
1

Usability of Programming Languages

MPhil ACS module R201 - Alan Blackwell

Overview

 Practical experimental course
 lectures are only introductory

 Lecture 1 - theoretical principles
l h classic approaches

 current trends in leading research.

 Lecture 2 - candidate research methods
 advantages and disadvantages

 Lecture 3 - specific classes of user
 Lecture 4 - directed by your research interests Lecture 4 - directed by your research interests

Reading List

 Hoc, Green, Samurçay and Gilmore (1990)
 Psychology of Programming.

 Psychology of Programming Interest Groupy gy g g p
 www.ppig.org

 Cambridge guidance on human participants
 Cairns and Cox (2008)
 Research Methods for Human-Computer Interaction

 Carroll (2003) Carroll (2003)
 HCI Models, Theories and Frameworks: Toward a

multidisciplinary science

Lecture 1: Principles of human
factors in programming

2

Cognitive models in HCI

 Engineering model of human ‘I/O subsystems’ and
‘central processor’
 Derived from human factors/ergonomics

S d d f Speed and accuracy of movement
 Include working memory capacity

 7 +/- 2 ‘chunks’
 Single visual scene

 Programming as ‘cognitive ergonomics’?

Cognitive models of programming

 Deciding what to do is harder than doing it
 HCI models assume a ‘correct’ sequence of actions

 Classic cognitive models derived from GOFAIg
 problem solving
 planning
 knowledge representation

 PoP book
 ch 1.4 - Human Cognition and Programming
 ch 3 1 - Expert Programming Knowledge: ch 3.1 - Expert Programming Knowledge:

A Schema-based Approach
 ch 2.3 - Language Semantics, Mental Models and Analogy

 cf user interface “metaphor”

Software Development Context

 Cognitive science: individuals in controlled contexts
 carefully construct experimental tasks to explore schemas,

plans, analogy etc
d AI i f bl correspond to AI constraints of toy problems

 Compare to wicked problems
 goals and criteria under-specified, constraints conflict etc

 Commercial software development is more social
 understand problem domain, negotiate specification change

 PoP book
 ch 1.3 - The Tasks of Programming
 ch 3.3 - Expert Software Design Strategies
 ch 4.1 - The Psychology of Programming in the Large:

Team and Organizational Behaviour
 cf Information Systems literature

Individual Variation

 Cognitive theories are general theories
 Consistent aspects of human performance

 But some programmers are far more productivep g p
 Always more productive in a language they know
 Performance also correlated with

 general intelligence
 self-efficacy
 diagnostic tests for autism

 “expert” vs “novice”
 Study knowledge by comparing those with to those without
 Study naïve users who are not ‘crippled’ or ‘mutilated’
 Real expert performance may include design research

3

Major research centres and programmes

Venues

 Psychology of Programming Interest Group (PPIG)
 annual conference - proceedings available online
 “Work in Progress” meeting (PPIG-WIP)

 European Association for Cognitive Ergonomics (EACE)
 Empirical Studies of Programmers foundation (ESP)
 IEEE Visual Languages and Human Centric Computing
 ESP symposia in 2002, 2003

 International conference/workshop on Program International conference/workshop on Program
Comprehension (ICPC, formerly IWPC)

 ACM CHI
 Evaluation and Assessment in Software Engineering

(EASE)

NSF EUSES

 End-Users Shaping Effective Software
 Margaret Burnett at Oregon State University
 Brad Myers at Carnegie Mellon University

M B h R P S U i i Mary Beth Rosson at Penn State University
 Susan Wiedenbeck at Drexel University
 Gregg Rothermel at University of Nebraska
 Alan Blackwell at Cambridge

 See brand new publication
 Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A.F., Burnett, M.,

Erwig, M., Lawrence, J., Lieberman, H., Myers, B., Rosson, M.-B.,
Rothermel, G., Scaffidi, C., Shaw, M., and Wiedenbeck, S. (2011).
The State of the Art in End-User Software Engineering. ACM
Computing Surveys 43(3), Article 21.

UK/European centres

 PPIG UK
 Salford (Maria Kutar – chair)
 York (Thomas Green)

Sh ffi ld H ll (Ch i R) Sheffield Hallam (Chris Roast)
 Open University (Marian Petre and Judith Segal)
 Sussex (Judith Good)
 Cambridge (Alan Blackwell)

 Joensuu, Finland (Sajaniemi, Tukiainen, