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Abstract

A ‘program’ has meant many diverse things at different times. The oldest view 'is
that programming is describing calculations; starting with the early languages such
as Fortran and Basic, improved languages have been developed, in which the diffi-
cult GOTO constructions have been avoided and a method of top-down structured
programming has been supported. The top-down method has: certainly increased the
safety of programs, but it has never given a clear description of how calculations
should be broken down into smaller problems. A second view presents programming
as defining functions. A program is a chain of functions which each build an ob-
ject intermediary between input and output, and the act of programming becomes
a matter of progressively enlarging a library of functions. A number of versions
of functional programming are sketched. In the most recent view, programming is
presented as defining and treating objects, which combines the two previous views:
breaking down the calculations to obtain an algorithm, and representing interme-
_diary objects. A program defines inter-relationships between objects, and one new
style of programming is progressively enriching not just an unstructured library of
functions, but a universe of objects with well-defined relationships. :
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1 Introduction

At first sight programming seems a very straightforward activity; however it is always
deceptively so. Debugging programs takes time, there are always errors and it is
a painstaking task to track them down and correct them. Programmers have all
experienced this; if they have not found any solutions as such to the problem, they
have nevertheless worked out ways of playing it safe. The psychology of programming
(Hoc, 1982) studies these strategies.

The computing community also has its own collective history on this subject.
At the end of the 1960s, a crisis emerged in software, programming and languages.
Methodology, top-down design, structured programming, functional programming
were mentioned for the first time. Twenty years later these topics continue to be
discussed. New types of languages — new compared to Fortran or Basic — have
appeared or have been rediscovered: Lisp, Prolog, Smalltalk, etc. Will they solve all
the problems? That remains to be seen. If one is to come to terms with the issues at
hand, it is necessary to define what a programis. Indeed, the idea of what a program
is inevitably affects programming, the more so as it is reflected in the languages as
well as in the methods that are available and are in use in education, and in the
world of programming aids.

This chapter aims to point out the prevailing conceptions of the notion of ‘pro-
gram’ in computer science, the way they are worked out, and the languages and the
methods they have generated.

2 What is a program?

The first answer is syntactical: a program is a text constructed according to certain
grammar rules. This point of view has long prevailed both in teaching (teaching the
forms of instructions one after the other, instructing where not to forget a comma,
and so on) and in research (the first well-written chapter of computer science was
probably the theory of languages, on which Chomsky had a more lasting influence
than in the study of natural languages; the compilers are organized around the syn-
tactical analysis, etc.). In fact, the syntactical viewpoint remains predominant for
beginners — it is a necessary stage, and cheaper training ends there.

It is obviously not enough. It is useless to know a language if one does not
understand what it expresses, the meaning of its sentences, its semantics. So the
question is: what does a program express? '

An opinion poll conducted on this subject would probably reveal that in the eyes
of most people a program describes a calculation. Programming, we know, came
into existence at the same time as the computer, and the one aim of that tool is to
calculate. Of course the word ‘calculate’ has to be taken in a wider sense: printing,
drawing graphs, interpreting data transmitted by sensors, giving orders to a robot,
consulting a dictionary or a file, all these are forms of calculation. It is therefore
possible to define a calculation as a sequence of changes in the state of the machine
(and particularly of its memory).

In fact, it is not correct to say that a program describes one calculation; in
the majority of cases the calculation worked out is based on external inputs. So a
program generally expresses a whole set of calculations, most often infinite — or else
a function linking a calculation to each possible input.



¥

Programming, Programming Languages and Programming Methods 11

But of what use are these calculations, and what do they express in themselves?
It is sometimes the case that the calculation is the end in itself, for example, if it
controls cartoons, or a game, or (more rarely) a robot; i.e. one is interested in all or
some of the stages through which the machine, or a mechanism 1t controls, passes.
But mostly it is not the calculation that is important but its result. The person
using the computer is not really interested in the stages; what he is interested in is
the outcome.

From the customer’s point of view, the program leads from inputs to results; 1t
expresses — to use a mathematical expression — a function : input — result.

