Chapter 1.2

The Nature of Programming

T. R. G. Green

MRC Applied Psychology Unit, 15 Chaucer Road, Cambridge CB2 2EF, UK

Abstract

‘Programming’ is an exceedingly diverse activity, and many questions confront anyone
who tries to say how programmers should work. This chapter attempts to describe
some of the issues where cognitive psychology is relevant, without offering answers.
Different programming cultures stress different virtues, on one hand neatness and
well-definedness, on the other hand openness and effectiveness. The neat-scruffy
differences show themselves both in individual styles and in claims that languages
should be small, or that languages should contain all the necessary tools; although
the argument ultimately depends on judgements of utilities, there are many cogni-
tive issues not yet answered. The cultural differences are supported by various social
mechanisms whose study would be of interest in its own right. Programming environ-
ments show similar divisions into neat or scruffy, but they also differ in being high or
low-level. Low-level text-based environments are still commonest but structure-based
editors, usually built on syntactic structure, are becoming more common. More re-
cently, editors based on semantics have been investigated. Each higher level poses
more cognitive questions, most of which remain unanswered. Developments in visual
representations of programs also raise urgent questions of what information should be
displayed and how, as do the increasing numbers of specialist languages. The chapter
ends with a sketch of some of the most promising recent developments, indicating
yet again a few of the cognitive issues that are raised.

Psychology of Programming Copyright © 1990 by Academic Press Limited
ISBN 0-12-350772-3 All rights of reproduction in any form reserved

24 T. R. G. Green

2.2 Individual style

The contrast between neats and scruffies certainly depends in part on the needs of
the task and on the local culture, but it also depends in part on individual preference.
Some people enjoy writing cryptic code, while others enjoy writing self-evident code.
The mystique of cryptic programming, in which programs become fiendish puzzles for
outrageously intelligent technocrats, was seriously dented in the 1970s by a series of
polemics propounding the ideals of good style, such as Kernighan and Plauger (1974).
This book contained a great deal of common sense; some of it was apparently wrong
when tested in the laboratory — but all the same, it added up to a convincing case
for straightforward, simple programming. Ingenuity for its own sake became less
popular.

Despite that shift away from the baroque, individual style is still detectable in
programming. What do we know about it? Next to nothing. Aptitude tests, widely
mvestigated as a.personnel selection tool, tell us nothing about programming style,
and personality factors seem to have been unhelpful in investigations. One of the
few successful investigations into personality factors in this area, perhaps even the
only one, is the demonstration that risk aversion plays a part in success with certain
types of programming environment, notably structure-based editors (Neal, 1987).

2.3 The urge to economy

Another type of contrast separates big, rambling programming languages from small,
economical ones. Small languages using uniform principles are ‘obviously’ easier to
learn and use, some say; others deny that, asserting instead that if a programmer
needs facilities for, say, string handling, they should be provided, rather than having
to be built from scratch each time. This is one of those disputes where each side has
got hold of a truth, but equally each side refuses to see that the other side also has
a truth. In consequence, I have heard some spirited arguments— and some incredibly
silly claims. In general, neats tend to go for small languages, scruffies for big ones.

The basis of the ‘small is better’ argument is perfectly clear and intuitively ap-
pealing. Unfortunately it leads to absurdities. For example, in one version of Prolog
the standard way to perform subtraction is by inverse addition. Addition is per-
formed by writing M

SUM (X, Y, Z)

with the effect that if X and Y were ‘bound’ (i.e. had already been given values) and
Z was unbound, Z would be set to X + Y. No problem so far. But subtraction —
setting Z to X — Y, say — is performed by writing

SUM (Y, Z, X)

This has two difficulties. It is hard for the programmer to work out how the terms
should be arranged to generate the right sum, and it is hard for the reader to discover
which is meant, addition or subtraction; that can only he discovered by working out
whether the variables are bound or unbound at the time of execution. Here we see
an interrelationship with the question of mental models of program behaviour: a
possible reply, in the case of Prolog, would be that the programmer only ‘ought’

The Nature of Programming 25

to need to know that the relation Y + Z = X holds, without needing to know how
that relation is evaluated. Empirical research casts considerable doubt on that claim,
however. In any case similar absurdities arise in other contexts; Green (1980, p. 285)
points out that ‘small is better’ predicts that it would be better to use the single
logical operator P/Q, meaning ‘at least one of P and Q is false’, rather than the usual
untidy collection of AND, OR, etc. But if you do that, then straightforward expressions
turn into monsters:

(p or q) and r becomes (((p/p)/(a/a))/x)/(((p/p)/(a/q))/x)

This is neither comprehensible nor beautiful.

2.4 ‘Natural’ programming

The inventors of new techniques of programming frequently assert that their tech-
nique is better because it is ‘natural’. They rarely say what they mean by that, let
alone discuss why their invention is more natural than other available techniques!
Are these claims well founded? Is there a programming language that is natural? In
my opinion, no. One day, maybe, but not yet.

For example, one school of thought supports logic-based programming, on the
grounds that our natural mental model is supposed to concentrate on logical rela-
tionships rather than on the order of executing actions. The best-known logic-based
language is Prolog, which has been extensively studied as a possible teaching lan-
guage for children and for students. But, in reality, many difficulties arise in Prolog,
some of which reflect the simple fact that logic may be logical, but it is not natural;
it is not how people think. Empirical research indicates that Prolog novices find
execution-based models of computation easier than logic-based models (see chapter
2.5), and that even experts use both types of model, not just logic.

Virtually identical claims have been put forward for object-oriented program-
ming: it is supposed to simulate in some important fashion how we naturally conceive
the world — in this case, however, we are supposed to conceive the world not as logical
relationships, but as objects and classes of objects, communicating by doing things
to each other (‘sending messages’). Yet the interrelationships between real-world ob-
jects are far more subtle and various than the interrelationships that are available in
any programming system, and typically a set of objects (in the programming sense)
has to be defined with very great care and skill to achieve the right effect. Both
anecdotal evidence and observational data (Détienne, 1990) show that programmers
have difficulty in deciding which logical entities shall be represented as objects and
which as attributes of objects. Object-oriented programming may be effective, but
it is certainly not artless: and in that case, it is not natural.

