
1

Usability of Programming Languages

MPhil in Advanced Computer Science
University of Cambridge Computer Laboratory

Lecture Notes – Easter Term 2011

Alan Blackwell

Introduction

This is a practical course, in which most of the learning will be achieved by the design and execution
of original research experiments. The purpose of these lecture notes is to give a broad introduction
to research in the field, both classic research (as collected in the Hoc, Green Samurcay and Gilmore
book Psychology of Programming – henceforth called ‘PoP’), and contemporary research currently
being carried out in the major world centres.

Lecture 1 describes the theoretical principles that might be applied in your experiments, including the
classic approaches covered in the PoP book, and also current trends in leading research.

Lecture 2 provides an overview of the candidate research methods for experimental work, including
their relative advantages and disadvantages, with references to those relevant chapters of the PoP
book and of the Cairns and Cox book on Research Methods for HCI that provide more detailed
introductions of specific methods.

Lecture 3 discusses the specific classes of user for which there are challenging issues in programming
language usability. The so-called ‘general purpose programming language’ as a focus of computer
science research has become relatively stabilised, but also serves a relatively small segment of the
population. This lecture considers the larger populations that can benefit from more usable
programming languages.

Lecture 4 will be directed by the specific research interests of the class. For this reason, detailed
lecture notes are not provided in advance. I include an outline of the topics that will be addressed.

2

Reading List

 Online proceedings of the Psychology of Programming Interest Group (http://www.ppig.org)
note that PPIG 2010 is not yet online at the PPIG site, but a copy of the proceedings has been made
accessible via the course web page. http://www.cl.cam.ac.uk/teaching/1011/R201/ppig-2010.pdf

 Cambridge guidance for human participants in technology research (http://bit.ly/hptps-guide)

 Cairns, P. and Cox, A.L. (2008) Research Methods for Human-Computer Interaction. Cambridge University
Press.

 Hoc, J.M, Green , T.R.G, Samurcay, R and Gilmore, D.J (Eds.) (1990) Psychology of Programming.
Academic Press.

 Carroll, J.M. (Ed) (2003). HCI Models, Theories and Frameworks: Toward a multidisciplinary science.
Morgan Kaufmann.

3

Lecture 1: Principles of human factors in programming

Cognitive models of programming

When we consider the programming language as an ‘interface’ between the programmer and the
machine, a convenient engineering approximation could describe the two sides of that interface in
equivalent terms. In this view, the programmer has ‘I/O subsystems’ via which the interface is
connected (eyes and hands) controlled by a ‘central processor’ (the brain) that includes both
persistent and working storage (long term and short term memory). This convenient analogy between
human and computer can be a useful tool for straightforward engineering purposes. In basic human-
computer interaction, we can often measures of typical performance, for example speed and accuracy
of hand movement, or spatial resolution and scanning time of the eye. We can also test the capacity
and persistence characteristics of different kinds of memory – for example 7 +/- 2 verbal ‘chunks’
like names and digits, or a single detailed visual scene. This kind of data is sometimes described as
‘human factors’ or ‘ergonomics’ considerations. When we invent new kinds of interaction devices or
user interfaces, it is possible to make some performance predictions on the basis of these mechanical
analogies, and they make valuable contributions to usability analysis of conventional user interfaces.

In the case of programming, the relatively simple action sequences that have been the target of
conventional HCI research are only one part of the problem. For most everyday user interfaces, it is
relatively clear what the ‘correct’ sequence of actions should be, if you know what the user is trying to
achieve, so a mechanical analogy to how machines might complete that sequence can be useful.
However in the case of programming, much of the challenge comes from thinking about what you
want to do. Improving the usability of systems for thinking is clearly more challenging than systems
that only involve seeing, choosing and pointing. The necessary theoretical approach has been
described as ‘cognitive ergonomics’. This refers to the field of cognitive science (artificial intelligence
is regarded as a subfield of cognitive science), which greatly extends the ‘computational theory of
mind’ analogy that is implicit in simpler I/O oriented HCI.

The classic cognitive models of programming are recognizably derived from classic artificial
intelligence / cognitive science research. In this view, programming can be described in terms of
‘problem solving’, ‘planning’ and ‘knowledge representation’, all of which correspond to well-
established AI strategies and architectures. However, when these internal process descriptions
become more complex it becomes harder to draw conclusions about them, given that (unlike AI
systems) we can only directly observe external behaviour of human programmers. As a result, it is
easy to fall back on the assumption that the ‘internal’ representation of the problem in the
programmer’s head corresponds quite closely to the ‘external’ representation of the program that he
or she eventually creates.

4

With these critical cautions in mind, chapters 1.4 of the PoP book “Human Cognition and
Programming” gives an overview of programming as a problem solving and planning activity, and
chapter 3.1 “Expert Programming Knowledge: A Schema-based Approach” provide thorough
descriptions of how cognitive/AI theories can be used to characterize the human reasoning
processes that are involved in programming tasks. A more specialized view of cognitive problem-
solving, derived more closely from observations of human reasoning than from computational
simulations, is applied in chapter 2.3 “Language Semantics, Mental Models and Analogy”. The core
insight in this tradition is that humans often solve problems by analogy to others that they have seen
before. This applies to individual programming tasks (if you are asked to write a program where you
can use a similar structure to one that you have written before, your previous solution would be a
good starting point). But more dramatically, it applies to the understanding of programming
languages themselves – the argument here is that even if you have no idea what programming is, you
will understand it by analogy to things you’ve done before – perhaps natural language, perhaps
mathematics, or perhaps Lego bricks. This latter kind of analogy to physical situations with similar
structure is related to the principle of user interface “metaphor”, where system function is presented
by analogy to folders and filing cabinets, or other physical apparatus for information processing.

Programming within the software development process

The cognitive science research tradition concentrates on individual humans who are solving
problems in controlled contexts – often experimental psychology laboratories. This corresponds very
well to the customary constraints of research programmes in AI (because robots are seldom
competent to act in complex social situations such as city streets or dance halls). In the laboratory,
the structure of the task, and the nature of the inputs and outputs, can be closely constrained to suit
the capabilities of a robot, or of a cognitive theory. For the same reasons, most of the experimental
investigations into cognitive models of programming (whether based on schemas, plans, or analogy)
tend to have been focused on individual programmers, under observation in laboratories, addressing
carefully constructed experimental tasks that probe hypotheses related to the specific model being
investigated.

In contrast to these experimental situations, many of the situations where software development is of
commercial relevance are more complex. They often involve as much understanding of the “problem
domain” as they do of the programming language itself. There may be opportunities simply to avoid
hard programming problems, by negotiating a change to the specifications. At an early stage of the
project, there may be many different ways of formulating which problem is to be solved. These
various tasks broaden the characterization of programming from a “problem-solving” activity to a
“design” activity. Design theorist Horst Rittel described a class of “wicked problems”, in which
conventional models of AI planning cannot be applied, because the goals and criteria for success are
under-specified, the constraints conflict with each other, the resources are unknown or negotiable
and so on.

5

A broader view of the tasks of programming is presented in Chapter 1.3 of the PoP book “The Tasks
of Programming”. A great deal of progress in cognitive accounts of design has been made by PoP
researcher Willemien Visser, who also contributed Chapter 3.3 of the PoP book “Expert Software
Design Strategies”. The broader organizational context of software development requires whole
theories of management science. This is outside the scope of this course – there is a whole academic
field of “Information Systems” that deals with it. However a useful introduction, from a relatively
familiar engineering perspective, can be found in Chapter 4.1 of the PoP book, “The Psychology of
Programming in the Large: Team and Organizational Behaviour”. There has been rapid change in
software development methods since the PoP book was published, however. There are many recent
studies published at the PPIG conferences that have explored new practices such as the pair
programming that is popular in some agile software development methods. Pair programming is
sufficiently well constrained that it can be studied in a controlled manner, unlike large software
development teams in a complex organizational context. Studies of larger teams are more likely to be
found in information systems or management research literature.