This then is a second model of the notion of program. If the first one — the set of
calculations — can be called imperative or procedural (because it expresses how) this
second model can be called declarative or definitional (because it expresses what —
what one expects, what has been asked for or specified). ,

The choice between these two points of view definitely influences the activity of
programming. Programming consists in transforming a specification, which describes
a function, into a program, that is to say, a text which can be interpreted by a
machine in order to calculate this function. Does proceeding from the specification
of the problem to the program involve a mental image of all the calculations, a mental
execution strategy (see Hoc, 1983; Chapters 3.1 and 3.3)7 Or is it possible that only
definitions of functions are involved?

It would seem, indeed, when one watches most beginners (at any rate), that one.
can answer the first question positively and, therefore, the second one negatively:
possibly because the model is dictated by the tool; or possibly, on the contrary,
because the programmer refers to the way a human being would work it out; or
because the notion of function seems abstract. This is not without drawbacks and
leads to errors, notably because it is not easy to have a mental image not only of one
calculation but of a generally infinite set of calculations.

It is possible to react in two ways to this discovery, and this has been done by
researchers and programming tutors:

i. to accept going through all the calculations and to see how best to help it run
smoothly;

ii. or to refuse it and try to train people to avoid it.

In both cases tools are used: languages, methods, software aids.

3 Programming is describing calculations

Historically, this is the first way as it is the closest to the tool: a calculation is a
sequence of changes of state. Each possible change of state will therefore be described
by an instruction (modify the value of a memory word), and a-calculation by a series
of instructions. This is how ‘machine languages’ operate. In fact, it is not one
calculation that has to be described, but a set of calculations which is generally
infinite and which yet has to be described in a finite manner. To this end one invents
the jump (or go t0); it must be conditional to be able to give a good description of
an (infinite) set of finite calculations and not a single infinite calculation.
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The first algorithmic languages (Fortran, but also later Basic) are not founded on
very different ideas, the only difference being that the memory words are represented
by symbols: variables if they contain values, labels if they contain instructions.

Programming generated by these conceptions consists in considering the first
instruction of the calculation; then the second, then the third. . . and in saying from
time to time: at this point let’s start again (see Chapter 2.4). It is programming at
‘grass roots’, setting everything at the same level; however, this is quite normal for
beginners since it transposes the way of performing the task ‘by hand’. A flowchart
expresses it well,

Computer scientists came to realise, however, that jumps produced errors. It
is easy enough to understand why: one is thinking of a calculation and, suddenly,
there is a change in levels to designate a point in the program; what is more, the
link with the described calculations becomes obscure as soon as the references cross
(see Green, 1980). There is also collision in this case between the semantic aspects
(calculations) and the syntactic ones (point in the program), and it is well known
that such collisions are the source of misunderstandings and paradoxes; for instance,
the one concerning ‘the first word of the English language, in alphabetical order,
which cannot be defined in under twenty words’, but which has just been defined in
eighteen.

In short, towards the end of the 1960s the programming reformers (Dijskstra,
Hoare, Wirth et al) rejected in a sometimes slightly dogmatic manner the go to;
and the more modern algorithmic languages (Pascal, Ada, etc.) have turned it into
an object of secondary importance by providing ways of dispensing with it.

Which ways? Ways which make it possible to describe a calculation, or rather
a set of calculations, differently than at the ‘grass roots’ level, instruction after in-
struction. So the calculations have to be broken down into parts which are given
names:

program: part 1; part 2; part 3

The next stage consists in breaking down the parts, on and on, until one reaches
elements which are immediate to program: in this way a structured tree-shaped
analysis is obtained. With this method (top-down or structured programming, see
Chapter 3.3) details are only meant to be considered progressively. And within the
program, each part can give rise to a procedure, particularly if the language allows
for one procedure to be inserted into another.

This step-by-step breaking down procedure, however, only allows for the descrip-
tion of a set of calculations if a conditional statemen® is introduced:

if condition then part 11 else part 12

To solve the problem of describing infinite calculations, two fairly equivalent tools
are available:

* iteration, of the typé:
while condition repeat action

(more powerful than Fortran’s do where the number of repetitions is fixed);



Programming, Programming Languages and Programming Methods 13

3 )

Initial situation Final situation

Figure 1:

# recursivity, which appears as a natural consequence of the top-down decomposi-
tion process: one stops decomposing not only when one reaches an ‘elementary’
part or an already known and programmed part, but also when one comes upon
the very problem that one is programming.

When, however, this recursivity is presented in the context of the imperative top-
down programming and of the algorithmic languages, it seldom goes down well and
one is left with a feeling of uneasiness (see Chapter 2.4). One of the reasons is that
one generally does not find the exact problem which is being analysed, but a similar
one, with slightly different data. So the two problems need to be unified into a more
" general problem by the introduction of parameters. This makes the description more
complex and changes its level.

Besides, when writing a recursive procedure, is one in fact still giving a description
of calculations? Let us examine, for example, the well-known problem of the Hanol
towers: the goal is to move n pieces from a starting post to a finishing post using
a third post as an intermediary (see Figure 1); at each step the top piece of one of
the posts is moved, but may not be set onto a smaller one. The recursive analysis
consists in writing that the goal can be reached by:

* passing n—1 pieces from the starting post to the intermediary post using the
finishing post (similar problem);

% then moving the number n piece from the starting post to the finishing post;

* finally passing the remaining n—1 pieces from the intermediary post to the
finishing post using the starting post.

The procedure obtained is the following:

procedure h (n, starting, finishing, intermediary);
if n > 0 then h (n—1, starting, intermediary, finishing);
move (n, starting, finishing);
h (n—1, intermediary, finishing, starting)
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But does this not amount to a definition of the set of calculations, by a property
defined as a function of a certain number of arguments?

Even more so than for procedures, the question is crucial for the programming
of functions; for instance, to calculate rapidly a power a®, it is possible to use the
fact that it is the square of a™2, at least if n is an even number; more precisely, one
obtains the function:

function p(a, n) : if n = 0 then p := 1
else if even (n) then p := p (a, n, div 2) # 2
elsep:=p(a, n div2)# 2xa

(div yields the integral quotient and # stands for the raising to a power).
This function definition is an equation verified by the function p:

p(a, n) = if n = 0 then I
else if even (n) then p (a, n div 2) # 2
else p (a,n div2)# 2% a

In fact the notion of function in algorithmic languages is a hybrid: describing
calculations or yielding a value? The fruit of this strange coupling is the famous ‘side
effect’ which, during the computation of a function, also modifies the state of the
memory.

Finally, it must be added that even if structured programming has represented
an important step towards greater safety, it does not provide any lead concerning the
central question: how does one break down a problem?

4 Programming is defining functions

In many cases, when one examines the breaking down of a problem in structured
programiming, one notices that each part builds an object, intermediary between
input and result.

Consider the example of linear regression: input, values of n experimental mea-
sures for variables 2y, ..., 2, (explaining variables) and y (explained variable); output,
the coefficients bg, by, ..., b, expressing by the least-squares method y as a linear com-
bination by + byz1 + ... + bz,

The mathematical study shows that the calculation can be done in the following
manner:

construct the matriz M of the measurements (2i5y;) with x50 =1

calculate the transposed T of the partial matriz obtained by removing the last
column from M

calculate the product P of T by M
triangulate the linear system of matriz P

solve the system
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write the coefficients
Or more precisely:

M = construction (input)
T = transpart (M)

P = product (T, M)

A = triangulation (P)

B = solution (A)

result = writing (B)

In fact these are definitions obtained by introducing functions which have to
be described as well. It is actually possible to give these definitions in an arbitrary
sequence (for example, by starting from the result and introducing the intermediaries
which seem useful), since a calculation sequence automatically emerges from the
linking of intermediaries; consequently it does not need to be specified. But the
notion of calculation is altogether forgotten: the style obtained is purely algebraic.
This can be referred to as declarative or functional programmang.

The earliest attempt at promoting this style of programming through a language
is Lisp (McCarthy et al., 1962; McCarthy, 1978), a language from the same period
as Fortran, and long before Pascal. Although knowledge of it for a long time was not
widespread, perhaps because of its syntax and its rank obstinacy to do everything
starting from a very small number of concepts, and also because of the few applica-
tions requiring at that time such programming; but it has now become, thanks in
particular to its applications in artificial intelligence, one of the prominent program-
ming languages. It must be mentioned, however, that pure Lisp did not survive for
long and that variables, iterations, etc. were soon introduced again, but as elements
of secondary importance.

