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Abstract

The primary purpose of this chapter is to provide readers with a sufficient under-
standing of methodological issues to enable them to consider critically the numerous
experimental results presented elsewhere in the volume, particularly given the po-
tential conflicts between controlled laboratory studies and real-world observations.
The chapter commences with a review of the many reasons why data might be col-
lected in the study of programming, before looking at the choice of programming
tasks for investigation. This is followed by an introduction to the key concepts
of experimental design — statistical significance, effect size, sample size and power
— since understanding the distinctions between these is critical in applied research,
even when behaviour is being observed in real-world contexts. Methods for observing
programming behaviour in situ are presented next, followed by a brief discussion of
some special issues which arise when we try to generalize from applied research. The
chapter concludes with some example case studies which are intended to emphasize
the complementary nature of controlled methods versus observation and artificiality
versus the real world.
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1 Types of data collection

When planning or assessing research it is important to consider the reasons why the
research is to be, or was, conducted. This is a topic which I shall return to later,
but it is necessary here to outline four of the main reasons why data is collected. It
would be a mistake to believe the distinctions are as clear as I present them here,
particularly since research may be conducted for more than one reason.

1.1 Hypothesis testing

This is the main tradition in cognitive psychology and it is used when contrasting
theoretical positions make different predictions about the effect of some manipulation
on behaviour. In these circumstances it is desirable to set up experimental situations
with everything constant, except for the essential manipulation. In this way any
observed difference in performance can be attributed to that one difference.

For example, one could have a theory of program comprehension that claims
comprehension is attained through an initial analysis of syntactic structure and,
therefore, that the use of indentation to indicate syntactic structure will lead to im-
provements in all aspects of program comprehension. An alternative theory might
simply be that much program comprehension is possible without an analysis of syn-
tax. This theory predicts benefits for indentation only when the programming task
requires understanding of the program’s syntactic structure. In this, rather simple,
scenario an ideal hypothesis-testing experiment can be constructed. Subjects can be
supplied with indented, or non-indented programs and then be required to perform
tasks which may or may not require comprehension of the syntactic structure.

Unfortunately life is not always as simple as in this example. Frequently it is not
possible to make one manipulation without ‘knock-on’ effects resulting in experimen-
tal conditions that differ in more ways than the hypothesis requires. For instance, in
the above example, indentation might mean that long lines must be wrapped onto the
next line. In this case, the experimental design is impure, since any effect observed
may be due either to indentation or to line wrapping, or the two effects may cancel
each other out. In these circumstances the researcher must introduce new conditions
that may not seem realistic, but which allow the hypothesized effect to be properly
observed. In the indentation example one would have to compare indentation with
and without line wrap, and line wrap with and without indentation.

Assessing the outcome of such experiments relies on statistical tests to determine
the probability that the observed differences are due to chance variations in perfor-
mance (assuming there is no difference in reality), rather than systematic variations.
This probability is described as the statistical significance of the effect (see below).

A vital component in any hypothesis testing research is the theoretical framework,
since this both enables the researcher to make decisions about what tasks to provide
and what data to measure and it provides the context within which the results
can be explained. Hypothesis-testing research is not possible without a theoretical
framework and such research is better described as a comparison.

1.2 Comparisons

Similar to hypothesis testing, but less systematic, are comparisons. In these the
researcher attempts to discover which of two (or more) alternatives is easier to use,
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or whether some change to the programming process has an effect on performance.
Comparisons are different from hypothesis testing in that they are intended to ob-
serve, but not explain any effect. Whereas hypothesis testing is used mainly in
theoretical developments, comparisons are commonly used to recommend courses of
action. Although comparisons cannot provide explanations, since the cases to be
compared often differ on many criteria simultaneously, they are excellent at stimu-
Jating hypotheses and theoretical frameworks.

To return to our indentation example, our research question may simply be
whether indentation provides a more usable representation of a computer program.
For this comparison, although the results themselves may differ according to the pres-
ence or absence of line wrap in the actual experimental materials, line wrap is not
important in interpreting the results, since it is a necessary feature of the indentation
of real programs.