Individual variation

Cognitive theories of human behaviour are intended to be general theories. The experimental
methods of experimental psychology (and of traditional HCI) are rather reliant on finding aspects of
human performance that are consistent, so that an experimental sample will be representative of the
wider population, and so that statistical arguments can be applied within a hypothesis testing context.
However, even casual observation of professional programming contexts makes it clear that some
programmers are far more productive than others. Furthermore, all programmers are more
productive in a language they know than one they don’t know. This makes it difficult to test
modifications to existing languages and tools, because it is necessary to control for the previous
experience of the individual programmers. Further complication comes from the fact that
programming performance appears to be correlated with other psychometric variables, such as
general intelligence, self-efficacy (personal confidence in one’s own ability) and even some diagnostic
tests for autism.

The most consistent interest in the PPIG research community, as in much traditional HCI, has been
in the contrast between “expert” and “novice” users. These should be treated as technical terms, with
care to avoid the potentially derogatory implications of calling somebody a “novice”. The technical
reference is to the psychology literature in problem-solving, which often tries to characterize the
knowledge that is necessary to solve a problem by comparing experimental subjects who do know
how to solve the problem (experts) to those who do not know how to solve it in advance (novices).
In the PPIG context, the same technique is often used to study programming knowledge, via
experimental comparisons of those who do have it to those who don’t. In a controlled experiment,
the “experts” might be people who have completed a training course in a programming language (say
second year undergraduates) while the “novices” are people who have not (first year undergraduates).
In the past, there was often great interest in studying people who had never seen any kind of
programming language before, who had no expectations, or knowledge that might have ‘crippled’ or

6

‘mutilated’ their understanding of programming (an accusation made by Dijkstra against the
languages BASIC and COBOL). These desirably virginal novices were often described as “naïve”
users – another term that should be used carefully, because it would be derogatory outside a technical
context. These methodological issues are discussed in chapter 1.5 of the PoP book.

However, there is also interest in studying people who are real experts, either to understand the
nature of their expertise better, help other people to become expert, or provide tools that better
support the needs of the expert practitioner. This kind of research into expertise is reviewed in
Chapter 2.1 of the PoP book: “Expert Programmers and Programming Languages”. The author of
the chapter Marian Petre, has also worked extensively in the study of expert designers in other
technical fields, work that is published in the Design Research literature. (Your lecturer has
collaborated with Petre in this area, and also publishes broader studies in design research).

Major research centres and programmes

Psychology of Programming research continues to be actively pursued and presented at the
Psychology of Programming Interest Group (PPIG), which holds an annual international conference,
and also an annual “Work in Progress” meeting (PPIG-WIP) for younger researchers and
practitioners who with to present experience reports rather than full academic studies. The
proceedings of the main PPIG conference are available online. The PPIG-WIP proceedings are not
published. Research in the field was previously carried out under the auspices of the European
Association for Cognitive Ergonomics (EACE), and the Empirical Studies of Programmers
foundation (ESP). Representatives from all of these groups contributed to the PoP book. Since then,
the remaining activities of ESP have effectively been merged with the IEEE conference on Visual
Languages and Human Centric Computing (your lecturer convened an ESP symposium under that
banner in Auckland 2003). The conference/workshop series on Program Comprehension (ICPC,
formerly IWPC) is a parallel body that has been running nearly as long as PPIG. Psychology of
programming research has always been a topic of peripheral interest at major HCI conferences such
as the ACM CHI series, and some leading figures in PPIG/ESP are also leaders in HCI/CHI. The
conference series on Evaluation and Assessment in Software Engineering (EASE) tends to focus on
larger-scale issues, but does include a number of publications describing studies of programming
languages and features.

In these notes, the research field as a whole is described for convenience as PPIG. However, readers
should be aware that PPIG itself is simply the longest-established venue in the field (and one that has
conveniently published a textbook, and made its research archives freely available online). Many of
the individual researchers described below would choose other venues as representing their primary
community.

 PPIG organization and conferences - http://www.ppig.org/

 History of ESP - http://www.ppig.org/newsletters/2006-06.html#esp

7

 EACE - http://www.eace.net/

 EASE - http://www.scm.keele.ac.uk/ease/

 VL/HCC - http://www.cs.cmu.edu/~vlhcc2011/

 ICPC - http://www.program-comprehension.org/

 CHI - http://www.sigchi.org/

The largest programme of funded research in recent years has been the EUSES consortium (End-
Users Shaping Effective Software), funded by the American National Science Foundation. This was
managed by Margaret Burnett at Oregon State University, with collaborators at Penn State (led by
Mary Beth Rosson), Carnegie Mellon (led by Brad Myers), Drexel (led by Susan Wiedenbeck),
Nebraska (led by Gregg Rothermel) and Cambridge (your lecturer).

 EUSES consortium http://eusesconsortium.org/

 Margaret Burnett http://web.engr.oregonstate.edu/~burnett/

 Mary Beth Rosson http://mrosson.ist.psu.edu/

 Brad Myers http://www.cs.cmu.edu/~bam/

 Susan Wiedenbeck http://www.cis.drexel.edu/faculty/wiedenbeck/index.html

 Gregg Rothermel http://cse.unl.edu/~grother/

In the UK, senior members of the PPIG research community are currently active at Salford (Maria
Kutar – PPIG chair), Sheffield Hallam (Chris Roast), the Open University (Marian Petre and Judith
Segal), Sussex (Judith Good) and Cambridge. There are strong groups in Finland (Jorma Sajaniemi,
Markku Tukiainen and Roman Bednarik at Joensuu), Ireland (Jim Buckley at Limerick), Paris
(Francoise Detienne and Willemien Visser at INRIA), as well as many smaller groups that conduct
occasional research projects in the field. There was a European ‘Network of Excellence’ on the
theme of End-User Development, that had close links to the EUSES consortium. Active members
included Volker Wulf (Fraunhofer Institute/University of Siegen) and Fabio Paterno (ISTI Pisa, the
network convenor).

 Maria Kutar - http://www.business.salford.ac.uk/staff/mariakutar

 Chris Roast - http://extra.shu.ac.uk/crr/

 Marian Petre - http://mcs.open.ac.uk/mp8/

 Judith Segal - http://mcs.open.ac.uk/jas583/

 Judith Good - http://www.informatics.sussex.ac.uk/users/judithg/About_Me.html

 Jim Buckley - http://www.csis.ul.ie/staff/JimBuckley/

 INRIA Eiffel group - http://www-roc.inria.fr/eiffel/objectifs_en.html

 Jorma Sajaniemi - http://cs.joensuu.fi/~saja/

 Volker Wulf’s group http://www.fit.fraunhofer.de/services/use_en.html

8

Other active centres in the USA include the University of Colorado at Boulder (Gerhard Fischer and
Alexander Repenning), MIT Media Lab (Henry Lieberman), IBM Research (Rachel Bellamy at TJ
Watson, Allen Cypher at Almaden), and the Human Interactions in Programming (HIP group in)
Microsoft Research at Redmond (Rob DeLine, Gina Venolia and Andrew Begel). Younger
researchers who did their PhDs in these and related groups, are still active in the field, but are now
based at other locations include Rob Miller, Chris Hundhausen, Andrew Ko, Laura Beckwith and
many others.

 Gerhard Fischer - http://l3d.cs.colorado.edu/~gerhard/

 Alexander Repenning - http://www.cs.colorado.edu/~ralex/

 Henry Lieberman - http://web.media.mit.edu/~lieber/

 Rachel Bellamy - https://researcher.ibm.com/researcher/view.php?person=us-rachel

 Allen Cypher - https://researcher.ibm.com/researcher/view.php?person=us-acypher

 Microsoft HIP group - http://research.microsoft.com/en-us/groups/hip/

Current areas of theoretical attention

The relationship between theory and research in HCI is complex, as discussed in Chapter 9 of the
Research Methods for HCI book. A great deal of HCI research does not in fact involve any explicit
theory at all – or if it does, those theories are borrowed from other disciplines (psychology or
sociology). The same is true of much PPIG research. In the past (as can be seen in the PoP book),
cognitive science theories were considered central, and the theory was expressed in the form of
cognitive models, of the kind described in chapter 4 of the Research Methods in HCI book, and the
chapter on GOMS in the Carroll book. The Carroll book contains extended descriptions of most of
the substantial theoretical perspectives in HCI. In principle, any of these could be applied to
programming languages and environments. However there is only one that emerged explicitly from
this field.