2.5 The social maintenance of culture

The differences between programming cultures are neither accidental nor short lived.
Yet in many cases they seem to be independent of the language itself; for instance,
Pascal textbooks usually use rather long identifiers, while C textbooks use rather
short ones. ITow are these cultural differences maintained? There are several mech-
anisims.

26 T. R. G. Green

Firstly, the pedagogic traditions are very different. A cursory examination of
textbooks dealing with neat languages will reveal the prevalence of certain tutorial
examples, such as the ‘eight queens’ problem and sorting and searching problems,
which are very clean and well defined. Each problem is usually solved as a complete
enterprise, rather than being the basis of evolutionary growth, and there is frequently
some analytical reasoning about the invariants of the program or about its perfor-
mance with respect to size of data set. Students are exhorted not to start coding
until they have fully analysed the problem, nor to approach the computer until the
coding details are fully worked out. Ideally, the code should run correctly first time.
Code that does not solve the problem is an ‘error’. The ‘scruffies’ work with a larger
problem repertoire, and frequently prefer to give space to domain-specific problems,
such as interacting with the operating system, or algorithms for natural-language
parsing, rather than to analytical reasoning. Students are expected to think in code,
and to get the feel of hands-on experience as soon as possible; programs are frequently
developed by incrementally modifying other programs, and understanding is gained
by making ‘fruitful mistakes’, so code that does not solve the problem is seen not as
an error but as a useful step on the path.) '

Secondly, there is considerable social pressure to conform to the local culture.
Where Pascal is fashionable, it is common to sneer publicly at Basic (‘encourages
hacking, rots the brain’) and Fortran (a ‘dinosaur’). Pascal programs written in the
style of Basic, with many ‘go to’ commands and with no proper use of procedure
structure, incur real opprobrium. But Prolog experts sneer at programs making
too much use of cut-and-fail as ‘Pascal written in Prolog’, asserting that programs
should be conceived declaratively not procedurally. And so on for other languages.
Adherents of one language frequently claim that learning another language first will
ruin the learner’s chances of ever being able to program ‘properly’.

Thirdly, in certain circumstances there are clear demands for a particular cul-
ture. Development laboratories need freedom to experiment; but in commercial soft-
ware production of large systems that are intended to have a long life, each pro-
gram has to interact with other programs, written and maintained by other people,
over long periods of time, and the impetus must be towards standardization and
simplification — similar solutions to similar problems, standard coding and documen-
tation styles, and formalization of change procedures. The non-conformist, either a
would-be standardizer in a development laboratory or a carefree explorer in a pro-
duction team, would experience very strong pressure to change.

While differences in tradition are inevitable, and in any case are probably quite
healthy, the arguments would often be assisted by some proper data. Can any peda-
gogic advantage be demonstrated for any of the different traditions? Is it really true
that choice of first programming language seriously affects subsequent programming
ability? Yet again, the evidence is lacking.

3 The environment

Much of the work described in this book deals with writing and reading programs
using the simplest of technology, just pen and paper or a simple text editor. In
truth, that is how most programming is still done. Yet computer scientists have
been remarkably fecund in their creation of alternative programming environments,
and many interesting psychological problems arise. The design of an environment

The Nature of Programming 27

presumably reflects someone’s view of how to simplify some important types of pro-
gramming task, but unfortunately the reports do not usually go into much detail
about what tasks are intended to be supported. Furthermore, virtually no research
has been reported on the advantages of different programming environments, which
means that yet again we can do little beyond point out some of the questions that
come up.

3.1 Neats and scruffies again

The characteristics of neat and scruffy environments reappear, of course, in their
surrounding environments. The neat environment is closed and well defined; it is de-
signed to encourage methodical, well-documented working, in which the coding stage
is not started until the program is well-designed. Just as a single document com-
pletely defines the language, so the environment is well defined, with much emphasis
on standardization across different locations.

The scruffy environment supports ‘evolutionary’ construction: users can slap a
bit on here and a bit on there as their ideas develop. Xerox’s Interlisp is a superb
example. Not only can programs be built incrementally but Interlisp’s ‘advise’ func-
tions also allow second thoughts to be stuck in without having to recompile or even
understand the original programs. Even the system programs can be modified by
advise functions, allowing the environment itself to be modified without having to
recompile all the source code. There is a tool for making programs try to run even
in the presence of programming errors; this tool, called DWIM (‘Do What I mean’)
completely defies the neat doctrine that a single document fully defines the language,
because the behaviour of the program now depends entirely on how DWIM interprets
it. The environment is open and extensible, so that from month to month new bits
appear. The technology of electronic mail and of networks allows the new versions
of the environment to be created frequently and mailed to users. Additions to the
library of packages can easily be made by any competent user. Discovering what
facilities are actually available in all these shifting sands can be quite difficult for
newcomers: the simplest way to find something is to ask an expert. Smalltalk-80 is
another extensible environment, which can be manipulated by programmers to suit
their own needs or preferences. Expert advice on the available resources is needed
very often by baffled newcomers to Smalltalk, just as in Interlisp.

3.2 The question of level

Programming languages (even low-level ones) contain a great deal of structure. It
is possible to build and manipulate programs using high-level operations that reflect
this structure. There are many differing opinions about high-level programming
environments, reflecting differing beliefs about how programmers do, might or should
think about programs and their construction, interpretation and manipulation.
Text-based editors remain the favourite choice, despite all subsequent develop-
ments. Present-day editors for use in programming environments provide some help
with formatting programs, and editors specialized for programming use provide help
with particular awkwardnesses — for example, editors for use in Lisp, with its many
parentheses, provide some means to indicate which parentheses are paired together.
A few editors, notably Emacs, can be customized to provide templates for lengthy
and frequently used constructions, such as loops. In other respects the text-based

28 T. R. G. Green

To start writing a function the user selects DEFINITION from the menu, which
automatically generates the following code:

(DEFUN <NAME> (<PARAMS ...>)
<FN-BODY ...>)

The angle brackets, <...>, surrounds slots that must be filled appropriately. Sup-
pose the user next types the name FACTORIAL, giving:

(DEFUN FACTORIAL (<PARAMS ... >)
<FN-BODY ...>) '

Next the user chooses to insert an IF-construct into the <FN-BODY> slot:

(DEFUN FACTORIAL (<PARAMS ... >)
(IF <IF-TEST>
<THEN-CASE>
<ELSE-CASE>
<FN-BODY ...>)

This goes on until the function is complete.

