et al., 1981; Adelson and Soloway, 1985; see also Chapter
3.1 concerning a schema-based view of expert programming knowledge and mental
simulation).

The pattern overall is that experts are able to handle information at different
levels. They differ from novices in two important respects: their ability to develop
overviews or abstract models of solutions, and their ability to understand the conse-
quences of implementation detail.

4.2 What experts do (and don’t do) with programming languages ’

Given the emphasis, in the expertise literature, on abstract, semantic models rather
than syntactic representations, where does the programming language impinge on
programming?

- One study of expert programmers solving problems in several general-purpose
programming languages (Petre and Winder, 1988) has suggested that a programming
language has only a weak influence on the solution. In this investigation, experts
were presented with five non-trivial problems for solution in three languages each.
The languages were chosen by the experts themselves, most choosing languages in
more than one language style (e.g. Basic, Pascal, and Scheme; or Forth, KRC, and
Prolog). In follow-up questionnaires and interviews, experts were asked to discuss,
among other things, the suitability of each language for solving the problems or
expressing the solutions.

Particular languages or language types did not correspond to particular solution
strategies, although there was some correspondence between languages and over-
sights. It seems that experts conceive an abstract model of the solution separate
from its expression in a particular programming language. There was evidence that
they solve problems; not in the target programming language, but in a private,
pseudo-language that is a collage of convenient notations from various disciplines,
both formal and informal. The pseudo-language might be taken as the surface re-.
flection of the expert’s computational model, itself a composite of models borrowed
from many sources.

Examples and remarks volunteered by the experts were sufficiently consistent
to suggest the natures of these pseudo-languages. Variety of representation was
important. Some of the notations derived from programming languages, including
languages of different styles, others from mathematics, logic, natural language de-
scription, and sketches or diagrams — or combinations of these. Some code fragments
were incorporated verbatim. The collections were apparently not made coherent but
were assemblages of overlapping and possibly inconsistent fragments. The implica-
tion was that, although the pseudo-languages may not be self-consistent, coherence
was imposed in use. :

Expert Programmers and Programming Languages 109

I

Different notations were used for different sorts of tasks. The associations be-
tween notations within the pseudo-language and general categories of problems and
solutions were made on the basis of suitability; that is, the pseudo-language fragment
made accessible some problem information or solution feature, or facilitated some set
of operations, that was then of particular interest to the expert. A ‘mix and match’
description was typical, e.g. ‘I find Algol-like pseudo-code useful for control-structure
problems, together with arrays, sets, etc. from mathematics. This doesn’t, however,
cope well with control abstraction...for which I tend to use Scheme and Miranda-lixe
notations...”. This sort of association is consistent with findings about expert problem
classification (mentioned in Section 4.1) and makes good sense in terms of findings
that problem representation is critical to ease of solution (See Section 2 on problem
representation in Chapter 1.3). The borrowing in the pseudo-languages from many
disciplines is suggestive; it may be that the pseudo-language provides a means of
mapping or translation between problem and programming domains.

Given that the abstract algorithm is captured first in the programmer’s own
pseudo-language, expression in the target programming language is a matter of sub-
sequent translation. This notion is by no means alien to the programming culture;
Kernighan and Plauger (1974) endorsed it years ago as a principle for good design:
‘Write first in an easy-to-understand pseudo-language; then translate into whatever
language you have to use’. Hence, the algorithm is largely programming language
independent, but it is dependent instead on some computational model private to
the programmer.

This decoupling of programming — devising a solution — from programming lan-
guage accounts for phenomena observed in the study. Experts were tenaciously
resistant to a change of algorithm; in no case did a change of language #tself provoke
a change of algorithm. Unless provoked strongly, as by failure or inefficiency, experts
did not look beyond the first algorithm ‘good enough’ to satisfy the problem. Rather,
they were willing to tolerate heavy translation overheads in recoding a solution into
an alternative language. Rather than guiding algorithm choice, programming lan-
guages may be distorted into conformance with the programmer’s abstract solution.