Functional programming urges one, even more so than top-down imperative pro-
gramming, to come back to functions that have already been programmed. What
matters is less writing a large program than progressively enlarging a library of
functions introduced in the most logical sequence possible: the distinction between
programming and controlling a system then disappears.

Other attempts to combine the functional style of analysis with algorithmic pro-
gramming (particularly concerning the notion of iteration) can be mentioned: e.g.
Lucid (Ashcroft and Wadge, 1976) and deductive programming (Ducrin, 1984).

J. Backus’s ideas are more radical: the idea is no longer as with Lisp to define a
function by giving the expression of its result (see funetion p at the end of Section 3)
but to consider it rather as constructed by various types of composition from bricks,
i.e. elementary or predefined functions: function p, for example, would be defined as
a conditional composition involving the predicate of equality, the constant functions
0 and 1, the even predicate, the square, div, multiplication functions. It should not
_come as a surprise (all one is doing is, in fact, composing a program starting from
library programs), but it is nevertheless a shock to our present mathematical culture,
for, if Lisp does away with the notion of the computing variable of Fortran and is
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satisfied with mathematical variables, Backus goes as far as abandoning this concept.
It is in fact the point of view of combinatory logic (Curry and Feys, 1968).

Yet another way of seeing the definition of a function is to describe a relation
between its data and its result. The greatest common divider of two integers, for
example, is defined by

y = gcd (a, b) < diwvides (y, a) and divides (y, b)
and Yz (divides (z, a) and divides (2, b) = divides (7, z))

The language used here is that of mathematical logic, more precisely that of first-
order predicate calculus. And it makes it possible to describe more general relations
than functions: ‘

uncle (z, y) < 3z (brother (z, 2) and parent (z, y))

This type of language can be used for the specification of problems, as was done
by Abrial in the Z language: in this sense, specification is the first step towards
a program. But it is also possible to go no further than specification and to shift
away from the description of a calculation by limiting oneself to defining, in this
type of logical language, the relations between arguments and results, leaving it up
to interpretation software to discover the calculations that will lead to the result.
These calculations are in fact reasonings. This is what happens in expert systems. It
is also the idea put into practice by the Prolog language (Roussel, 1975; Colmerauer
et al., 1983). In theory, the author of the program would not need to know anything
about the manner in which the interpreter will draw the deduction which leads to
the results. In theory at least — reality is not so straightforward.

5 Programming is defining and treating objects

The above is flawed by a serious defect. Stressing the breaking down of calculations
or the definition of functions and relations leads one to forget that calculations as well
as functions deal with objects: objects mentioned in the specification of a problem;
objects processed by the machine or, at a slightly higher level, directly accessible in
the programming language. The latter can be numbers, strings, arrays, files; the for-
mer customers, parts, graphs, polyhedrons, logical formulee. . . Programming is also
the transformation from the latter to the former; in other words, their representation.

There are, therefore, two aspects to programming: breaking down the calcula-
tion to obtain an algorithm and representing objects. One way of dealing with this
duality — the one generally adopted by beginners — consists in concentrating first
and foremost on the representation of the objects, because this leads them back to
a more familiar situation: treating a problem bearing on the objects of language. In
fact this method is induced by most languages, and Lisp more than any other, since
the types of objects handled are particularly poor: there is only one, lists, or more
precisely, trees; it is true that starting from there it is possible to describe all other
types, but it is not necessarily easy.

Taking successively into account the two dimensions of programming — the
representation of the types then the breaking down of the calculation — does not
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provide any guide as to representation and one can hardly expect to achieve an ef-
ficient representation for the problem in hand. So it is better to start off with the
preaking-down process, and then to choose representations which will make it pos-
sible to work out efficiently the functions and procedures brought to light by the
breaking down, a process which can be repeated at several levels. For example, it 1s
very important that the characteristics of an object which are useful in the algorithm
be directly accessible in its representation: they can be fields of a record representing
the object (Pair et al., 1988).