Cognitive Dimensions: The most influential framework in the field is the Cognitive Dimensions of
Notations framework, originally proposed by Thomas Green at the Cambridge Applied Psychology
Unit, and developed with substantial input originally from Marian Petre, and then by your lecturer
with various collaborators. The most widely cited publications are a tutorial developed by Green and
Blackwell, a short-form evaluation questionnaire by Blackwell and Green, and an analysis of visual
language usability by Green and Petre in the Journal of Visual Languages and Computing. A special
issue of JVLC, published ten years after that paper, reviewed subsequent developments, including
extensions of the framework outside the programming context to tangible user interfaces and
collaboration tools. All researchers in the PPIG field must be aware of the CDs framework, but it
might be an exaggeration to describe it as a ‘theory’. This was certainly not the intention of Green (he
says), since he presented the framework as an informal source of advice for designers rather than a
new piece of cognitive science. Nevertheless, the framework does have a clear theoretical motivation,

9

based on Green’s conception of programming as interaction with an information structure (Chapter
2.2 of the PoP book – although this does not specifically mention CDs, which was only nascent at
the time).

The basic principle is that any visible ‘notation’ (in fact, any ‘information artefact’, whether a
programming language, a design notation, a recipe, novel, or a sales chart) encodes an information
structure. The information structure is considered to have different parts (which may be
components, modules, elements, entries and so on). These parts have a variety of relationships to
each other (membership, dependency, reference, equivalence, subsidiarity …). Visible notations can
also be analysed in terms of their graphical elements, and the graphical relationships between those
elements (see the entry in the online Interaction Design encyclopedia on visual representation).
Notations are used and interpreted in terms of the correspondence between the visual structure and
the information structure that it represents.

 http://www.interaction-design.org/encyclopedia/visual_representation.html

The individual dimensions such as viscosity (quick definition: a viscous system is one that is difficult to
change) are defined in terms of the relationship between what the user needs to do to the
information structure, and the tools that are provided to make the corresponding change to the
notation. The full set of dimensions is described elsewhere – in these notes I elaborate on a couple of
more subtle theoretical issues.

Notational Layers: It is often the case that one information structure is derived from another, such
that the parts and relationships in one of them can be viewed as arising from the parts and
relationships in the original. For example, the structure of an e-commerce web page is related to the
structure of the database application that generated that web page, which is related to the structure of
a design model for that application, which is related to the structure of the ideas in the designer’s
head, which is related to the structure of the company that commissioned the design. It would be
possible to express each of these information structures in a different visual notation (a screen shot, a
PHP program, a UML diagram, a whiteboard sketch, a business plan respectively). These can be
described as ‘layers’ of notation that combine to make up the whole problem.

Notational Activities: The critical question for usability is what the user needs to do with this
information structure. Simply finding pieces of information within a familiar structure is quite easy.
Trying to understand the relationships in a structure you haven’t seen before is more complex.
Adding new pieces of information, if their relationship to the existing structure is similar to other
parts, may be easy. Changing the structure is likely to be more difficult. Creating a new structure may
be relatively easy if it is being derived from another layer, so that the new parts and relationships are
defined in terms that can be anticipated on the basis of the existing structure. Creating a new
structure when you don’t know beforehand what the appropriate parts and relationships are is most
difficult of all. These different activities are described in the CDs framework as ‘search’, ‘exploratory
understanding’, ‘incrementation’, ‘modification’, ‘transcription’ and ‘exploratory design’ respectively.
There are many aspects of programming work that can be related to these different activities. A

10

recent paper by Blackwell & Fincher considers CDs in terms of the user experiences that can be
associated notational activities.

The developing theoretical integration between the idea of the information structure and the way this
idea can be applied as a design tool is further explored in the chapter by Blackwell & Green in the
Carroll textbook, and Chapter 8 of the Research Methods for HCI book by Blandford & Green.

 A variety of material related to CDs can be found from the following resource site:
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/index.html

Attention Investment: A programme initiated by Blackwell to create a more rigorous theoretical
characterization of interaction with information structures led to the development of the “Attention
Investment Model of Abstraction Use”, which has been extensively applied in Cambridge, at
Microsoft, and at Oregon State University. The main focus of Attention Investment is to compare
the amount of mental effort (for example, focused concentration) that is required to carry out a
programming task, to the amount of effort that would be saved (in terms of automation) once the
program has been created. This can be described as a cost-benefit equation. However, there is a
degree of risk associated with both the costs and the benefits. It can be hard to anticipate the actual
effort that will be involved in getting a program working. The benefits are also uncertain, for example
if the program has a bug – in fact a severe bug might result in the program causing even more harm
than it does good, so the net return on the investment is negative!

The attention investment model predicts why people might be reluctant to engage in programming,
either because they over-estimate the costs involved, or over-estimate the risks of a negative return.
Some professional programmers, in contrast, under-estimate the costs, and over-estimate the
benefits. These kinds of bias can be understood in terms of the heuristics by which humans make
decisions on the basis of their previous experiences (as with problem-solving by analogy, decision by
heuristic biases is a better model of human reasoning than AI systems that tend to have relatively
little prior knowledge of the world, so reason from first principles).

Well-designed programming environments should help reduce the two kinds of error that can result
from heuristic biases. One of the design objectives motivated by Attention Investment has been
described as a ‘gentle slope’ for programming tools, making simple things simple to do, with
gradually increasing difficulty for more complex tasks. Many systems fail to achieve this, so that users
face a ‘cliff’ of complexity when they need to do something slightly more complex (for example, the
transition from cell formulae to macro programming in Excel). Another application developed by
Margaret Burnett and colleagues at OSU is the ‘surprise, explain, reward’ strategy to encouraging
testing and debugging.

 Blackwell, A.F. (2002). First steps in programming: A rationale for Attention Investment models. In
Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 2-10.
http://www.cl.cam.ac.uk/~afb21/publications/HCC02a.pdf

11

Gender HCI: Collaboration with Laura Beckwith at OSU led to attention investment being
integrated with self-efficacy theory to explain some gender differences in programming. That
programme of research continues under the name of “Gender HCI”, although its primarily cognitive
orientation sits uncomfortably alongside more recent research by Bardzell and others that applies
gender studies in an HCI context. Some work to reconcile the two can be found in the work of
Jennifer Rode, who initially worked on this in Cambridge, and is now based at Drexel with Susan
Wiedenbeck.

 Gender HCI - http://eusesconsortium.org/gender/gender.php

Programming by Example: There has been a long tradition of applying inference or machine
learning techniques to develop systems that can infer programs from examples of the required
output. This research is collected in two books, the first edited by Allen Cypher and the second by
Henry Lieberman. Ongoing research in Cambridge is exploring the relationship between this work
and Attention Investment.

 Watch What I Do (Ed. Cypher) http://acypher.com/wwid/

 Your Wish is My Command (Ed. Lieberman) http://web.media.mit.edu/~lieber/PBE/Your-Wish/

Natural Programming: Myers’ group at Carnegie Mellon have carried out a programme of study to
describe “natural programming”, by which they mean ways of describing algorithms and data
structures that are meaningful in natural language and everyday usage. The intention is that the results
should allow programming languages to be designed based on naïve or novice understanding, rather
than requiring more expert training. Some prototype systems based on this idea have been developed
by John Pane, Rob Miller, Andrew Ko and Christopher Scaffidi.

 Natural Programming Project - http://www.cs.cmu.edu/~NatProg/index.html

Variable Roles: There have been a number of productive studies in which aspects of programmer
behaviour are inferred from analysis of source code corpuses, in addition to watching programmers
at work. Research in Finland developed the conception of ‘variable roles’, as a way of characterizing
local programming strategies of using variables. These have become useful as an inspiration for new
design and visualization tools, and also as a guide for educators. Many of the original publications can
be found in proceedings of the PPIG workshops.

Collaboration and agile programming has been a significant focus of research at the PPIG
workshops in recent years. Experimental observation and analysis of the interaction between people
doing pair programming has been a particularly productive area of attention. At present, this work
has not been so directly related to the design of programming languages themselves, and the
theoretical orientation tends more toward sociology rather than psychology. Those topics are out of
the scope of the current course, but those who are interested can learn more by exploring the field of
Computer-Supported Collaborative Work (CSCW) rather than HCI.

12

Aptitude: The challenge of how to identify good programmers is of perennial concern at PPIG and
elsewhere. This is relevant to commercial contexts, of course, where good programmers are
commercially valuable, but not always easy to identify. It is also of interest to the academics who
write papers for PPIG, because they want to identify which students will show most talent, or are
most likely to need additional help. Measures of programmer aptitude are sometimes presented
without any serious theoretical explanation, but they can also build on a range of psychometric
characterisations of individual differences, such as cognitive style, personality measures, or even
diagnostic tools for autism spectrum conditions.

Development in organizational contexts: The Microsoft HIP group have carried out a substantial
number of long-term studies of professional programmers working in realistic team contexts, and
maintaining code bases on an industrial scale. This kind of research is generally beyond the resources
of academic research budgets, and relies on access to commercially sensitive information. Despite
this necessarily specialist community, the group engage actively with academic researchers, and share
their results widely.

Syntax and tools

As can be seen from the above examples, many of those who study the usability of programming
languages also develop new languages. In the past, programming was seen as an interesting object of
study in its own right, for example in the work of Green at the Applied Psychology Unit. However,
now that Cognitive Neuroscience has replaced most experimental psychology research, it is difficult
to conduct pure research into higher cognitive functions such as programming. As a result, empirical
studies of programmers are now carried out in computer science departments, where there is also
more desire and capacity to develop new experimental tools (even if many of the senior researchers
may have qualifications in psychology or cognitive science, so that they are relatively unlikely to
develop tools themselves). This means that most active research groups have specialized interests not
only in particular theories of human cognition and behaviour, but also in particular kinds of language
syntax, or particular kinds of software development tool. Some of the most popular are:

Integrated development environments: Professional programming relies on availability of a larger
software environment that manages project modules, integrates editors with compilers, provides
debugging tools and so on. Some research is conducted by creating custom plug-ins for IDEs such as
Eclipse, but it seems that the novel interaction styles of most interest to programming usability
researchers are hard to achieve within the Eclipse architecture. Popular educational tools such as
BlueJ or Scratch have simplified IDEs at a level appropriate for their intended audiences, but the
effort of maintaining these for a large user base means that there is little remaining resource to carry
out experimental modifications. One exception is the CMU Alice project, which Ko used as the
experimental target for his ‘WhyLine’ debugging aid, and Kelleher extended to explore the use of
teaching strategies that incorporate storytelling. Burnett’s Forms/3 has been developed over many

13

years, with a number of experimental extensions, but has not been deployed outside the research
context.

Visual languages: The concept of a visual language is an old one, dating from ideas to make
executable flow charts, to Sutherland’s object-oriented graphical constraint system Sketchpad in the
early 60s, and David Smith’s Pygmalion in the 70s. Although much of this research was motivated by
the goal of improving usability, the idea of measuring or assessing the improvement did not become
well established until 1996, when keynote speakers at the annual VL conference were HCI authority
Ben Shneiderman, and Thomas Green, reporting both his recent Cognitive Dimensions work and his
studies of flow charts dating back to the 1970s. Your lecturer also presented a critique of the
(sometimes mistaken) implicit psychological assumptions that had driven the field until then.

As noted above, there are now many visual languages, in education contexts and elsewhere.
Pioneering commercial products were the National Instruments LabVIEW system, and Prograph, a
commercial spinout from VL research by Philip Cox and Trevor Smedley at Dalhousie. New visual
languages are now being announced at a rapid rate, although often described in ways that suggests
the marketing people have never heard of the idea before. Interesting recent examples include Yahoo
Pipes, Microsoft Kodu, and Google AppInventor. All of these are relatively straightforward
adaptations of previous academic systems, although few have benefited either from sophisticated
evaluation of the underlying theoretical assumptions, or application of the Cognitive Dimensions
framework.

Spreadsheets: The most widely used programming technology at present is the spreadsheet. There
have been many empirical studies of spreadsheet users, both using conventional spreadsheets (Excel)
and Margaret Burnett’s Forms/3, which allows cells to be arranged in a free format. These studies
have led to a wide range of usability improvements to spreadsheets, including testing and debugging
facilities, and type systems in the work of Erwig. Spreadsheets were used as the experimental target
for a number of experiments in Gender HCI, which led to the characterization of ‘tinkering’ as a
kind of programming behaviour that can be beneficial for those with low self-efficacy, although
problematic for users (often male) who are over-confident. Burnett and Blackwell, with Haskell
architect Simon Peyton-Jones, designed a functional programming extension to Excel that allowed
patches of spreadsheet to act as first class functions.

 http://web.engr.oregonstate.edu/~erwig/units/

 http://research.microsoft.com/en-us/um/people/simonpj/Papers/excel/excel.pdf

Scripting languages: Many software users benefit from the capability to customize their tools, and
many advanced tools include facilities to let them do so, with scripting or macro languages. Familiar
examples include the use of Visual Basic in Microsoft Word, but more specialist professional
examples include LISP variants – in AutoCAD and the programmer’s editor EMACS. Scripting
languages often turn up in unexpected places, such as the programming tools that can be used to
create new behaviours in Second Life. Some sophisticated scripting capabilities come and go, such as

14

Apple Hypercard and Automator. Research by Tessa Lau and Allen Cypher at IBM has resulted in an
intriguing system for scripting repeated sequences of web navigation and form actions, extending
programming by example techniques. A future growth area may be the development of scripting
languages for home automation. Many of these systems are in principle intended to be accessible by
users who do not have professional programming training. This introduces both educational and
usability challenges – this topic will be discussed later in the course.

15

Lecture 2: Research methods in the study of programming.

Ethical issues in research

All academic research involving human participants must consider any possible ethical concerns.
Detailed guidance has been compiled for research carried out in the Cambridge School of
Technology. This guidance is constantly extended and refined – please contribute any useful
observations that you might have to the site maintainers (coordinated by your lecturer). The
experiments that you will be carrying out for the practical element of this course must be reviewed by
the Computer Lab ethics committee.

 Cambridge Technology Ethics guide - http://bit.ly/hptps-guide

 Computer Lab Ethics committee http://www.cl.cam.ac.uk/local/committees/it-strategy/ethics.html

Controlled experimental methods

The classical cognitive approach to study of programming language usability uses controlled
experimental methods, in which a sample of ‘participants’ (or ‘subjects’ in old terminology)
completes an experimental ‘task’ while their ‘performance’ is measured – typically in terms of speed
and accuracy. (Comparison may be easier if only correct results are considered). Participants may
complete a number of trials, each involving a different task. Different experimental ‘conditions’
involve manipulating the task in different ways – typically by modifying the programming language,
using different languages, or different features of the programming environment. The ‘effect’ of
those modifications can be assessed by comparing performance. This must be done statistically,
preferably ‘within subjects’ (each participant completes tasks using all versions of the programming
language), but if necessary ‘between subjects’ (some participants use one version, and some use
another).

This course assumes that you have had previous experience in the design and analysis of simple
hypothesis-testing controlled experiments with human participants. The ACS research methods
course included an exercise in which you will have carried out a simple experiment. The basic
approach used in that experiment (comparing speed and accuracy in two different conditions with
alternative technical designs) is directly applicable to simple experiments in the usability of
programming languages. However, this approach requires that a relatively straightforward
experimental task can be identified.

 A more detailed review of basic principles in experimental design is provided in the PoP book, Chapter 1.5:
Methodological Issues in the Study of Programming.

16

Typical experimental tasks

Classic approaches to the study of natural language consider both production tasks (speaking or
writing) and comprehension tasks (understanding, interpretation or recall). Experimental studies in
psycholinguistics often measure only one of these at a time – the same is true in many studies of
computer programming languages. A combination of speed and accuracy seems to be directly
relevant to production (write a program that is correct, and write it quickly), while accuracy and
completeness, rather than speed, are more relevant to comprehension.

However, application to real world situations must recognize that competent language use involves
both production and comprehension. In the case of spoken natural language, this might involve
exchange with a conversational partner, but programming more often involves reading back and
modifying code that you have written yourself. This introduces the need for search tasks – finding
the place in the code that is responsible for a particular piece of functionality, or that must be
modified to correct a bug or add new behaviour. As I write this, it occurs that the experimental tasks
in PoP might reasonably be classified in terms of the six types of notational activity defined in the
CDs framework. As far as I am aware, this has not yet been attempted.