The results of such comparisons are conventionally tested for statistical signifi-
cance, even though the more useful measure would be one of the size of the difference
between the two conditions. This is known as the effect size (for more details, see
below). The effect size is critical when results lead to recommendations for action,
since there may be hidden costs in the action that were not assessed in the compari-
son (e.g. time spent producing flowcharts, printing facilities for flowcharts, etc.), but
which need to be taken into account before action is taken.

1.3 Evaluations

The distinction between evaluations and comparisons is a very fine one and there is
considerable overlap. However, an evaluation occurs when we are asking a question
like ‘Can people use flowcharts?’, rather than ‘Are flowcharts better than structure
diagrams?’. Evaluations may also be performed simply with the intention of improv-
ing a system. Thus, it is unnecessary to compare it with something; rather, one
looks for the weaknesses in the system. Whereas with comparisons we may design
our experiment with only one or two measures of performance, in evaluations it is
common to measure as much as possible. Subjective, non-performance measures (i.e.
questionnaires) are usually used as well, since preferences may be as important as
performance. Decisions as to which of the many measures are most informative will
often be made post hoc. For example, in evaluating a novice programming environ-
ment we may be interested in showing that 50% of programs run first time or that
50% of bugs are corrected within 5 minutes. These criteria may have been derived
from observations of other systems, but note that no direct comparison occurs.

1.4 Exploration

Exploratory data collection occurs when the research question begins ‘What happens
if ...?”, or ‘How do people do ...7". Such questions are particularly common when the
main research theme is novel and we lack enough information to engage in the other
types of data collection (as when studying new paradigms, such as object-oriented,
parallel or logic programming). For example, if we are interested in teaching aids for
some programming language we may decide to collect examples of programs written
by novices, in order to look at the sorts of errors they make, how they correct them,
etc. Alternatively we may wish to look at problems that arise in system design
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generally, rather than just in the coding stage, which may involve observations of a
number of examples of system design.

The prime difficulties with exploratory data collection are that it can be very
difficult to collect and record such data and it is rare for the resultant data to be
well defined. Thus, we can try to count novice programming bugs, but it will be
difficult to decide what counts as a single bug, and the number produced will not
help us to describe the errors. Likewise there are no obvious numbers to be collected
from observations of the system design process. Although numbers are not essential
to all research, the description and interpretation of non-numeric data can be very
difficult.

1.5 Summary

The above methods of data collection are each appropriate in different circumstances.
The results of each need to be interpreted differently, and the results from each are
often necessary for the design of further research using other approaches.

There is no simple relationship between the ease of data collection and result
interpretation. Thus, hypothesis-testing research often requires much work in the
construction of experimental conditions and materials. However, if designed correctly
the results should be directly interpretable in terms of the theoretical justification of
the experiment. Conversely, although exploratory data is often easier to collect, its
analysis can be extremely time consuming.

2 The experimental task

As already noted, there are many different kinds of research goals, and as well as
requiring different methods, they are also best examined through different tasks.
Exploratory data collection will require the use of realistic programming tasks, since
the main goal is to observe real programming activity. In contrast, the hypothesis-
testing approach is not bound by the need for realism and can construct experimental
tasks better suited to testing the hypothesis under consideration.

Many different tasks have been given to programming subjects. The more obvi-
ous include asking subjects to write a program and ‘think aloud’ while they do it,
or giving them a program and setting them a comprehension quiz about it. Another
very natural technique is to scrutinize code, often from students, either to classify
types of errors (Spohrer and Soloway, 1986) or to compare frequencies of different
solution types (Ratcliff and Siddigi, 1985). But there are also less obvious, more
artificial tasks, such as timed question answering with miniature programming lan-
guages (Sime et al., 1977), or recalling progams that have only been viewed briefly
(Kahney, 1983) Each task has its place. In this section I shall illustrate some of the
reasons for choosing different types of tasks.

There are two important considerations — the object to be studied (the person
or the system), and the programming task of primary interest (see Chapter 1.3). I
shall examine these in turn, but the same conclusion can be drawn from each: ‘You
can’t study people using one system and assume your results generalize; you can’t
study a single task and assume you have found out all the important facts’.