In contrast, languages were changed much more readily than algorithms. Experts
were willing to change languages just for fun as well as under the provocation of
unacceptable obstruction (see next subsection).

4.3 Obstructions to coding; how programming languages get in the way

Apparently, although a programming language is unlikely to contribute directly to
a solution, it may obstruct solution, even contributing to errors or oversights. Du
Boulay and O’Shea (1981) also suggest that different error types may correlate to
particular programming languages. In the study cited above (Petre and Winder,)
1988), experts observed a number of coding obstructions.

Strongest among the experts’ objections were obstructions to performance: inef-
ficiency and an inability to access the facilities in the hardware. In other words, and
in contrast to the aspirations of language designers, languages which did not support
low-level manipulations were considered obstructive (e.g. ‘I'd love to see someone
try and do that in Scheme; you can’t. You can’t get at the bits.” and ‘There’s a lot
of...design decisions which you can’t easily express in a language which doesn’t allow
you to control storage’). All of the experts had an awareness of the machine that they
instruct and, more broadly, of the world in which they operate. All of them claimed

110 M. Petre

to have a reasoning model of the underlying machine; their aim was to produce a
program that would run effectively on a computer. Many of the experts were not
satisfied with a solution until the code had been compiled and run. Their concern
about efficiency underlines the persistence with which reality constrains computing
problems; there is a tension between the importance of the abstract algorithm and
practical demands.

In order to satisfy their concerns about performance, experts demonstrated a
wily evasion of restriction and a canny persistence in uncovering necessary details.

Other obstructions inhibited clarity of expression, a well-recognized goal; ‘The
problems that must be solved with today’s languages are not simple. It is important
that the programmer’s task not be compounded by an additional layer of complexity
from the very tool that is being used to solve the problem’ (Marcotty and Ledgard,
1987). Experts bemoaned a lack of data structuring tools, the inadequacy of abstrac-
tion facilities, an inability to reflect the solution structure, and verbosity or notational
clutter (e.g. ‘So, how do you arrange, in a purely array world, to imitate a list?’,
‘...you can actually manage to package up control structures in Scheme, whereas you
can’t really in C++ or Pascal. Now, the lack of that is something I’ve felt for a long
time...” and ‘...the sheer textual complexity was enough to stop me even trying’).
The conclusion was that ‘ugliness’ matters; programmers will refuse to use a pro-
gramming language that is too obstructive or unpleasant. (Typical examples were
Cobol, rejected for its verbosity, and Scheme, rejected for its messy punctuation.)

5 What expert language users want: a programming language
‘wish list’

This section draws on the reported investigations of expert programmers to offer a
wish list of general language facilities and qualities. Although this list is by no means
comprehensive, it does attempt to capture the gist of what expert programmers
expect from, and how they expect to use, general-purpose programming languages.

5.1 Granularity and control

The characteristic mastery by experts of both abstraction and detail, and the tension
demonstrated by expert programmers between the abstract algorithm and practical
demands, reflect the key tradeoff in modern programming languages: that between
power, in the sense of abstraction and combination, and specific control. The ex-
perts want, on the one hand, the ability to abstract, to think in terms of high-level
constructs, and, on the other hand, the ability to manipulate hardware or ‘to get at
the bits’. Experts need to look at different things at different times; in particular
they need to choose their grain of focus at any one time (c¢f. Chapter 3.3 concerning
opportunistic design strategies).

Expert programmers resent restrictions, particularly restrictions masquerading
as ‘protection’. The trouble in many languages is the assumption that program-
mers can forget details, that concrete detail, whether explicit or embedded in the
language implementation, is ‘accompaniment’ to a program rather than part of it.
These languages confuse ‘exclusion of detail’ with ‘granularity of detail’. The notion
of protecting the programmer from low-level details is, in the case of the expert, mis-
guided. Lesk (1984) characterizes the problem: ‘The good news about this is that

r

Expert Programmers and Programming Languages 111

you don’t have to decide on the recursion or iteration yourself. The bad news is that
you may not like what you get’.
A more appropriate aspiration than protection is selection: the ability tJ) select
the granularity of information for the context, when the context includes the inten-
! tions and goals of the expert as well as the nature of the problem, and to dip among
the levels during a single task. The aspiration should be to provide information
only when desired and to provide sensible defaults, so that, if the programmer is not
interested, the implementation will handle the details.
Moreover, the language should provide comprehensive control. Experts want the
: language to be able to make full use of facilities in hardware, including interface
] facilities.