In conventional experimental psychology, standardized tasks are used as much as possible, in order
that the results of one experiment can be compared to another. A classic problem solving task is the
‘Wason selection task’, and a classic planning task is the ‘Towers of Hanoi’ task. Each of these is
useful, from a cognitive science perspective, because they are well-formed (‘toy’) problems where the
correct solution is easily expressed as a computer algorithm.

 http://en.wikipedia.org/wiki/Wason_selection_task

 http://en.wikipedia.org/wiki/Towers_of_Hanoi

In the early days of ESP/PPIG research, specific kinds of experimental tasks were used in multiple
studies. Your lecturer compiled a list of the tasks that might be considered. These are a useful
reference source to see what kinds of task granularity might be used in a successful experiment. Of
course most of these tasks share the disadvantages of ‘toy problems’ in broader cognitive science –
that they do not often resemble real programming problems that a professional programmer might
encounter (although some of them do resemble student exercises). This presents a problem of
‘external validity’, if you want to make claims that your results are relevant to real programming.
However, poor external validity is often associated with good internal validity, as a general
characteristic of experimental research, so this is a trade-off that you may have to make.

 Section 2 of Chapter 1.5: Methodological Issues in the Study of Programming provides further discussion of
experimental tasks.

 Blackwell’s list of PoP tasks - http://www.cl.cam.ac.uk/~afb21/poptasks.html

17

Experimental manipulations of programming tools

If you wish to study the effect of a particular feature in a programming language or environment, the
most straightforward controlled comparison would be to compare a version with that feature to
another version without it. For some cases, it may be relatively straightforward to create two versions
of a new prototype, one that is complete, and one that has a crucial aspect disabled. However, this
strategy introduces a number of practical problems. Is it possible to make a version that works
without the new feature? Will the experimental task be meaningful if the feature is disabled? In a
within-subjects comparison, the experiment may seem illogical to participants unless the ‘improved’
version with the new feature is presented in the second trial, which means that the utility of the
feature is conflated with an order effect (a problem of internal validity). Finally, if your experimental
system has been created specifically in order to support this feature, then it may be comparatively
poorly designed in other respects. As a result, the comparison to other existing systems may not be
fair, because performance with your experimental system will not be representative of typical systems
of the kind (a problem of external validity).

Despite these problems, direct comparative studies of specific features can be valuable research
contributions, especially to estimate the productivity gain (experimental effect size) that could result
from a new invention. A more challenging ambition is to manipulate programming tools in order to
investigate some research question related to more fundamental debates among advocates of
different approaches to programming. Classical debates of past years have included the debate
between advocates of imperative and declarative programming paradigms, or between textual and
visual syntax. The problem here is that it is very difficult to create two languages that are properly
representative of the two alternatives, yet are also equivalent in other respects. Furthermore, even if
this has been achieved, it is hard to design experimental tasks that are equally suited to different
paradigms. As a result, attempts to settle this kind of debate via controlled experiments with good
internal validity have pretty much been abandoned. Fortunately, other study techniques, many with
better external validity, are still available.

The sheer complexity of programming tools provides a further obstacle to experimental
manipulation. There is the straightforward problem that a conceptually simple user interface
improvement may be computationally infeasible, or require years of development effort. A slightly
more subtle problem is that an existing system may provide so many essential features that it is not
feasible to duplicate them all to a sufficient level of functionality to support a realistic experimental
task. In conventional HCI research, it is normal to ‘cheat’ by evaluating paper prototypes or screen
mockups that simply simulate the appearance of the working system. A Wizard of Oz (originally a
‘man behind the curtain’ as in the movie) can manually simulate the system behaviour that would
result in response to user actions. However, this manual simulation is seldom feasible in
programming research. One alternative proposed by Blackwell et al. is that a mockup of the new
feature can be overlaid on an existing product in a way that simulates a proposed modification (that
paper describes simulating the appearance of a rather fundamental change to Excel, by pasting small
gif images into the cells of a spreadsheet).

18

 Blackwell, A.F., Burnett, M.M. and Peyton Jones, S. (2004). Champagne Prototyping: A research technique
for early evaluation of complex end-user programming systems. In Proceedings of IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC04), pp. 47-54.

Measurement, observation and protocol analysis techniques

Classical controlled experiments in psychology and HCI measure speed (reaction time) and
accuracy (number of (non)errors). In the case of a production task, we might record how long
participants take to produce or modify a program after being given a specification, and whether the
resulting program or modification is correct. In simple reaction-time experiments, there is often a
trade-off between speed and accuracy, and the purpose of measuring both is to compensate for that
trade-off. In programming usability research, it is more often the case that poor performance is
characterized by both low accuracy and long task completion times. This generally makes analysis
easier, because two measures are available as estimators of task complexity. Nevertheless, correlation
between speed and accuracy should usually be tested, to confirm whether this is the case.

Task completion: For practical reasons, it is sometimes necessary to stop an experimental task after
a fixed amount of time, rather than waiting for participants to complete it. If this is the case, then an
alternative speed measure can be derived from the proportion of the overall task that was completed,
for example, number of bugs fixed, or number of function points implemented. If a wide range of
performance is expected, this can be useful for management of experiments – it is not desirable for
experimental sessions to last longer than 1-2 hours. However, repeating large numbers of relatively
trivial tasks may be uninteresting for experimental participants, and also provide relatively poor
external validity.

Subjective self-report of ease of use can be a useful research tool. This is justified on both applied
and theoretical grounds. The applied justification is that new technology products must ultimately
appeal to market consumers (whether commercial customers, or a research audience). If a new
language seems easy to use at first sight, it is more likely to be successful in the market, so assessing
this at an early stage in research can provide valuable information. The theoretical justification is that
reported ease of use may provide an estimate of factors such as ‘cognitive load’ that are detrimental
to task performance.

However, there is significant danger of bias in self-report measures. Subjective impressions of task
performance do not always correspond accurately to real task performance. Furthermore, they are
highly subject to ‘experimental demand’ – people who have volunteered to participate in experiments
want to be helpful to the experimenter, and this can include overly generous feedback on the quality
of the experimenter’s work. Because they want to be nice, they will often respond to questions about
desirability and ease of use in a way that is biased in favour of the experimental system. In order to
avoid this, it can be useful to disguise which manipulation is the novel one, or for the experimenter

19

to distance him or herself from the system (e.g. “We are trying to evaluate this new system that
someone has proposed, but we don’t know whether it is any good or not”).

Despite the well-established techniques for controlled comparison of human performance, there are
many important aspects of programming that are hard to measure quantitatively. Speed and accuracy
are certainly of interest to programming language users, but they are even more likely to be
concerned with whether a new language helps programmers to understand their problem better,
allows them to be more creative, makes people more enthusiastic to learn programming and so on.
All of these questions can be formulated in self-report questionnaires (‘on a scale of 1 to 5, how
creative would you say you are feeling now’), but this approach is highly subject to bias, and poor
reliability. An alternative is to collect ‘richer’ data by observing people as they use programming
systems, and asking them to talk about their experiences. Observations might consist of screen-
capture from programming sessions, perhaps supplemented with video recording (or entries in an
observer’s notebook) to capture use of reference materials other than screen content.

A common strategy is to ask participants to think-aloud, describing everything that passes through
their mind as they are carrying out the task (sometimes called ‘concurrent verbalisation’). However,
this has two problems. One is that, if the task is hard, it becomes even harder if you have to do it
while speaking aloud. The other is that during the most intense periods of problem solving or insight,
participants simply stop talking, so you fail to capture information about the periods that are of most
interest. One way around this problem is to make a screen recording or video recording of the
experimental sessions, then play this back to the participant who makes a retrospective verbal report
of what they were doing.

It is also possible to use eye-tracking to gather more information about which part of the screen the
programmer is looking at as they complete the task. This can either be processed automatically, to
infer information about the task strategy, or the eye-tracking trace can be used for retrospective
verbalisation. Bednarik in Finland has reported on a series of eye-tracking studies at PPIG
workshops. Similar techniques can be used without an eye-tracker, by blurring parts of the screen and
requiring the user to mouse over them. This ‘restricted focus view’ (RFV) approach was developed
by Blackwell & Jansen, and has been used in studies of programming reported at PPIG and
elsewhere by Romero and Cox.