The prime interest in studying the person has been in the comparison of experts
and novices, with particular interest in how experts represent programming knowl-
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edge. The most popular approach has been exploratory techniques, such as verbal
protocols and recall techniques (revealing what is recalled first, what is forgotten,
etc.). In both, the results depend upon the investigator’s judgement to extract mean-
ingful patterns from the data. Subsequent testing to discover whether the patterns
are real or spurious requires more rigorous approaches based on comparisons and
hypothesis testing, such as the priming study by Pennington (1987) outlined below,
or ‘fill-in-the-blank’ (Cloze) tests, in which we predict the ease with which different
programmers will be able to complete different types of program statements.

Studying the system, unlike studying the person, does not seem to invite ex-
ploratory study. Typical approaches have been the comparison of different nota-
tional structures (Sime et al., 1977) and studies of different browser designs (Monk
and Walsh, 1988). These are experiments where performance was compared in two or
more different experimental conditions, using very orthodox laboratory designs. The
tasks used in such studies usually cover a range of programming activities. For exam-
ple, Sime et al. used carefully timed question answering and coding, measuring time,
number of syntactic errors, correction time, etc. The use of miniature programming
languages, novice subjects and a game-like scenario enabled accurate conclusions to
be drawn about notational differences, though at the expense of reality.

Studies of different programming tasks (i.e. writing, reading, debugging, modify-
ing, etc.) offer another perspective on the choice of experimental tasks. The majority
of studies of program writing have used observational techniques, either video (with
or without verbal protocols) or post hoc analysis of code. Exceptions include the
work of Hoc (1981) comparing different environments for solving data-driven and
procedure-driven problems, and the work of Sime et al. on writing programs in dif-
ferent notations. Studies of program comprehension, in contrast, have used a great
variety of different techniques. A common technique is a comprehension quiz, but
this is not as simple as it might seem. Some studies have failed to detect effects
of their manipulations (e.g. indentation) because when all the test items are aver-
aged together there is no effect, but there may be large differences on a few of the
items. The challenge to the researcher is then to explain why those few items are
different. Other comprehension techniques include hand-execution, ‘fill-in-the-blank’
tests (Soloway and Ehrlich, 1984; Thomas and Zweben, 1986) and the recognition
of program structures (Cunniff and Taylor, 1987). Studies of debugging have used
both observational techniques and also comparisons of performance with and without
various tools (Weiser, 1982, 1986; see below).

Here again there is an important warning: whilst single tasks, single subject
populations (e.g. students) and single languages may be used to disprove a theo-
retical hypothesis, they are of little use when they confirm hypotheses. Early stud-
ies of programming languages often used a single task, such as hand-execution, to
compare different notations. However, Green (1977) showed that different proce-
dural notations indistinguishable on one task (reasoning about control-flow), could
produce very different performance on a second task (reasoning about conditional
structures). Later, Gilmore and Green (1984) were successful in showing that the
effect partially reversed with declarative languages. Reasoning about control-flow

_revealed notational differences, where reasoning about conditional structures did not
(more details are given in Chapter 2.2).

In summary, therefore, for truly generalizable ccnclusions, a variety of tasks, a
variety of types of programmers and a variety of languages should be studied. When
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all these variations are not present, then care must be taken not to overgeneralize
the results.

3 Important concepts in experimental design

3.1 Statistical significance

This concept is probably familiar to readers, since it is the most frequently reported
in published papers. It provides a measure of the likelihood of the observed differ-
ence in scores being a result of chance variations in the performance of four subject
groups, assuming that they were drawn from the same population and that the ex-
perimental manipulations had no influence on their performance. As researchers
we are interested in drawing the conclusion that our subject groups, although from
the same population originally, have been differentially affected by the manipulation
and can now be regarded as being from different populations. Thus, the statistical
significance of a result assesses the probability that there is not a difference in the
scores achieved by the different groups. Only when this probability is small can we
draw the inference that our experimental manipulation had an effect on performance.

By convention a probability of 5% is taken as this small level beyond which we
conclude that we have observed a real effect. Thus an observed difference with a
6% significance is commonly not reported, where a 4% probability might lead to
publication. Because statistical significance is simply a measure of probability, we
should take care to interpret it as such. A probability of 5% represents a one in twenty
chance, which means that if we conduct twenty statistical tests, then there is a high
probability that one will reveal a significance of around 5%, without any implication
that our samples are from different populations. This can be a substantial probl_em'
when gathering large quantities of data, since this may require numerous statistical
tests. The best solution is to use hypotheses to restrict the number of tests performed
and to use significance levels smaller than 5%.

3.2 Effect size

A concept which is frequently confused with statistical significance and which is of
the utmost importance when interpreting applied research is that of effect size. This
reflects the influence on a score of the experimental manipulations, though not just
by magnitude, but also by variability. Thus effects which are easiest to detect are
either small in magnitude and totally reliable across subjects, or more variable, but
large in magnitude. Much harder effects to detect are those which have both small
magnitude and large variability.

Unfortunately effect size is not usually a calculable quantity, though estimates
can sometimes be made by statistical analysis (see Hoc and Leplat, 1983, for further
details). Nevertheless, the larger the effect the easier it will be to observe in an
experiment. In such circumstances fewer subjects may be needed, or noisy measures
of performance! may be used.

A statistically significant effect is not equivalent to an ecologically relevant effect,
since the effect may be small, but the experimental precision sufficiently high that

1 A noisy measure is one in which the task context or the mechanism of measurement introduces
extra variability into the data (e.g. a task context in 'which many different strategies are available
to subjects). : '
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it is detected statistically. Correspondingly, a non-significant effect is not equivalent
to an ecologically negligable effect, since the experimental precision may have been
so poor that the effect could not be detected statistically. This second point is of
great importance, since it is quite common for substantive conclusions to be based
on the flimsy fact that the results were not statistically significant. Landauer (1987)
provides further discussion on this topic in relation to HCI generally, along with
numerous examples.

3.3 Sample size

The problem of sample size is one of the most difficult to deal with, since it seems
abundantly clear that small samples must be a bad thing. This intuition is usually
based on the problem of the representativeness of the sample, which is determined
by the method used to select the sample.

However, if the sampling method is unbiased, then small samples are not inher-
ently bad. Indeed, the same levels of statistical significance from small and large
samples would be suggestive of larger- and smaller-effect sizes, respectively. If the
same experiment were conducted with either twenty or forty subjects and the same
average scores and significance levels were obtained, then contrary to intuition the
experiment -with twenty subjects represents a larger and probably more ecologically
important effect.

The assessment of statistical significance is based on the sample size, and it is
incorrect, therefore, to talk of a result being ‘more significant’ because of the sample
size (whether small or large).

The main problem with small samples arises when the results are not significant
(i.e. p > 5%), since the use of a larger sample, all else being equal, might reduce
p to below 5%. Thus again, one must be cautious when interpreting non-significant
results, especially when the statistical significance is in the 5% to 20% region?.

It is important to note also that the sample size is not the total number of
subjects used, but the number used in each experimental condition. The choice of
sample size is frequently constrained (by availability, expense, etc.), preventing the
use of an adequate number for the anticipated effect size. When this situation arises,
it is necessary to increase the power of the experiment through more careful design.

3.4 Power

The power of an experiment is a tricky concept. It is a measure of the quality of an
experimental design. It is affected by sample size and by the quality of the measures
of performance, the accuracy of the classification of subjects into groups and by the
quality of the materials used. ,
Imagine we are investigating the benefits of a new debugging tool. The effect size
is constant but, according to the experimental design, our ability is reflected by the
accuracy of these estimates. Power will be affected by the quality of our performance
measures, not just in terms of millisecond accuracy, but also in terms of how well
defined and reliable across subjects our measures are. We could also use either a

2In general, it seems to be the case that the sensitivity of an experiment is proportional to the
square root of the number of subjects. Thus to double the sensitivity of an experiment around four
times as many subjects will be required. Adding a few extra subjects to the sample is unlikely to
make much difference.
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within-subjects design (where each subject performs in each experimental condition)
or a between-subjects design (where each subject performs in only one experimental
condition). In general a within-subjects design is more powerful, producing the same
level of significance with fewer subjects. However, the repetition in a within-subjects
design (which may lead to learning and order effects) may lessen the quality of the
performance measures, thereby decreasing the power.

The main skill of experimental design is constructing an experiment of sufficient
power to detect an effect, without overkill. When contradictory results are discovered
(one with no significant differences and one with significant differences) it is important
to remember that they may be due to differences in the power of the experimental
designs.

3.5 Summary

(1) Statistical significance measures probability and is not a direct measure of effect
size.

(2) Significance levels reflect both effect size and the power of the experimental
design. :

(3) Large effects require less-powerful experimental designs.
(4) Small sample sizes produce less-powerful designs.
(5) Noisy measures of performance produce less-powerful designs.

(6) Weak designs may fail to reveal genuine, but small, effects.

4 Observational techniques

Within the life sciences generally, use is made of both observational and experimental
techniques. The former serve in the process of discovery when existing theoretical
frameworks are unable to precisely define hypotheses, whilst the latter can validate
hypotheses. The former can be particularly valuable for uncovering new and inter-
esting phenomena, but they are unable to fully explain them. The latter will produce
well-defined information, but are unlikely to discover something new. Observational
techniques are a form of exploratory data collection, but they are becoming increas-
ingly sophisticated and, thus, deserve a separate section of this chapter.

In the study of programming it may seem surprising that initial research focused
on experiments, when observational methods would seem more appropriate to a new
discipline. However, the first investigators either performed simple comparisons or
developed their hypotheses from existing theoretical frameworks in psychology. The
shift to observational techniques has grown from doubts about both the value of
generalizing from context-bound comparisons and the further applicability of the
theoretical frameworks.

Green (1980) provided a good review of some of this early research, covering
three theoretical frameworks: ‘Languages as Notations’, ‘Programming and Natural
Languages’ and ‘Programming as Problem Solving’. The integration of these frame-
works is the challenge to future research, requiring observational studies to stimulate
the development of new unifying ideas.
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Many of these observational techniques involve verbalization by programmers
about either their current activity or, retrospectively, about some earlier activity.
This is known as a protocol, and the analysis of such data is known as protocol
analysis. Due to problems associated with the reliability of people’s insight into
their own thought processes, there are many complex issues in this area. Ericsson
and Simon (1984) provide a clear and comprehensive coverage of these issues and is
essential reading for any researcher contemplating the use of protocol analysis.

There are a number of different areas where such protocols might be collected:

(1) Interviews with programmers: Prior to the use of more formal techniques a
researcher may conduct an interview with a programmer about the nature and
organization of the work. The information acquired should not be assumed cor-
rect since there may be a discrepancy between actual activity and the planned,
intended activity as perceived by the programmer. The more formal observa-
tions will provide an opportunity to verify these initial findings.

(2) Video plus verbalization: Video provides a relatively easy means of observ-
ing the programmer’s ‘natural’ programming activities. These may be accom-
panied by simultaneous verbalizations, or the programmer may review their
performance later on. The former may interfere with the subject’s normal pro-
gramming style (through increased mental workload), whilst the latter may
lead to a rationalized account of unstructured behaviour. The advantage of
such methods is that, unlike simple error counts, etc., they are able to capture
the full dynamic nature of programming activity.

(3) Constructive interaction: A more natural form of observation may be to have
two users co-operating on the solution to a problem. In this way their con-
versation provides natural verbalization. The main problem with this method
is that of making an individualistic interpretation of the results. This method
has not been used in relation to programming problems, though examples of
its use can be found in O’Malley et al. (1984).

(4) Longitudinal studies of learning: Over the length of a programming course
attitudes and perceptions can be assessed and submitted programs collected.
The sheer volume of data that this produces is'a problem in its own right,
with any analysis being extremely time consuming and frequently subjective.
These methods are further complicated by the uncontrollability of the situation.
Prior experience, books read, experiments performed, effort expended are all
uncontrolled variables which may influence the learning process.?

(5) Social and organizational processes: The larger context of programming (in
a commercial/industrial world) is affected by many social and organizational
issues. These cannot really be studied using traditional hypothesis-testing tech-
niques and require observational methods. Chapter 4.1 provides an example of
how such research may be conducted.

3In fact, these variables affect all studies of programming, though hypothesis-testing methods
can control for them, in part, through careful experimental design. The only controls available for
observational techniques are post hoc statistical ones (i.e. multiple linear regression). However, the
increasing availability of easy-to-use statistical packages means that such controls may become more
powerful than experimental ones.
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In fact, it is misleading to pretend that there is a clear distinction between
hypothesis-testing and observational techniques, since there are increasing number
of studies that use aspects of both. For example, Widowski (1987) uses a simulation
of a programming environment to capture elements of natural behaviour, but within
a controlled environment. Leventhal and Instone (1989) describe a pilot longitudinal
study in which formal experimental techniques are used at regular intervals through-
out a programming course. This mixed research is likely to prove the most fruitful
over the next few years.

5 Applying research

5.1 What was the question?

In the hypothesis-testing approach the question addressed by a piece of research is
usually straightforward and clearly presented. Thus, for example, we might ask the
question ‘can we demonstrate circumstances in which novice behaviour is superior to
that of experts?’ (Adelson, 1984). But it is rare that we have such precise questions
to answer. This is usually more of a problem for an assessor of the research than for
the researcher. It is not unusual for research to be criticized for failing to consider
certain factors or issues, when they were not relevant to the researcher’s own question.

For example, the research conducted at the University of Sheffield in the 1970s
(Sime et al., 1977) into the design and use of different conditional structures (e.g.
If ... GOTO versus IF ... THEN ... ELSE ...) was intended to further our un-
derstanding of how program representation interacts with the programming task to
determine performance. Although it was not intended that the results be taken as
strict recommendations for future language design, Shell (1981) has dismissed these
research efforts with

‘how compelling does one find a psychological study of novice programming which
found novices’ fears of dealing with a teletype so overwhelmed their effects that they
studied ‘programming’ in the context of a bizarre game which involved feeding a
mechanical rabbit!’

The statistical argument behind Sheil’s criticisms is that through using experimental
design with high power, Sime et al. have detected effects of small size, which are
of no practical value, an argument that is valid within the comparison approach to
research, but not within hypothesis-testing, for which the design of Sime et al. was
well suited.

Thus, hypothesis-testing research may not be directly useful for the production
of human factors guidelines, though the resultant clarification of theory should be.

5.2 Interpreting causes

Conversely, in the human factors paradigm it is often sufficient just to show, for ex-
ample, a 30% improvement in performance with system X as opposed to system Y. In
these situations one must be wary of trying to draw theoretical conclusions from the
design difference between X and Y since such inferences are often not valid. For exam-
ple, we may compare experts in different programming languages but any differences
cannot then be attributed simply to language differences since the programmers may
also differ in their programming education, motivation and programming problems
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experienced. Gilmore and Green (1988) found marked differences in the nature of
debugging by BASIC and Pascal programmers.

Their language-specific conclusions were based on the fact that the subjects in
these different languages had apparently had similar computing experiences and that
the subjects performed comparably overall. But Davies (1988) has shown that BASIC
programmers can perform like Pascal programmers when they have received tuition
about program design skills. Given the difficulties of finding Pascal programmers who
have not received such training, there has been no investigation of whether Pascal
programmers without design skills perform like BASIC programmers. For now, we
can only conclude that there are education effects and probably language differences
too.

Alternatively, a study may compare novices and experts in the same language,
gaining considerable knowledge about their differences, but without understanding
the causes of the differences. This is especially important when we use our knowledge
of novice-expert differences to recommend particular teaching practices. The critical
factor may be amount of programming experience, or range of problems studied or
the numbers of programming languages known.

This problem of understanding the cause of an observed effect is closely related
to the problem of experimental validity, which is of great importance in assessing the
value of any piece of research.