5.2 Basic, flexible tools

| Expert programmers are pragmatists. They tend to rely on the language features
they can count on getting. Like smiths, they expect to create most of their own

h tools. Discovering and remodelling hidden, high-level mechanisms is perceived to

! entail more work and esoteric knowledge than building utilities up from a low level.
Hence; experts tend to prefer generality and flexibility to specific in-built power,
although they will make use of appropriate tools when convenient.

Much of the enthusiasm for the newer programming styles (e.g. functional, object
oriented) is accounted for as recognition rather than conversion. Programmers receive
gladly tools for doing what they intend and have been achieving by less direct routes,
i.e. by writing programs in a style other than that of the programming language (e.g.
‘structured’ assembler, or ‘functional’ C), or by implementing the desired evaluation
mechanisms in whatever language is available. One common pattern is to use some
crude but effective language (e.g. C) to build an intermediate language customized
for the problem domain (e.g. writing an object-oriented superstructure for C, or a
schematics-encoding language in Lisp).

But experts don’t view handy facilities as substitutes for basic utility; these same
celebrants argue against restriction. Often they achieve the desired combination
of expressive power and control by mixing languages (e.g. writing the bulk of a
prototype in Prolog, but handling the input/output and graphics in C).

Implicit in arguments for granularity of focus and for flexibility is recognition both
that any general purpose language can express any solution expressible in another,
and that each language expresses some things well at the expense of others.

5.3 Structural visibility, modularity, and abstraction

The desire for abstraction facilities extends in part' from the desire for structural
visibility. Experts want to be able to express the solution structure as they perceive
it, with support for the conception and amendment of that structure. They want
structuring tools both for expressing strategy and for representing data. They want
tools for packaging mechanisms into structurally and notionally sensible parcels (or
‘modules’ with locality (that is, with internal scope and a defined interface to other
parcels). Further, they want tools for abstraction, so that they can generalize parcels
into program concepts to be used and reasoned about in a way that de-emphasizes
their internals.

112 M. Petre

Reiterated within this sense of abstraction is the argument about granularity of
focus. A choice of granularity leaves the constructs within a program abstraction
beneath the level of concern. It is critical to distinguish the choosing of focus from
invisibility. The distinction is between the option to ignore the detail encompassed
within an abstraction, and inaccessibility; i.e. between ‘needn’t look’ and ‘cannot
see’.

Such powerful structuring tools are not without their dangers. Abstraction build-
ing is seductive; forming generic abstract types can lead into confusing excess and
even eclipse the problem itself. It is not clear that the languages which offer abstrac-
tion tools actually help in choosing — and choosing the extent of — abstractions, or

facilitate rebuilding if the abstraction structure fails.

5.4 Accessibility

Experts want access to a complete, workahle model of the language, preferably with-
out digging into the implementation. In general, computational knowledge, not ma-
chine knowledge, is critical to solution (e.g. an effective knowledge of what a stack
is and how it operates need not include the details of the machine instructions and
memory locations used to implement it). Unfortunately, computational knowledge is
still often unavailable except via hardware or language implementation knowledge.
The notion of ‘freeing the programmer’ from implementation details is misguided
when, as in the case of hidden evaluation mechanisms, the language model is not de-
ducible from the language surface, or when, by reading a program, the programmer
cannot anticipate what the machine will do.

In the case of the more ‘powerful’ declarative or specialist languages (e.g. Prolog,
SQL), some algorithmic decisions are pre-empted by the language implementation.
That is, the language implementation injects algorithmic information not in the pro-
gram, so that part of the solution is embodied in the language. To that extent,
the language contributes directly to the solution, and the programmer requires at
least an abstract knowledge of those in-built mechanisms in order to comprehend a
solution strategy and its behaviour completely.

In order to code effectively in a language, the programmer needs a fairly accurate
model of the language for mapping with the solution model. The idea of separat-
ing the language definition and design from the language implementation is a good
one — but if a complete, workable model of the language is not accessible via an
alternative source, the programmer will delve through the implementation and will
exploit whatever ‘hacks’ were needed to make the language work.

5.5 Predictability and efficiency

Experts need to be able to predict, at least roughly, the behaviour of their programs,
including efficiency, side-effects, by-products, and data end-state. Wirth (1974) called
this transparence, and considered it an aspect of simplicity: ‘Do not equate simplicity
with lack of structure or limitless generality, but rather with transparence, clarity of
purpose, and integrity of concepts’. By transparence, Wirth means that a language
feature ‘does not imply any unexpected, hidden inefficiencies of implementation’ and
that ‘the basic method of implementation of each feature can be explained indepen-
dently from all other features in a manner sufficiently precise to give the programmer
a good estimate of the computational effort involved’.

Y

Expert Programmers and Programming Languages 113

Efficiency, far from being an ‘implementation detail’ separable from program -
and language — design, is of primary jmportance to expert programmers. “What
seems clear is that people settle on fairly efficient Janguages, regardless of the claims
of the high level language designers’ (Lesk, 1984).

5.6 Conciseness or simplicity

Experts appreciate an uncluttered notation. As reported earlier, ‘ugliness’ matters.

6 Summary and conclusion

The list of what expert programmers want in a general-purpose programming lan-
guage differs from the aspirations of language designers less in detail than in empha-
sis. The well-foundedness versus utility schism is reflected in the designers’ emphasis
on correctness and the expert programmers’ emphasis on predictability and effi-
ciency. To exaggerate the point: whereas designers often aspire to provide a panacea,
users want tools. Although programmers do not object to the advantages of formal
manipulation, they will not, in general, accept them at the expense of control and
performance. A second important discrepancy is in the interpretations of abstrac-
tion: what designers discuss in terms of hiding and restriction, programmers desire
as a selection of focus paired with sensible defaults.

What expert programmers seem to want is what Hoare prescribed back in 1973:
‘A good programming language should give assistance in expressing not only how
the program is to run, but what it is intended to accomplish; and it should enable
this to be expressed at various levels, from the overall strategy to the details of
coding and data representation’. Or, as Tennant (1981) phrased it: ‘In short, an
ideal programming language would combine the advantages of machine languages
and mathematical notations...”.

Programmers often address inherently complex tasks. If the programming lan-
guage is itself complex, it may be an obstruction rather than a tool; it may contribute
to the problem instead of to the solution. The point remains to provide good tools
for people who instruct computers, that is, tools for tool-users.

References

Adelson, B. (1981). Problem solving and the development of abstract categories in pro-
gramming languages. Memory and Cognition, 9, 422-433.

Adelson, B. (1984). When novices surpass experts: the difficulty of a task may increase
with expertise. Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 10, 483-495. !

Adelson, B. and Soloway, E. (1985). The role of domain experience in software design.
IEEE Transactions on Software Engineering, 11(11), 1351-1360.

Adelson, B., Littman, D., Ehlich, K., Black, J. and Soloway, E. (1984). Novice-expert dif-
ferences in software design. Interact *84, First IFIP Conference on Human-Computer
Interaction. Amsterdam: Elsevier.

Allwood, C.M. (1986). Novices on the computer: a review of the literature. International
Journal of Man-Machine Studies, 25, 633-658.

114 M. Petre

Chase, W.G. and Simon, H.A. (1973). Perception in chess. Cognitive Psychology, 4, 55-81.

Chi, M.T.H., Feltovich, P.J. and Glaser, R. (1981). Categorization and representation of
physics problems by experts and novices. Cognitive Science, 5, 121-152.

Denvir, B.T. (1979). On orthogonality in programming languages. SIGPLAN Notices,
14(7), 18-30.