 Chapter 4 of the research methods in HCI book: ‘Eyetracking in HCI’ – gives a great deal more information
about the practicalities of using eyetracking methods.

 Bednarik’s comparison of RFV to eyetracking: http://www.ppig.org/papers/16th-bednarik.pdf

If rich, verbal, non-numerical or ‘qualitative’ data has been collected, then the data analysis process
becomes a far more central element of the research. The usual starting point is to transcribe the
recorded data, so that you have a record of every word the participant said – probably correlated with
the aspects of the task that they were working on at the time. This is described as a ‘verbal protocol’.
(It is also possible to make detailed analyses of video recordings, which are then called ‘video
protocols’). There are two broad strategies for analysis. The first is to treat the protocol as

20

representing those aspects of human behaviour about which you had a prior hypothesis. A ‘coding
frame’ is created, defining the different categories of behaviour that you are concerned with. The
protocol is segmented into episodes, utterances or phrases, and each of these is classified into a
relevant category. The behaviour of different groups of participants, or in different experimental
conditions can then be compared statistically. It is also reasonably common to use this technique to
study the time course of how people approach tasks, comparing the frequency or order in which
different episodes occur over time (as in work by Pennington). Interpretation of episode categories
can often be ambiguous, and is subject to experimenter bias, so it is important to recruit multiple
independent ‘raters’, and carry out ‘inter-rater reliability analysis’.

An alternative strategy for the analysis of qualitative data is grounded theory, in which the
researcher starts by carrying out ‘open coding’, observing patterns in the verbal data as he or she goes
along. This is even more interpretive, and potentially open to bias, so a carefully controlled analytic
process is recommended. Open coding is followed by a sequence of thematic grouping and
generalization strategies, undertaken together with ‘constant comparison’ to ensure that the
interpretations being developed are still compatible with the actual words used by participants.

 Chapter 7 of the research methods in HCI book: ‘A qualitative approach to HCI research’ – gives a good
introduction and overview of the ground theory approach.

Experiment design

The ‘experiment design’ in a controlled experiment refers to the combination of participants
(perhaps in groups), tasks (perhaps in blocks of trials), conditions and measures, and the
hypothesized effects of the manipulation conditions on your chosen measures.

Statistical significance testing requires you to demonstrate that the difference in means that you
observe between the two groups or manipulation conditions is unlikely to occur by chance. In order
for this to be shown, the size of the difference between the means for each condition (the effect size)
should be relatively small when compared to the variance within each group. This is the primary
reason why within-subjects experiment designs are preferred in psychology of programming tasks,
because there is so much variation between people in programming performance. In a between-
subjects design, that individual variation will almost certainly be large relative to your effect size, so a
statistically significant result becomes unlikely.

However, there is a major challenge in the use of within-subjects designs for psychology of
programming. ‘Order effects’ mean that whichever condition the participant carries out second will
benefit from the fact that they have learned how to use the system, so will appear to be faster and
more accurate. A further order effect results from task familiarity – you cannot ask participants to
carry out the same programming task twice, because they will already know how to do it. You can
use a different task in each condition, but it is very hard to calibrate tasks so that they are precisely
equivalent, without actually being the same problem. It is therefore necessary to ‘balance’ the

21

different experimental conditions with order, and with task, so that each version of the programming
language is used with each task, and each combination is presented in both the first and second
position in the experiment. For two conditions, two tasks, and two orders, a ‘latin square’ balanced
design requires multiples of four participants.

 Chapter 1 of the research methods in HCI book describes experiment design and latin squares.

Experiments should always be designed with an understanding of how the data is going to be
analysed. If at all possible, you want your quantitative data to be normally distributed, so that you can
make statistical tests using a t-test, ANOVA, or Pearson correlation. If it seems in advance that this
might not happen, it might be wise to consider a different design. Distributions of task completion
times are often skewed, with a ‘long tail’ of a small number of individuals who complete the task
quite slowly. In traditional psychological experiments, those individuals are sometimes excluded form
analysis as ‘outliers’ who are not of interest because they are atypical. However, in programming, we
often observe that some individuals have a lot of difficulty with programming tasks – we would like
to create systems that benefit them, not exclude them. For this reason, it can be preferable to use a
log transform of time values, which are usually found to be normally distributed for human reaction
times, and make the outlier values in the tail of the distribution more directly comparable to the rest
of the population.

Subjective preference ratings are almost never normally distributed. In this case, a chi-square test, or
a ‘non-parametric’ comparison of means must be used to test whether two conditions or groups are
significantly different.

 Chapter 6 of the research methods in HCI book: ‘Using statistics in usability research’ - provides a more
thorough discussion of these issues

An alternative approach to the study of user interfaces is simply to ‘evaluate’ or ‘explore’ the usability
of a system. The findings from evaluation or exploration studies can help inform the design of
programming languages and environments, either in a ‘formative’ way (a study carried out early in the
design process, in order to choose between or identify new design options) or a ‘summative’ way
(identifying usability problems in a system you have already built). In conventional user-centred
design processes, user studies are carried out within an iterative design process, allowing a system
under development to be successively refined on the basis of evaluation or exploration results.
However these kinds of study are relatively weak contributions to research literature, because they do
not usually make any direct contribution to theory. The results can be of relevance to the specific
product under development, but may not be more generally relevant to other research in future. Of
course, the same considerations mean that these kinds of study are relatively popular in commercial
contexts.

 Chapter 1.5 of the PoP book discusses these issues further.

22

One important proviso for your future research careers is the significance of evaluation when
publishing in broader technology research venues. There are many conferences for which the
apparent purpose is to improve the efficiency or effectiveness of software development (e.g. ICSE,
OOPSLA/SPLASH etc). Many presentations at these conferences propose new tools or methods
that are claimed to result in improvements. Some of those presentations make their claims without
any evidence to support them. This has been considered acceptable until recently, but it is
increasingly common for papers at these conferences (especially the prize-winning papers at ICSE
that are written by EUSES members) to include evidence from evaluation of the new tools. This
trend is likely to increase, as the tendency at other conferences in the past has been for evidence-
based research to drive out purely technical demonstrations. Sometimes, new conferences emerge to
host research by people who do not wish to get involved in evaluation (e.g. the VLC conference that
was created in reaction to VLHCC – they just removed the ‘human-centred’ part of the name!).
However, an orientation toward claims without supporting evidence tends to result in such venues
having a relatively poor reputation.

 ICSE - http://www.icse-conferences.org/

 OOPSLA/SPASH - http://splashcon.org/2011/

Field study methods

If one wishes to study the organizational context of software development, or the way that software
development teams interact with each other, or even realistic behaviour of individual programmers in
the actual contexts where they work, it becomes necessary to go to them, rather than bring them to a
laboratory. Field study methods are reasonably often encountered in PPIG research, possibly in
combination with analysis of design documentation or source code repositories, for example in the
work of the Microsoft HIP group. Field research can extend to interview studies (individual
‘contextual inquiry’ interviews, or structured ‘focus group’ discussions), ‘case studies’ of specific
projects or organisations, or ‘ethnographic’ field work in which the researcher becomes immersed in
the situation as a participant-observer for extended periods of time.

All of these methods result in the collection of qualitative data, often recorded and transcribed, and
often analysed using a grounded theory approach. Chapter 2 of the research methods in HCI book
provides an introduction to the use of interviews and focus groups. Detailed considerations of case
study research and ethnographic field studies are beyond the scope of this course, as you will not
have time to carry out studies of this kind.

23

Lecture 3: Special classes of programming language use

Educational Languages

There have always been close connections between the PPIG community, and the field of Computer
Science Education, which aims to improve the syllabus, teaching methods, and tools that are used
when teaching programming. Early PPIG and ESP meetings included contributions from well
known CS educators such as Elliott Soloway. In the UK, a series of researchers at the Open
University have reported experimental evaluations of OU course material, and special teaching
languages developed for OU students. Sally Fincher at Kent is currently a UK and international
leader in CSE.