6 Experimental validity

The problem of validity arises when we try to generalize from our results to other
samples, to other languages, or to theoretical positions. There are many different
types of validity and it is important not to confuse them.

Two important types of validity are internal and external validity. Internal valid-
ity describes our ability to be sure that our explanation of the observed differences is
the only likely explanation, and it is closely related to the statistical issues discussed
earlier. External validity describes our ability to make correct generalizations about
the implications of the results. In most cases external validity is only an issue when
we have high internal validity. Hypothesis-testing research must place most emphasis
on internal validity, while comparisons and evaluations need to emphasize external
validity.

For example, the Sime et al. studies (and the later Gilmore and Green studies
mentioned above) have high internal validity.

The differences observed cannot be due to anything other than the differences in
the notations presented to subjects. These studies demonstrated that the subjects
needed different types of information for different tasks and that an important prop-
erty of the notations used was the match between the information easily obtained
and that needed for the task.

These studies have moderate external validity, since the result cannot be un-
questionably generalized to all programming notations and programming tasks (a
result that would be of great interest to anyone developing new notations). "The
results should generalize, however, to novice programmers Jearning a first language
and probably to novices learning any language. Since the subjects in the experiments
did not become experts in the notations, it is hard to be sure of the external validity
in relation to expert programmers.




94 D. J. Gilmore

3

Although not lacking in external validity, these studies do lack face validity, a
concept that is easily confused with external validity. Whereas external validity
reflects our actual ability to generalize, face validity reflects our apparent ability to
generalize.

Face validity can be illustrated through one of Sheil’s criticisms of these experi-
ments. Sheil appeals to his readers’ intuitions about the compelling nature of research
involving a ‘mechanical rabbit’ without discussing whether the important conclusions
depend upon the method used. Given that the main implications of the Sime et al.
studies derive from the theoretical position, the method of study is of little relevance.

Unfortunately, research can have high face validity without either internal and
external validity. For example, Gannon (1977) assessed the value of data typing
in programming languages. To do this, he developed two complete languages that
were identical in all respects except data typing and, unavoidably, any other features
affected by data typing. Although his results show an advantage for statically typed
languages, it is not clear whether this is solely due to data typing, or whether the
advantage derives from the ‘better primitives with which to solve string-processing
problems’, or the fact that ‘most students learn a statically typed language as their
first language’. Any explanation of these results cannot be shown to be the only
valid explanation (an absence of internal validity). Without internal validity there is.
unlikely to be a high level of external validity.

Face validity is an important property of research, especially when there is a need
to convince others of the value of the research. However, it should be considered
after internal and external validity, not before. Programming behaviour is extremely
complex and in order to acquire statistically useful measures of performance simple
tasks and unreal measures of performance are often essential. This is particularly
so when we wish to make inferences about the causes of observed differences in
performance.

7 Methodological case studies

7.1 Current concerns rigorously applied

There is a considerable literature on the nature of expertise in programming (see
Chapter 3.1), but very little of it has used the hypothesis-testing approach to vali-
date the many observational results. Pennington (1987) carried out a complex study
that took a standard psychological methodology and applied it to programming. Al-
though the study has little or no face validity, it has high internal validity, through
a tradition in cognitive psychology (McKoon and Ratcliff, 1980). Pennington’s ex-
periment addressed the expert programmer’s mental representation of a computer
program. The subjects’ task was to comprehend and learn a program.

Pennington tested the programmer’s memory for particular lines of the program
through a recognition test. However, before presenting the statements to be recog-
nized, she presented subjects with a momentary glimpse of another statement from
the program. If the mental representation of this ‘priming’ statement is close to the
‘to be recognized’ statement then the speed with which recognition occurs will be
quicker. If there is no mental association between prime and test statements then
the recognition time will be slower.

By using primes that were either procedurally or functionally connected to the
test item it is possible to infer the mental distance between statements in the program.
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Pennington’s results revealed that

procedural rather than functional units form the basis of expert programmers’ mental
representations. (Pennington, 1987, p. 295)

This result, which is different from others in the area, is important because of
the high internal validity. It serves not to further applications of existing results, but
to qualify them and point out possible errors of interpretation in earlier experiments.
This reveals the value in using the hypothesis-testing approach for theories that have
been derived from comparative and evaluative data.