This leads one to think that what matters most of all is not the objects as such,
but the operations executed on them. This idea joins up with similar viewpoints
in other areas: mathematics, epistemology, psychology, and even technology. In
computer science, it has given rise to the notion of abstract data type: contrary
to the viewpoint generated by the classical algorithmic languages, here a type is
essentially characterized by its operations and to define a type is to give a packet of
operations involving it; they will guide its representation. The first language that
adopted this viewpoint must have been Clu (Liskov, 1975), and these ideas have since
been incorporated into Ada (Ledgard, 1980).

Taking this approach, however, one soon realises that types of objects are re-
lated, particularly in a hierarchical manner: a rectangle is a kind of quadrilateral
and a square is a kind of rectangle, which means that to define the class of rect-
angles, and the operations which will be carried out on them, it will be possible to
refine the notion of quadrilateral without repeating everything that can characterize
a quadrilateral. It should also be noticed that this hierarchy between types is not
in itself different from that which connects one object with its type: a type shows
properties valid for all its objects, each one of them being a particular variation of
it. It is also possible to link it to psychological notions such as the prototype, i.e.
an object of a type from which others can be obtained by modifying certain char-
acteristics. This can be seen as a tendency to approximate a ‘naive’ logic, whereas
functional programming leans more towards mathematics. '

In programming, the hierarchy between types presents similarities with the
hierarchy between problems and subproblems or between procedures. In the lat-
ter case, there exists a rule concerning the area of validity of the identifiers in the
interleaved procedures, which allows for understatements. And the duality of view-
points — processing and objects — allows two hierarchies, which are not generally
identical, to coexist. An algorithmic language such as Pascal clearly favours the hier-
archy of processing: in particular a type declaration is separated from the functions
and procedures which should accompany it.

It is possible to adopt the opposite point of view and favour the notion of object.
There, programming is seen as defining objects. It means enriching a universe of
objects; and an object is described from other objects (e.g. its type) by specifying
certain characteristics (a value, for instance). .

This viewpoint generates yet another new style of programming: progressively
enriching not only an unstructured library of functions, but a universe of objects n
relation with one another.

Even if these ideas appear relatively new, they already have a long history — part
of which can be found in Simula (Dahl and Nygaard, 1966), an adaptation for the
simulation of the algorithmic language Algol 60 (Naur, 1960). They are the basis
of the object-oriented languages of which Smalltalk (Kay and Goldberg, 1976) is
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the best known: ‘object-oriented languages’ not because others would disregard the
objects, but because the programming process in this case is guided by the objects,
their definitions and their relations.

6 Conclusion

What about the future then? Convergences appear. Object-oriented languages are
generally created starting from Lisp, which becomes a ‘machine language’ of func-
tional programming, on which more sophisticated languages from the viewpoint of
represented objects are built. Prolog also handles a single type of object — trees
agan — so it would be useful to improve it by diversifying the types; that is why
a certain number of attempts are being made to bring logical programming into
convergence with object-oriented languages. This is because artificial intelligence
continues to play a driving role in the evolution of programming and of languages.
However, there will be no true artificial intelligence if data bases are not included;
and one discovers here a whole universe of objects and relations from which to carry
out reasoning. :

On the other hand, even if programming through a mental execution strategy
appears theoretically as a useless detour and a source of errors, experience shows
that it is difficult to do away with it completely, and for many people the notion
of calculation seems more concrete than the mathematical languages to which the
declarative viewpoint leads. Object-oriented programming may render this discussion
useless by working on objects close enough to the problem set for the analysis to be
very simple and then doing a series of representations.

One must make distinctions, not only according to the kinds of application,
but — and this is new — according to the programmers. The language used is another
dimension. Formerly one used to say that the language in which a program was
written was not very important: all languages used were indeed once similar, all
were algorithmic languages (except Lisp which was not well known). This is no
longer the case nowadays.

The development of programming languages and methods, and the teaching of
them, have up to now hardly been linked to a psychological study of the activity of
programming, and this can account for certain failures. To be of any use, however,
psychology must go beyond the procedural aspect of programming; it must take into
account those other styles which, even if they are not new, are becoming more and
more important nowadays due to the variety of applications and the training that
programmers receive.
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