However, there is also a long-standing tradition in the construction of special programming
languages for use by children, not necessarily restricted to a formal educational context. Famous early
examples include Papert’s Logo and Kay’s Smalltalk. Smalltalk rapidly grew beyond the scope of use
by children, but Logo has been a longstanding focus of educational research, for example by Richard
Noss and Celia Hoyles at the London Institute of Education. More recent languages developed for
children have been Alexander Repenning’s AgentSheets from Boulder, Allen Cypher and David
Smith’s Kidsim/Cocoa/StageCast Creator from Apple, Ken Kahn’s ToonTalk (now at Oxford),
Michael Kolling’s Greenfoot (now at Kent, but developing his previous work on BlueJ for older
students), the Alice project at Carnegie Mellon and the Scratch project at MIT.

 http://www.agentsheets.com/

 http://www.stagecast.com/

 http://www.toontalk.com/

 http://www.greenfoot.org/

 http://www.alice.org/

 http://scratch.mit.edu/

Many of these recent projects use visual language techniques, to overcome the problems with syntax
that are often experienced by children. There is some debate over the educational consequences, with
an argument that since syntax is one of the aspects of programming that seems to be hard to learn, it
is either ‘cheating’ to avoid teaching it, or perhaps deferring problems until later. As a counter-
argument, many of these systems are primarily concerned with motivating children to engage with
programming, by making it easy for them to build programs that interest them (typically videogames,
or animations).

 Chapter 2.5 of the PoP book: ‘Programming Languages in Education’ describes these different perspectives
as ‘learning to program’ versus ‘programming to learn’.

24

This is a core debate in the design and evaluation of educational programming languages. On one
side, a ‘user-centred’ design philosophy would focus on creating languages that allow children to
achieve the things they want to do. On the other, a ‘curriculum-centred’ philosophy would
concentrate on the principles that you want children to learn, and would focus on creating languages
that illustrate those principles. The first is more typical of research in the USA, which tends to recruit
participating children via after-school clubs or summer camps. The second is more typical of
research in the UK and Europe, which tends to introduce experimental systems into classrooms
within the context of a lesson. These contrasts are discussed in the following paper:

 Rode, J.A., Stringer, M., Toye, E., Simpson, A.R. and Blackwell, A. (2003) Curriculum focused design. In
Proceedings ACM Interaction Design and Children, pp. 119-126.

A further debate that has deep impact on the development of educational languages is the question
of what theoretical principles are considered most important for the teaching curriculum. Often the
academic advocates of particular programming paradigms are influenced by research trends at the
time. At the time the PoP book was written, as can be seen from chapter 2.5, the popularity of AI
research had led to advocates of Prolog as a first programming language. The ToonTalk language,
although a purely educational language, is also influenced by Prolog-style models of AI research. In
Cambridge and Edinburgh, there are strong advocates of ML as a first programming language. The
educational goals of the BlueJ system are made quite clear in the title of the associated textbook,
‘Objects First with BlueJ’. Debate continues at the time I am writing this, and probably will do for
years to come.

In my own opinion, the design of environments whose goal is ‘programming to learn’ should be led
by educational specialists, who have experience of teaching a range of subjects to children of the
appropriate age. Unfortunately educationalists can seldom find innovative computer science
researchers who are sufficiently able to look beyond their own personal opinions and assumptions to
create and evaluate good tools for use by educators. Creating programming languages that some
children will enjoy, on the other hand, without necessarily requiring them to be educational, is great
fun. But perhaps this has more in common with the next topic of end-user programming.

End-user Programming

The term ‘end-user’ comes from the Information Systems field, where there is a convention of
referring to the business organization that has commissioned a software development project as the
‘user’. However the people within that customer organization who become actively involved in the
project are often IT professionals themselves (systems analysts, project managers or even
programmers). This can cause problems for usability, because the judgments of those IT
professionals with regard to what they consider usable often doesn’t correspond to the experience of
the person who eventually gets to operate the system every day. The phrase end-user therefore refers
to the person who will actually use the program once it is finished. An ‘end-user programmer’ is thus
a person who is not only writing the program, but who will also be the person that uses it.

25

The IS field also refers to ‘end-user development’ (EUD) and ‘end-user customisation’ (EUC), to
refer to tools and strategies that allow end-users to become more involved in software development,
and to have more control over the behaviour of their software. However ‘end-user programming’ is a
particularly provocative term, because it implies a person who is actually doing programming, despite
the fact that he or she is not a programmer (or any other kind of IT expert). From an IS perspective,
that is almost a contradiction in terms.

There are three things that make EUP a topic of special interest for PPIG researchers. The first is
that the years of research into ‘novice’ programmers gave us a reasonably good understanding of how
their knowledge and strategies differ from experts. This means that we already know quite a lot about
how to help this group of users. The second is that as computers become more ubiquitous, there are
more and more people who would like to use computers for their own purposes. There simply aren’t
enough programmers to go around, so it is a good thing if ordinary users can look after their own
programming needs. Finally, professional programmers are remarkably uncomplaining about the user
interfaces that they have to use themselves. In a ‘cobbler’s children’ scenario, programming tools are
often the least usable among all software categories. Furthermore, programmers have become so
accustomed to the usability shortcomings of their tools, that they even claim to like them that way
(which could result either from Stockholm Syndrome, or professional protectionism, depending
which side you look at it). Despite this general lack of interest in usability, if we focus on people who
clearly have a usability problem, even professional programmers may benefit from the resulting
improvements.

Bringing all of these concerns together, EUP is usually defined to refer to a person who has not
trained as a programmer, is not primarily employed as a programmer, and does not program for its
own sake, but as a means to an end. A regular example is a schoolteacher writing a spreadsheet to
calculate grades from a mark-book. However, a successful end-user programmer may find that his or
her programs start to be used by other people, in which case they are no longer an ‘end-user’ in the
original sense. That situation, and situations in which people creating business-critical software while
not having professional training in software development, has led to the recent research interest in
end-user software engineering (EUSE), which is focused on tools to help improve the quality of
software created by end-users, for example by assisting them with testing and debugging.

Some of the most successful end-user programming languages have been created for use by people
who, although they may be ‘novices’ in programming, are really experts in their own field, and may
be clever enough to acquire basic programming skills very quickly. These end-users can benefit
greatly from languages that are designed specifically for use in their own problem domain – a class
described naturally as ‘domain-specific languages’. Good domain-specific languages, such as National
Instruments LabView, can easily become popular well beyond the originally intended audience, for
the simple reason that they have been designed with usability in mind. In future, it seems likely that
domain-specific languages will become increasingly common. Just take a look at the specialized
languages and paradigms in the Windows Presentation Framework – these are sufficiently complex
to be a domain-specific language for the user interface development domain.

26

Creative mashups and composition

Early generations of digital technology were created for military, industrial and bureaucratic
applications. These are all domains in which organisations are well structured, and there are ample
resources. As a result, it has always been clear who should specify new technology, who should
design and build it, who should use it, and who should tell them all what to do. However over the
past 20 years, digital technologies have extended into all other areas of life, including leisure, media
and the arts. People use these systems because they want to, not because someone is telling them
what to do. It seems plausible that the development approaches for these ‘discretionary-use’ systems
ought to be different to the bureaucratic and technocratic design processes of the past. Programming
languages are now evolving to suit the new environment and broader applications of digital
technology. Languages intended for use in agile development environments are one example, as are
AJAX tools, that support applications with increased control and interactivity for website users.

 James Noble and Robert Biddle (2002). Notes on postmodern programming. In Proc. OOPSLA 02, , pages
49-71. http://www.mcs.vuw.ac.nz/comp/Publications/CS-TR-02-9.abs.html

 Why’s (poignant) guide to Ruby. http://www.rubyinside.com/media/poignant-guide.pdf

If we consider these trends from the perspective of end-user programming, there are much wider
audiences of interactive digital media creators who could benefit from the power of programming
languages. These are often derived from the ‘collaging’ nature of digital media, where sampling and
mash-ups allow new kinds of artist (possibly without conventional arts training) to make new works.
Video mashups are a popular YouTube genre, and sampling in popular music is ubiquitous. Prize-
winning open source documentary Rip! A Remix Manifesto illustrates these trends with the work of
Girl Talk, a musician who does not use any original sound at all in his performances. All of these
trends are informing programming styles that similarly rely on creative open source communities.
The Scratch language was named after turntable scratching, with the intention that it should allow
children to make creative digital mashups. Interactive web mashups require programming, but can be
created with tools such as Yahoo! Pipes.