7.2 The real world raises problems of representation

At the opposite end of the spectrum we can consider a valuable observational study
with high face validity, but which does not lend itself to generalizable conclusions.
Letovsky et al. (1987) looked at an IBM code inspection process. They analysed
one sixty-five minute video tape in detail and found that three goals were being
achieved during the inspection (clarity, correctness and consistency) through the use
of three behaviours (reconstruction, simulation and cross-checking). A feature of their
analysis was that although they were observing a high-level process, the problems
encountered during the code inspection varied from syntactic concerns to problems of
specification. Of particular interest are the syntactic difficulties which arose with the
use of ‘case-statement’ in which there was conflict between the ‘natural’ task structure
and the most efficient code structure. The design team had to make decisions about
balancing comprehensibility and efficiency.

Although it is not clear how an alternative syntax could have solved this problem,
it illustrates that the mapping from syntax to semantics can be a critical part of the
programming process. Thus, unlike a hypothesis-testing experimental study, which
tends to look for one clear-cut result, observational studies can provide interesting
results along a variety of dimensions.

7.3 The challenge to external validity

Weiser (1982) investigated aspects of expert debugging strategies and found that
experts use ‘slices’ when debugging. A ‘slice’ is that part of the program which can
alter the value of a particular variable (the buggy variable). An important property
of a slice is that the statements within it need not be textually contiguous, but may
be scattered throughout the program.

In his experiment, Weiser’s subjects had to debug Algol-W programs of seventy-
five to 150 lines, which contained just one error in the subroutine which performed
the bulk of the calculations. To test the programmers’ use of slices, they were given
a recognition memory test after debugging all three programs. The test examined
their memory for slices versus contiguous code and for relevant (to the bug) and
irrelevant statements. Since the interest was in semantic understanding, details such
as variable names were altered before the lines were presented for recognition.

The results of the experiment revealed that relevant slices were recognized as
-accurately as relevant contiguous statements, but significantly better than the ir-
relevant slices. From this Weiser concludes that although programmers do not use
only slices when debugging; this is clear evidence that slices are used as part of the
debugging strategy.
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Given that slices can be formally defined, the natural progression of this research
was to build slice-based debugging tools. Weiser and Lyle (1986) evaluated the utility
of such tools for debugging. Despite the apparent validity of the early experiments,
these evaluations revealed that although ‘pencil and paper’ simulations of slicing aids
were beneficial in speeding up debugging, the on-line tool showed no such beneﬁts
Weiser and Lyle conclude that

perhaps, slicing is like watching a beautiful sunset — a computer can do it, but it J‘l.‘l.St
isn’t the same. (p. 189)

Weiser and Lyle went on to look at dicing tools, which reduce the size of a slice
still further (slicing the slice), and found that these tools did provide the programmers
with an advantage when debugging, even though there were no results to show that
expert programmers use dice when debugging.

This example reveals the need to be cautious when assessing the external validity
of some research. The research results might seem quite conclusive, but the step from
them to application may be considerable.

8 Summary

This chapter has presented various important concepts in experimental research and
demonstrated that the study of computer programming skills requzres a wide range
of approaches to the collection of data.

An understanding of hypothesis-testing techniques is essential, since almost all
of the early research on programming has this form and, at least until there is an
agreed theoretical framework, it will continue to be of great importance in studying
programming. But recently, observational techniques have become popular due to
their ability to capture the more complex aspects of programming. Such techniques
are now an invaluable part of the empirical repertoire, even though there are still
some analytical problems.

The case studies demonstrate how a variety of approaches, tasks and methods
should be viewed not as a problem or a weakness, but as an essential property of a
rapidly changing area which has lots of pressing, but very different questions (e.g.
theoretical, practical, speculative). There are many more examples to be found and
hopefully this chapter has helped to prepare the reader to appreciate those that are
presented in the rest of this book.
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