Dijkstra, E.W. (1976). A Discipline of Programming. Englewood Cliffs, NJ: Prentice Hall.

du Boulay, B. and O’Shea, T. (1981). Teaching novices programming. In M.J. Coombs
and J.L. Alty (Eds), Computing Skills and the User Interface. New York: Academic
Press.

Flon, L. (1975). On research in structured programming. SIGPLAN Notices, October
1975, pp. 16-17.

Fung, P. (1987). Novice PROLOG programmers: a consideration of their problems. CITE
Technical Report No. 26. Milton Keynes: Open University.

Green, T.R.G. (1977). Conditional program statements and their comprehensibility to
professional programmers. Journal of Occupational Psychology, 50, 93-109.

Gugerty, L. and Olson, G.M. (1986). Debugging by skilled and novice programmers.
Proceedings CHI'86: Human Factors in Computing Systems. New York: . ACM.

Hoare, C.A.R. (1973). Hints on programming language design. SIGACT/SIGPLAN
Symposium on Principles of Programming Languages, October 1973,

Hoare, C.A.R. (1981). The emperor’s old clothes. Communications of the ACM, 24(2),
75-83.

Jeffries, R., Turner, A.A., Polson, P.G. and Atwood, M.E. (1981). The processes involved
in designing software. In J.R. Anderson (Ed.), Cognitive Skills and Their Acquisition.
Hillsdale, NJ: Erlbaum, pp. 255-283.

Kaplan, 8., Gruppen, L., Leventhal, L.M. and Board, F. (1986). The Components of
Ezpertise: A Cross-Disciplinary Review. Ann Arbor, MI: The University of Michigan.

Kernighan, B.W. and Plauger, P.J. (1974). The Elements of Programming Style. London:
McGraw-Hill.

Kowalski, R. (1982). Logic as a computer language. In K.L. Clark and S.-A. Tarnlund
(Eds), Logic Programming. London: Academic Press,

Larkin, J.H. (1983). The role of problem representation in physics. In D. Gentner and
A.L. Stevens (Eds), Mental Models. Hillsdale, NJ: Erlbaum.

Lesk, M. (1984). Programming languages for text and knowledge processing. In M.
Williams (Ed.), Annual Review of Information Science and Technology, vol. 19.
Knowledge Industry Publications, pp. 97-128.

McKeithen, K.B., Reitman, J.S., Reuter, H.H. and Hurtle, S.C. (1981). Knowledge or-
ganisation and skill differences in computer programmers. Cognitive Psychology, 13,
307-325.

115

Expert Programmers and Programming Languages

Oman, P.W. and Cook, C.R. (1988). A paradigm for programming style research. SIG-
PLAN Notices, 23(12), 69-78.

Petre, M. and Winder, R.L. (1988). Issues governing the suitability of programming
languages for programming tasks. People and Computers IV: Proceedings of HCI’88.
Cambridge: Cambridge University Press.

Shneiderman, B. (1976). Exploratory experiments in programmer behavior. International
Journal of Computer and Information Sciences, 5, 123-143.

Taylor, J. and du Boulay, B. (1986). Why novices may find learning PROLOG hard.
In J. Rutkowska and C. Crook (Eds), The Child and the Computer: Issues for
Developmental Psychology. Chichester: Wiley.

Tennant, R.D. (1981). Principles of Programming Languages. Englewood Cliffs, NJ:
Prentice-Hall.

Wasserman, A.I. (1975). Issues in programming language design—an overview. SIGPLAN
Notices, July 1975, pp. 10-12.

Weiser, M. and Shertz, J. (1983). Programming problem representation in novice and
expert programmers. International Journal of Man-Machine Studies, 19, 391-398.

Wirth, N. (1974). On the design of programming languages. Proceedings of IFIP Congress
74. Amsterdam: North-Holland, pp. 386-393. -

Zemanek, H. (1985). Formal definition the hard way. In E.J. Neuhold and G. Chroust
(Eds), Formal Models in Programming. Amsterdam: Elsevier, pp. 411-417.