 Rip! A Remix Manifesto - http://ripremix.com/

 Yahoo! Pipes - http://pipes.yahoo.com/pipes/

At present, there are very few programming languages developed specifically for creative contexts.
The most popular programming language for music is Max/MSP, a visual dataflow language (like
Yahoo Pipes, though the resemblance probably ends there). The most popular language in visual arts
is currently Processing. Max/MSP is regularly used for other time-based media, such as video (with
the Jitter plug-in). More advanced musical capabilities are provided by the SuperCollider environment
and programming language. Many of these systems are used within a broad context of sampling and
mashup artworks, for example Nick Collin’s BBcut library for SuperCollider, which uses
sophisticated audio algorithms for beat-matching to help users extract breakbeats from music tracks.

 Max/MSP - http://cycling74.com/

27

 Processing - http://processing.org/

 SuperCollider - http://supercollider.sourceforge.net/

Current research in the Computer Lab is exploring several relevant directions, including the creation
of new programming languages for use in dance improvisation (with Wayne McGregor and Random
Dance) and for musicians who compose directly to MIDI (Chris Nash), or who carry out live coding
– writing sound synthesis software in front of an audience (Sam Aaron’s Improcess). Your lecturer
has previously collaborated with the BBC controller of research to express how end-user
programming could be combined with open source and mashup principles to transform public
engagement with broadcast media.

 Random Dance research - http://www.randomdance.org/r_research

 Chris Nash’s reViSiT - http://www.nashnet.co.uk/english/revisit/

 Blackwell, A.F. and Postgate, M. (2006). Programming culture in the 2nd-generation attention economy.
Presentation at CHI Workshop on Entertainment media at home - looking at the social aspects.
http://www.cl.cam.ac.uk/~afb21/publications/BlackwellPostgate_CHI06.pdf

This is an expanding application area, and needs serious attention to programming language design.
There are many iPad and Android apps that support personal creative media creation, but few of
them benefit from a sophisticated understanding of the relationship between programming notations
and compositional notations such as music and dance notation. Furthermore, the ‘user experience’ of
programming in these discretionary and creative fields suggests that we need a set of programming
tools that is very different to those for traditional bureaucratic systems. An active research topic for
our group in Cambridge is how we can create tools that have the power of programming languages,
while also supporting the psychological creative experiences of serendipity and ‘flow’.

 Church, L., Nash, C. and Blackwell, A.F. (2010). Liveness in notation use: From music to programming. In
Proceedings of PPIG 2010, pp. 2-11.

 Blackwell, A. and Collins, N. (2005). The programming language as a musical instrument. In Proceedings of
PPIG 2005, pp. 120-130. http://www.ppig.org/papers/17th-blackwell.pdf

Domestic automation

Digital home technologies are increasingly capable of exchanging data, raising the possibility that they
might also exchange control information. However, facilities for programming home appliance
behaviour have been notoriously poorly designed. Many people are unable to program the controls
of their home heating systems. For many years, programming the VCR was the canonical example of
a home task that was unfeasibly hard (HRH Prince Philip has expressed his frustration on this topic
to design advocacy venues such as the RSA). Now the configuration of social media systems to
optimize privacy or pricing, and monitoring and modification of energy usage patterns seem to be

28

acquiring the same status. Perspectives from PPIG provide ways of addressing these problems that
are challenging for conventional HCI.

However, the level of interest in this kind of technical engagement is very low among home-owners
themselves. A new ‘domestic economy’ will be necessary, perhaps drawing on existing models of
specialist trades (the ‘software plumber’), or extending models of personal competence (‘software
DIY’). For those who have a significant interest in home automation as a hobby pursuit, technical
standards such as X10 already provide the capability to create integrated control systems using power
line communications, and have done since the 1970s. Yet these have hardly been popular among the
general population. Despite increasingly ubiquitous home networking (e.g. WiFi, Zigbee), it seems
unlikely that everybody will want to program integrated home controls. Nevertheless, there is huge
room for expansion, whether we consider the relative size of the DIY market, or the need for tools
to be used by relatively unskilled professionals.

The ‘gentle slope’ approach to end-user programming, by which programming languages allow
simple things to be done with relatively low effort, but allow scalability to more complex applications
with gradually increasing effort, seems to be ideally suited to the domestic automation domain. For
this reason, applying the attention investment model to very simple home programming tasks seems
to be an important first step. Investigations along these lines have been carried out in the Cambridge
group, and a novel tangible programming language ‘MediaCubes’ was designed as an extension of the
standard infrared remote control.

 Blackwell, A.F., Rode, J.A. and Toye, E.F. (2009). How do we program the home? Gender, attention
investment, and the psychology of programming at home. International Journal of Human Computer Studies
67, 324-341.

 Rode, J.A., Toye, E.F. and Blackwell, A.F. (2005). The domestic economy: A broader unit of analysis for end
user programming. In proceedings CHI'05 (extended abstracts), pp. 1757-1760

 Blackwell, A.F. (2004). End user developers at home. Communications of the ACM 47(9), 65-66.

 Rode, J.A., Toye, E.F. and Blackwell, A.F. (2004). The Fuzzy Felt Ethnography - understanding the
programming patterns of domestic appliances. Personal and Ubiquitous Computing 8, 161-176.

 Blackwell, A.F., Hewson, R.L. and Green, T.R.G. (2003) Product design to support user abstractions. In E.
Hollnagel (Ed.) Handbook of Cognitive Task Design. Lawrence Erlbaum Associates. ISBN 0-8058-4003-6,
pp. 525-545.

 Blackwell, A.F. and Hague, R. (2001). AutoHAN: An Architecture for Programming the Home. In
Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 150-
157.

29

Lecture 4: Planning practical empirical studies.

The goal of this lecture is to prepare you for the design of your first experimental study. The lecture
itself will follow the actual research interests of the class. Although the first three lectures proceeded
from theories of programming, to experimental methods, then specific users and programming
technologies, our discussion will follow the reverse order, in order to establish connections to the
rest of the MPhil curriculum.

Candidate programming languages/tools

We will discuss specific technical platforms and programming paradigms that are of interest to the
class. These might be drawn from your own personal research (for example the topic of your MPhil
dissertation), from other research that you have encountered while working with Cambridge research
groups or in other lecture courses, from recent product releases of new programming systems, or
from research prototypes that have been developed elsewhere. If you do not already have a system
that you wish to investigate, a number of candidates are available from product announcements on
the PPIG and Computing at School mailing lists, or prototypes developed by collaborators of the
Rainbow Group.

In order to investigate usability, it is necessary to have an idea of who the intended user is – what is
the target audience of the system that you are interested in? What will these users typically be trying
to achieve by using the system?

Representative tasks and measures

You will need to identify what kind of user activities you plan to observe, whether these are tasks that
you assign explicitly (in a controlled experiment) or that will arise from a user goal (in an
observational study). Will these activities allow you to explore an interesting research question or
experimental hypothesis that is relevant to your system? What measures are relevant to that question
or hypothesis? Will qualitative data analysis be necessary, or is the question sufficiently simple that
quantitative measures will suffice? Will this combination of task, measure and analysis result in a
threat to external validity?

Review of study design options

Do you wish to carry out a comparison, an evaluation, or an open exploratory study? If you plan to
conduct a controlled experiment, will it be possible to use a within-subjects design? What data

30

analysis method will you use? What would you need to do in order to complete a pilot study? What
ethical issues are raised by your planned research?

Theoretical goal

What do you expect to learn from conducting your study? What contribution will it make to the
research literature relevant to usability of programming languages? Where would you publish the
results?

Course structure

The remainder of the course follows the steps leading to a complete research contribution, building
on the topics discussed in this lecture.

Assignment A: background to a proposed study, including description of the target language,
paradigm, tool or environment, a review of the relevant theoretical literature and previous empirical
studies.

Assignment B: structure of the experimental design, detailed protocol of the proposed study, and
outline of analytic methods to be used.

Assignment C: full experimental report, building on final versions of assignments A and B, and
presenting data analysis and findings in a format suitable for publication at a specialist research venue
such as the psychology of programming interest group.

Seminar 1 and 2: presentation and feedback on study proposals.

Seminar 3 and 4: presentation of research study findings.