Figure 2: How Struedi, a Lisp editor, is used.

editors have changed little. Their users like them partly because they are simple to
understand and do not add much of an extra learning load. More importantly, they
do not constrain their users in any way at all. Programs can be built in any order -
top-down, bottom-up, middle-out; pieces of code can be moved around the design at
will; code can give way to remarks like ‘I must finish this bit later’.

The major alternative is the editor based on syntactic structure, allowing users
to manipulate their programs at the level of statements or expressions within state-
ments. A fairly typical example among many others is Struedi (KX6hne and Weber,
1987; Figure 2), designed to help novices learn to use Lisp without being bothered
by syntax problems. It is based around templates of the language constructs, which
can be filled in from a menu of various possibilities.

Although its design philosophy is not unusual, Struedi was built with excep-
tional care for human factors, and its authors even report a small experiment which
suggested that Struedi helped with semantics learning, presumably by eliminating
overheads spent on the syntax problems of Lisp (for a similar result, see Sime et al.,
1977). This sort of result is very encouraging to those who believe that learners suffer
unnecessarily at the hands of badly designed languages presented in environments
that give them little help.

Struedi is a neat language. It imposes an order of development on the program-
mer, and it insists that all changes to the program are made by modifying the source
code, so that there is one and only one text defining the current state of the program.
The code cannot be run until all errors have been removed from the text, so what the

The Nature of Programming 29

text says is a true and faithful indication of the program’s behaviour. The editor is
based on a ‘parse tree’, a syntactic analysis of the text, which means that like several
other systems mentioned here, it is based on control flow. It is debatable whether
that is the information the programmer most needs.

A different approach was taken with ‘KBEmacs’ (Waters, 1985), a knowled geable
program editor in which the user can call on a library of programming clichés to
help construct the program. A cliché is a typical program fragment, such as ‘file
enumeration’, and the user can call it up by asking for it by name. However, the
cliché contains more than code: it also specifies roles, such as the input role defining
the file or other structure, the empty-test which determines when to stop, the element
accessor which accesses the current element in the structure, etc. In the example
shown by Waters (p.1308), the user issues a short sequence of commands, starting:

Define a simple_report procedure UNIT_REPAIR_REPORT.
Fill the enumerator with a chain_enumeration of UNITS and REPAIRS.
etc

A total of six such lines is sufficient to generate more than fifty lines of Ada, forming
a complete and correct procedure definition.

KBEmacs is not meant to be used as a novice’s tool, but as an aid to expert
programmers. The intention is to formalize their knowledge so that it can be used by
the computer. Every expert programmer is expected to know that a ‘simple report’
cliché will have a role which enumerates elements, and to be acquainted with the
cliché of ‘chain enumeration’. All the programmer has to learn is the vocabulary —
what the clichés and roles are called. KBEmacs preserves the cliché structure while
it builds code, so that subsequent editing can refer to roles (‘Fill the enumerator with
<something else>’).

Waters makes two points that are important for an assessment of KBEmacs as a
partner to humans. First, unlike many systems it does not force the user to preserve
syntactic correctness, nor does it impose a pure top-down development. According
to Waters (p. 1318) it ‘supports an evolutionary model of programming wherein key
decisions about what a program is to do can be deferred to a later time as opposed to
a model where only lower level implementation decisions can be deferred’. Secondly,
clichés operate in the domain of programming plans, rather than of text or parse
trees, so it is fundamentally unlike the systems mentioned above.

Unfortunately, Waters adds, attempting to externalize programmihg knowledge
would be a ‘lengthy’ undertaking, since programmers probably know thousands of
clichés, whereas the 1985 demonstration version of KBEmacs knew only a few dozen
and was already some 40k lines of Lisp code. It was also ‘fraught with bugs’ and ran
very slowly. Nevertheless it is an exciting indicator of possible lines of progress.

3.3 What to display

In Chapter 2.2 (‘Programming Languages as Information Structures’) I review the
main findings on the problems of visual representations of programs. As will be seen,
many questions are left unanswered by present research. One of the major questions
is just what should be displayed, given today’s powerful screen-based environments.
Some visual programming systems go little further than to translate a standard

30 T. R. G. 'Green

\ 4
[ca| assign [
Y
=] assign [
\ 4
> [<>| for |3
[X] NewDirection 10|
A
A 4
(X] DrawSection (O]
<
h 4
=] get key O]

Figure 3: The VIP (Visual Interactive Programming) system, by Mainstasy Inc., pro-
vides an automated flowchart. A menu of tools allows the programmer to construct and
manipulate the diagrams. Each box can be ‘opened’ to give more detail: ‘the ‘for’ box, for
instance, contains information about the details of an iterative loop.

programming language into a visual representation. A good example is Mainstay’s
VIP (Visual Interactive Programming), which presents the programming constructs
of Pascal as labelled boxes, with arrows to mark the sequence of operation. ‘A menu of
tools provides for adding to and manipulating the diagram. VIP, as Figure 3 shows, is
little more than an automated flowchart; this is evident in the level of abstraction, the
vocabulary of ‘assign’, ‘for’, etc, and the choice of ‘sequence of operation’ as the main
type of information to represent. Criticisms of structured flowcharts, such as those
summarized in Chapter 2.2, include poor modularity and rigid control structures (see
Green (1982) for a full account of research findings to that date). Such criticisms
will probably apply to VIP with little change.

Other systems present information that is harder to represent in text. For exam-
ple, good textual conventions for indicating parallel or concurrent execution are hard
to devise: however hard we try to ignore the essentially linear nature of text, the
mere fact that line A precedes line B insidiously murmurs to us that A is executed
first. Putting special parentheses around the two lines to indicate that ‘There is no
constraint on order of execution within these bounds’ is not an adequate solution.
An example of a purely textual language designed to represent concurrent processes
in that way is Occam, which uses the keywords SEQ and PAR to indicate sequential
and parallel execution.

&

The Nature of Programming al

This Occam fragment shows one possible control structure for asking for two
quantities to be input and then outputting the result of a computation:

SEQ
PAR
Width askWidth
Length := askLength
printArea (Width, Length))
beep

The SEQ directs the computer to perform the subsequent commands in the sequence
specified, that is, the paragraph starting with PAR (within which the two commands
can be performed in any convenient order), then ‘printArea’, then ‘beep’. Occam
cannot show that the nature of the constraints is different for printArea (which
logically cannot be executed until its data is ready) and for beep (which is executable
at any time, but which the programmer has chosen to have executed only when all
else is complete).

Parallel or concurrent execution is nevertheless relatively easy to represent dia-
grammatically. There is no built-in linear ordering in a diagram, it can simply be
decreed that every box on the page is allowed to commence execution whenever the
scheduler sees fit. ‘Prograph’, by The Gunakara Sun Systems, is such a language.
The connecting lines in Prograph diagrams show data flow, not order of execution,
and each box can be executed as soon as all its data is available. Different box shapes
indicate different types of box: some supply constants as data, some take input from
other sources, some invoke primitive operations, etc.

Programs are organized as ‘methods’, and the display is organized in terms of
windows, each window representing a method. Figure 4 shows a simple method,
using box shapes equivalent to subroutine calls — i.e., they denote methods defined
in other windows. Because Prograph is a concurrent language, there is no constraint
in this program on which of the top two boxes is executed first, ‘ask width’ or
‘ask length’. However, ‘print area’ cannot be executed until both those have been
executed, because it takes data from them. Thus Prograph’s notation seems superior
to Occam’s in these respects. '

But, given a visual display, the central question is what to display. VIP presents
a simple translation of standard text into graphic form, as many other systems have
done; for evaluations, see Chapter 2.2. Prograph presents material that would be hard
to display as text in a simple form. Likewise, Brayshaw and Eisenstadt’s ‘Transparent
Prolog Machine’ and Bocker and co-workers’ ‘Kaestle’ system try to complement the
text: TPM animates the execution of Prolog programs, which is hard to deduce
from the Prolog text, and Kaestle displays animated .views of data structures in Lisp
programs, likewise hard to deduce from the text (Brayshaw and Eisenstadt, 1988;
Bocker et al., 1986).

3.4 Browsing through programs

As programs get larger, programmers find it harder to locate the information they
need. The techniques that have been developed to help them ‘browse’ include a
wide range of very straightforward techniques, answering direct questions like ‘where

32 7R € Cieen

LLLLLLL L LT T P 78

%QEEZ
»)3)3: 32232 » J

LA LSS SIS TS AT S ST S S S SI S S SIS SIS

Figure 4: - This is one ‘method’ from a Prograph program, itself calling further methods.
Solid lines show data flow (from top to bottom); the ‘horseshoe’ line shows a user-defined
constraint that ‘print area’ must be executed before ‘beep’. In the absence of constraints
any method may be executed as soon as its data, if any, is ready; thus this program does
not specify which of ‘ask width’ and ‘ask length’ is to be performed first.

1s this identifier used?’ There are also some more interesting techniques based on
psychological conjectures, either about the search patterns of people browsing large
programs or else about the way information is mentally represented.

In the first category come browsing methods built on ‘hypertext’. The conjecture
is that with conventional systems programmers frequently need to interrupt their
search for information about one aspect of their program to find out what something
else does. Keeping track of where they were, and finding their way back, becomes a
serious overhead. Hypertext systems provide built-in links, so that by say pointing to
an identifier and querying it, the programmer is immediately shown the definition of
the associated subroutine or data structure. Experience shows that hypertext users
lose track of where they came from, so good systems help the programmer keep track
of the search path and find the way back; for example, the recent ‘Hybrow’ system
(Seabrook and Shneiderman, 1989) provides special support to help in managing the
many information windows that make up the search trail.

Quite different in spirit are browsers that try to filter out irrelevant information.
Among many such, the ‘fish-eye view’ (Furnas, 1986) deserves mention. Instead of
showing the programmer a simple slab of C text, as much as will fit on the display,
the fish-eye view in his example lists only the lines that seem to be important in
providing context around the line that is currently being edited. Another example
from that paper is a ‘fish-eye calendar’ where the current day is shown in detail,
the current week in less detail, and the current month in still less detail. A similar
approach, less well worked out, is taken in certain structure-based editors.

The Nature of Programming 33

Browsers like these are obviously built in response to conjectures about what
information programmers want and how they would like to receive it. There has
been very little serious work on that issue. The simple conjecture of the previous
section is that the greatest effort should go into making it easy for programmers to
get at the information that is not easily extracted from the text, which implies that
the fish-eye view might give its users less help than thé hypertext browser. But that
is yet another unresolved issue.

4 Sidestreams

So far we have concentrated on examples taken from what I see as the main line of
progress in programming languages and environments. Around this line have devel-
oped huge numbers of experimental or special-purpose languages and environments,
driven by the needs of the moment or by a spirit of exploration, and some interesting
experiments in combining paradigms that appear at first sight to be incompatible. No
survey would be complete without mentioning at Jeast a few of these and considering
whether they raise special problems, outside those raised by the more conventional
languages.

4.1 Specialist languages

Some unusual and interesting designs for languages have developed from the need
to control specific pieces of equipment. One of the earliest was Forth (Brodie and
Forth, Inc., 1987), developed originally to control astronomical observation equip-
ment. Since the control equipment was driven by primitive microprocessors, the
overheads of conventional high-level languages would have been unacceptable, and
in any case it was necessary to stay very close to the machine level. Nevertheless
pure assembly code was unworkable — it took too long to write and debug a pro-
gram, and changing the program was too hard. Forth was a compromise between
the virtues of assembly code and the virtues of high-level languages. It has become
a popular language for several types of work, including robotics, and has continued
to develop — there has even been an object-oriented Forth. Recently the effectiveness
of Forth as a compromise between high and low levels was underlined by the release
of PostScript (Adobe Systems Inc., 1985), a device-independent page-description
language now widely used to control laser printers. PostScript is comprehensible to
humans and can be used as a programming language, yet it also serves as a communi-
cation medium between computers: word processors and graphics programs generate
PostScript programs which are executed by the microprocessor in the laser writer or
other output device.

The main idea behind Forth, continued in modified form in PostScript, is thor-
oughgoing submission to the reverse Polish notation (RPN). In RPN, operations are
expressed as AB + C « rather than as (A + B) % C. Certain types of hand calculator
do much the same. The difficulty about RPN is how to express control structure, i.e.
loops and conditionals, and how to cope with arrays. Forth boldly adopts an RPN
solution to all these. For instance, the following code defines a ‘word’ (subroutine)
that will print a warning message if its argument is greater than 220:

34 ‘T. R. G. Green

?TO0-HOT (temperature --)
i > IF ." Danger —- Reduce Heat! " THEN ;

Notice the terse syntax: : is the keyword that.introduces the definition, ."
prints the following symbols up to the closing quotation marks. Notice also the RPN
conditional: the .keyword, IF, follows the predicate, and the closing keyword THEN
follows the action arm. The Pascal version would of course be:

IF temp > 220 THEN writeln(‘Danger ..’).

But the most striking aspect of Forth is the free use of the execution stack. The
programmer 1s at liberty to leave values on the stack for as long as desired. When
?TO0-HOT 1s executed it expects to find a value on the stack. In most high-level
languages, a formal parameter would be declared and on entry to the subroutine an
automatically compiled operation would remove the parameter from the stack and
put it into the parameter variable. Forth leaves all that to the programmer: less
complexity in the system, faster speed of execution, but more risk of error. ‘Scruffy
heaven’ is its philosophy on all counts. Questions raised by Forth are: Is it readable?
Can we parse for structure? Is it error-prone? Is it easy to learn because of having
fewer new concepts?

Forth might look a bit old-fashioned today, but it must be understood that
a whole heap of historical, organizational and economic factors determine choices
of industrial languages. The same is true of languages for numerical control and
for programming robots. Visser (1988) describes several types of language in use
for computer control of automatic tools, one of which (MODICON) is based on
relay closures, represented either as schematic relays or as Boolean expressions, with
intermediate variables holding subexpressions. Serious and lengthy programs are
developed in this language. \

Now for a very different group of specialist languages, developed as sequence
controllers. Sequence control languages typically contain no conditional structures
but they provide repetition of patterns and of groups of patterns, and some means to
define new patterns. Languages of this type have been developed for use in diverse
areas. Advanced knitting machines aimed at the domestic market are programmed
using pattern-description languages capable of creating a wide range of effects, yet
intended for use by people with no background in informatics. In contrast, sequence
controllers for musical effects (synthesizers, drum machines, tape editing for video,
etc.) are likely to be used in a ‘hi-tech’ background. Many of these controllers
are meant for professional use, but a few years ago an inexpensive drum machine
for a domestic computer (the ‘SpecDrum’, distributed by Cheetah Marketing Ltd,
for the Sinclair Spectrum) already provided remarkable capability. The user could
store sixteen ‘songs’, each consisting of up to 255 sections, each of which could be
repeated up to 255 times. In each section, one of a list of patterns was performed,
a pattern consisting of some number of bars of however many beats was convenient.
Six different types of drum sounds could be inserted into the bars, both on and off
beat, and the tempo of the song could if required be over-ridden by an individual
pattern.

Sequence control looks simple, but here are new questions for the list. First,
what degree of abstraction is tolerable — could the SpecDrum user have coped with

The Nature of Programming 35

Language Example Query Tor ‘Find the names of employees
in department 50’

SQL: SELECT NAME
FROM EMP
WHERE DEPTNO = 50
QBE:
EMP NAME DEPTNO | SALARY
p. Brown | 50
Figure 5: Two designs for query languages (from Reisner, 1988). Although much

simpler than programming languages, these languages share some of the characteristics.
The advantages and disadvantages of different designs are still not well understood.

subpatterns, and subsubpatterns? Second, if the system is to be readily usable, must
the degree of abstraction be predetermined (songs, sections, patterns), or can it be
extended by the user at will? (Remember that if the degree of abstraction is to
be extensible, the user needs not only a method to define and call patterns, but
also a method to define new levels of subpatterns...). Achieving such complexity of
structure without making the system impossible to use in a domestic setting will tax
the designers! e

The last examples of specialist languages that I shall mention are query languages
for database searching. Query languages are somewhat outside the major scope of
this book, yet ultimately when we understand how to design programming languages
and other notations we should be able to deal with query languages on the same
basis. Two well-known query languages are SQL and QBE: Figure 5 (from Reisner,
1988) illustrates the same query in each representation. Ideally, we should be able to
predict the pros and cons for each design. Unlike most other areas, there have been
controlled experiments on query languages, very well reviewed by Reisner (1988): yet
she concludes (p. 267), ‘It is clear that at this stage of our knowledge only a few of
the issues have even been identified, much less studied. Clear guidelines to aid good
design do not exist’.

4.2 Mixed paradigms

Many problems seem to be peculiarly intractable to any single programming paradigm.
If approached procedurally, it becomes clear that part of the problem is best ap-
proached declaratively, and vice versa. Why not use a mixed paradigm, and treat
each aspect of the problem on its merits?

An interesting early development was a scheme for transforming a typical pro-
cedural program to satisfy a number of ‘sequence relations’ (Middleton, 1980). Ex-
amples of the type of relation covered are: ‘whenever the number of times that
A has been executed is a multiple of N, do B’; ‘stop as soon as the number of
times C has been executed is M’ (where the action C might occur in more than
one location in the original program); ‘between actions D and E, do F at least once’

36 T. R. G. Green

(e.g. between opening a file and terminating, make sure it has been closed — whatever
path is taken). So a complete program could have two parts, a standard Pascal-like
part plus a declarative part specifying sequence constraints, and the compiler would
automatically combine them. Middleton points out that meeting these and other
requirements in conventional sequential terms causes a huge proliferation of admin-
istrative variables, keeping track of how often various events have been performed.
A toy example shows a very simple seven-line program, comprising a loop and a
conditional, being transformed to meet four sequence relations; the final program
is thirty-four lines of vicious-looking code, and it seems undeniable that the mixed
scheme is more comprehensible and easier to modify.

The Middleton scheme has not been tried as a working system, but another
approach has: the combination of Pop-11 (a procedural language with Lisp-like data
structures but a more expressive syntax) and Prolog, to form PopLog. In principle, a
recalcitrant problem can be solved partly in Pop-11 and partly in Prolog, with data
communicated between the two systems. Although this scheme has been available
for some years now, as have similar schemes based on Lisp rather than Pop-11, this
combination has made little impact outside its own band of aficionados. The reasons
are not clear, for it would appear to yield precisely the information that the user
wants in the most digestible form.

5 Where next?

We shall all be programmers soon. That, at least, is the impression one receives from
the vast spread of programming possibilities, creating new environments such as the
knowledge-based and visual systems illustrated above; new models of programming
such as logic-based and constraint-based programming; and new applications, to
science, learning, and education, to the office world, the domestic world, and the
leisure world. Some idea of where programming is going can be got by looking at a
few recent developments. This cannot possibly be representative; for instance, I am
specifically excluding all educational programming systems, which will receive a brief
treatment in a later chapter, and making no mention of program generators, fourth-
generation languages, very high-level application-specific languages, or the prospects
in languages for embedded systems such as domestic microprocessors. My aim in this
closing section is to pick out what may well be seminal developments in programming
styles.

5.1 Spreadsheets

The spreadsheet is now a familiar computational tool. It is so simple to use that
in many people’s eyes it hardly counts as programming, but merely as a declarative
statement of relationships between numbers and formulae. The computation of area
(used to illustrate Prograph above) can be trivially expressed in a spreadsheet, by
putting the two values in two cells and putting the multiplication formula in a third
cell. Other domains are now sometimes packaged with a spreadsheet-like interface,
and this style may become even more widespread. For instance, Spenke and Beilken
(1989) describe Perplex, which interestingly ‘combines the power of logic program-
ming with the popular user interface of spreadsheets’; the user creates predicates by
successively refining first-solution attempts, with immediate knowledge of results, as

The Nature of Programming 37

with conventional spreadsheets. ‘There is no new formalism or language the user
has to learn in order to define new predicates. Programming general solutions is
almost as easy as solving a single, concrete problem. The user need not even know
in advance that he is writing a program.’

5.2 Knowledge engineering

‘Knowledge engineering’ describes the explicit computer-based representation of hu-
man knowledge of how to perform skilled tasks, such as bidding in contract bridge,
choosing suitable crops for farmers, or identifying the cause of an emergency in a nu-
clear reactor; most commonly such knowledge is represented as an ‘expert system’,
which contains the knowledge used by experts and can be consulted for advice in
place of an expert. Vast claims have been made for them, giving the impression that
can readily be built by persons with no specialist programming experience, that real
expertise can be captured, and that they can be used by clients with very little ex-
pertise as a genuine alternative to consulting a live expert. In actual fact, they are at
present useful but quite limited. They will probably become more common and more
useful in the next decade, but despite the early claims it is unlikely that systems of
any complexity will be built by non-programimers ot easily used by non-specialists.
The area has been dominated by representational techniques using ‘production
rule’ systems, programming languages built around the IF-THEN construct. A
commercially available example is “Xi Plus’ which uses a relatively comprehensible,

English-like syntax, in the form:

if temperature < 55
then room is cool

A set of such rules, plus a set of facts established for the current case (e.g.
temperature = 51), forms a ‘knowledge base’. Figure 6 gives as an example a fragment
of a knowledge base for choosing house plants for a given room. The rules can be used
in two ways — either by supplying some facts about the room in question, and then
asking Xi to report what conclusions follow (‘forward chaining’) or else by asking
specifically to find out whether a given conclusion is true (‘backward chaining’). In
forward chaining the expert system examines all its rules: any rule whose IF part
is satisfied by the existing facts can be executed, and the statements following the
THEN part are added to the list of current facts. In backward chaining, the expert
system first examines rules whose THEN part can establish the desired goal: if these
rules have an IF part which only uses currently known facts, well and good; otherwise,
the system tries to find a rule whose THEN part can satisfy that IF, and so on. These
two schemes produce very different behaviour, and Xi Plus is unusual in allowing not
only both modes, but also a smooth transition from one to the other depending on
circumstances.

Expert systems, even more than other forms of programming, aim to put expert
knowledge into a tractable and comprehensible form. One favoured technique is to
allow the client who uses them to ask ‘why?’ questions: ‘Why is ivy the best plant?’
receives the reply ‘Because the light is poor and the room is cool’. Essentially, this 1s
a form of directed browsing over the execution history of the program. Whether this

38 T. R. G. Green

if temperature < 55
then room is cool

if temperature >= 55
and temperature < 65
then room is warm

if temperature >= 65
then room is hot .

if light is poor
and room is cool
then best plant is ivy

...........................

if light is sunny
and room is hot
then best plant is collection of cacti

question light is sunny, bright, poor
text How good is the light in your room?

question temperature = 45 to 75
text What is the temperature of your room in

degrees Fahrenheit?

qﬁery best plant

Figure 6: Fragment of an expert system built in Xi plus. The IF-THEN rules form a
knowledge base. In response to the instruction ‘query best plant’, the system looks for rules
that can establish a best plant. On finding rule 4, which applies in poor light, it looks for
facts or rules about light; the instruction ‘question light is ..." tells it to ask the user ‘How
good is the light in your room?’ and to use the reply as a newly established fact. The reply
‘poor’ will allow it to go on to ‘...and room is cool’; other replies will cause it to discard the
ivy rule and look for another possibility (not shown here).

The Nature of Programming 39

IF WHEN daily(5:00 AM)
When: FOREACH msg IN "In-Tray"
Every day at: 5:00 AM IF read(msg) AND
Header contains: NOT (tagged(msg) AND
Msg body contains: <string> date-sent(msg) > 2 days ago
Folder name is : In-Tray THEN
Msg length is: move-to-folder(msg,"0ld-Mail")

Msg is: Read AND NOT Tagged
Date sent is:
'More than 2 days ago
THEN
Move-to 0ld-Mail

Figure 7: Example of forms-based version (left) and Janguage-based version (right) of
the same program (from Jeffries and Rosenberg, 1987). The task is at 5 a.m. to take all
the old messages (that is, ones that have been read and have not been tagged for keeping)
out of the ‘in-tray’ and put them into an ‘old-mail’ folder.

is the best way to help the client understand how the decision was reached remains
an open question. :

Also at issue is whether such systems will really become favoured vehicles for
non-programming specialists to communicate expertise to others. One of the few
studies of difficulty in this type of system (Ward and Sleeman, 1988) reports a wide
variety of minor difficulties with the notational details, suggesting that the style of
language has to evolve further. More importantly, the programmers were observed to
meet problems requiring ‘deep and careful thought’, especially to do with such issues
as ‘How should rule premises and rule conclusions be organized, and how should rules
inter-relate?’ :

5.3 Forms programming

Another application of the IF-THEN format is in ‘programming by form filling’,
which is intended to provide a simple method for non-programmers to build programs
in limited domains. The limited possibilities of the domain can be exploited to replace
conventional procedural language style with multichoice techniques. The example
(Figure 7) concerns a programmable handler for electronic mail.

Form-filling methods give users fewer ways to go wrong than conventional lan-
guages, so it is not surprising that non-programmers do better; more surprising,
however, is the fact that experienced programmers also scored slightly better with
the form-filling methods. The authors point out that these systems are ‘close to
the prototypical tasks the user wants to perform’, so that the translation distance
between the goal and the required actions is considerably reduced. This is an inter-
esting explanation, although there has been no report of a test such as presenting the

40 T. R. G. Green

two versions of Figure 7 to users and asking which one is ‘closer to the task’. The
sceptic might suggest that one version does a better job of reminding users about
what conditions to include and how the syntax works! More use should, perhaps, be
made of techniques which have such a property.

5.4 Everyday programming

The most challenging task is to get everything right at once: a programming language
that is easy for beginners, has enough power for experts, comes with an environment
which meets the user’s needs, and is attractive to use. While we are a long way from
achieving that, some interesting possibilities are emerging, among them HyperCard
for the Macintosh. HyperCard reverses the normal order of things, in which the
programmer writes a program which might, rather painfully, put some graphics on
the screen. Instead, HyperCard provides ample tools for users to build graphics as
in a normal painting-style application, and then allows fragments of program to be
attached to the resulting picture. The fragments are usually attached to ‘buttons’
which, when pressed, cause them to be executed. One single screen is called a ‘card’,
and a HyperCard program in fact consists of any number of cards, each of which can
show a different picture. A simple example is shown in Figure 8; the user is expected
to use the mouse and keyboard to write numbers into the two fields, and then to
‘press’ the button to cause the computation to be performed.

A limited form of inheritance caters for the frequent need to produce a set of
cards with the same basic design, such as all having a button in the same place. All
cards have a ‘background’, which can be shared by any number of cards; and so a
button which is placed on the background will be present on each card. Both scripts
and graphics can be inherited from the background, and further levels of inheritance
are also provided for scripts. |

Apple, the creators of HyperCard, clearly intended it to become as near an
everyday programming language as they could manage, and it is instructive to
consider some of the steps they took. First, they tried to give it wide everyday
applicability, not so much by building in computing power as by providing me‘a.ns for
HyperCard to control domestic gadgetry. With the right attachments, it can control
compact disc players and video recorders, synthesize sounds, run a MIDI interface to
audio equipment, and even dial telephone numbers; in the office it can provide cal-
endars, reminders and organizers. Next, the system is meant to be foolproof. There
are no variations depending on the particular hardware, the system has been very
thoroughly debugged, it is hard (but not quite impossible!) to create catastrophic
errors which delete important material, and the error reporting is almost jargon free.
They also emphasized simplicity. Difficult concepts have been avoided. (Most data
structuring methods have been classified, rightly or wrongly, as ‘difficult’, so there is
no form of linked list and only a rudimentary form of array.) The programming lan-
guage has been kept free of special symbols and funny-looking words, and although
the result is rather verbose at least the user can usually remember what the syntax
rules are. The use of inheritance techniques is intended to reduce drudgery, although
this has not been entirely successful — more powerful tools are needed. Finally, and
perhaps most innovative, is the principle that program fragments are attached to
screen objects, not the other way about.

IyperCard has the faults of its virtues. The language has little expressive power,
and it is verbose and tiresome to proficient programm-rs. By attaching program frag-

The Nature of Programming | 41

Data field : E;
Area of a
gl | rectangle

Butten Data field
for output
Figure 8: HyperCard programs are attached to graphic objects, typically buttons, on

‘cards’. To the user they look like active diagrams. Here are two different possible visual
arrangements for the same simple example, in which users enter data in ‘fields’ and press
a ‘button’ to start the computation. In this example, the ‘script’ (program) for the button
‘Go’ might be:

on mouselUp
put card field "length" * card field "height" into card field
"answer"
end mouseUp

Scripts are executed when a given event occurs. This script will be executed when the mouse
button is released (‘mouseUp’) within the screen area of the button. Neither the script of
the button nor the names of the fields are visible in the normal mode: the programmer
has to ‘look behind’ them. More complex programs may relate several different cards: e.g.
successive cards may handle area computations for a variety of different shapes.

42 T. R. G. Green

ments to screen objects the overall visibility of the program has been very seriously
reduced (you can’t easily see the scripts for two buttons at the same time) and pro-
grammers have to commit themselves too early to decisions they may later revise. It
will be interesting to see what the next attempt looks like.

6 Conclusions

The development of computing has been based largely on guesses about, what people
would find easy to use. After this quick tour, what do we know — or better, what do
we now realise that we don’t know, but would like to?

(1) We still think too readily of programs as just being for compilation. We should
think of them also as being for communication from ourselves to others, and as
vehicles for expressing our own thoughts to ourselves. So we should think more
about reading versus writing, capture of ideas versus display of ideas, ete.’

(2) Existing environments are better at displaying program information than at
providing means to manipulate it effectively. We need more research on
manipulation of complex structures.

(3) Not enough is known about the advantages of the techniques currently be-
ing explored, such as program animation, mixed paradigms, etc. Surely these
deserve active investigation.

 (4) There has not been enough conscious effort to find ways to display alterna-
tive representations of information or structure; instead, many systems simply
translate textual information into an equivalent form.

(5) Where new types of information structure have been devised (e.g. representa-
tions based on programmer’s knowledge, such as KBEmacs), there is often not
enough existing psychological research to be useful. '

(6) The relationship between the structures of programming languages and the
tools for operating on programs has not been well explored. Research on each
tends to occur without considering the other. Should we not try to discover,
at a generic level, what support programmers need (or at least, programmers
of a particular experience level), and then when designing tools and languages
try to ensure that nothing is omitted?

(7) Is there a ‘solution’ to such profound differences as the argument between
the ‘neats’ and the ‘scruffies’? Probably not. Perhaps we should aim for an
agreement to co-exist, with different approaches suiting different personalities
of different contexts. This demands more research into individual differences —
not merely in aptitude.

In short, we know something about the psychology of learning to program, of
understanding programs, etc., but only in a very restricted range of languages and
environments. It is important to extend our studies to wider vistas.

The Nature of Programming 43

Acknowledgements

I should like to thank Heather Stark, Barbara Kitchenham and Marian Petre for
their helpful comments on an earlier version of this chapter.

References

Adobe Systems Inc. (1985). PostScript Language Reference Manual. Reading, M A: Addison-
Wesley.

Bocker, H. D., Fischer, G. and Nieper, H. (1986). The enhancement of understanding
through visual representations. Proceedings CHI’86 Conference on Computer- Human
Interaction. New York: ACM.

Brayshaw, M. and Eisenstadt, M. (1988). Adding data and procedure abstraction to the
Transparent Prolog Machine (TPM). In R. A. Kowalski and K. A. Bowen (Eds),
Logic Programming: Proceedings of the 5th International Conference and Symposium.
MIT Press. '

Brodie, L. and Forth, Inc. (1987). Starting Forth. Englewood Cliffs: Prentice-Hall.

Détienne, F. (1990). Difficulties in designing with an object-oriented programming lan-
guage. To be presented at INTERACT ’90 Conference on Computer-Human Factors.
Cambridge, England.

Furnas, G.W. (1986). Generalized fisheye views. Proceedings CHI'86 Conference. on
Computer- Human Interaction. New York: ACM.

Green, T.R.G. (1980). Programming as a cognitive activity. In H.T. Smith and T.R.G.
Green (Eds), Human Interaction with Computers. London: Academic Press.

Green, T.R.G. (1982). Pictures of programs and other processes, or how to do things with
lines. Behaviour and Information Technology, 1, 3-36.

Jeffries, R. and Rosenberg, J. (1987). Comparing a form-based user interface for con-
structing a mail program. In J.M. Carroll and P.P. Tanner (Eds) ‘CHI+GI 1987,
Proceedings ACM Conference on Human Factors in Computing Systems and Graphics
Interface. New York: ACM

Kernighan, B.W. and Plauger, P.J. (1974). The Elements of Programming Style. New-
York: McGraw-Hill.

Kohne, A. and Weber, G. (1987). Struedi: a Lisp-structure editor for novice programmers.
In H.-J. Bullinger and B. Shackel (Eds), Human-Computer Interaction - INTERACT
’87. New York: Elsevier.

Middleton, A.G. (1980). A program transformation system for implementing sequence re-
lationships. Technical Report 8001, Dept. of Computer Science, Memorial University
of Newfoundland, St John’s, Newfoundland, Canada.

Neal, L. R. (1987). User modelling for syntax-directed editors. In H.-J. Bullinger and B.
» Shackel (Eds), Human-Computer Interaction - INTERACT ’87. New York: Elsevier.

Reisner, P. (1988). Query languages. In M. Helander (Ed.), Handbook of Human-Computer
Interaction. New York: Elsevier.

44 T. R. G. Green

Seabrook, R.H.C. and Shneiderman, B. (1989). The user interface in a hypertext, multi-
window program browser. Interacting with Computers, 1, 299-337.

Sime, M. E., Arblaster, A. T. and Green, T. R. G. (1977). Reducing errors in computer con-
ditionals by prescribing a writing procedure. International Journal of Man-Machine
Studies, 9, 119-126.

Spenke, M. and Beilken, C. (1989). A spreadsheet interface for logic programming. Pro-
ceedings CHI’86 Conference on Computer-Human Interaction. New York: ACM.

Visser, W. (1988). Langages de prommation dédiés: quelques exemples dans le domaine
des automates programmables industriels. Technical Report, INRIA, Rocquencourt,
France.

Ward, R.D. and Sleeman, D. (1988). Learning to use the S.1 knowledge engineering tool.
Knowledge Engineering Review, 2, 4

Waters, R. C. (1985). The programmer’s apprentice: a session with KBEmacs. JEEE
Transactions on Software Engineering, 11, 1296-1320.

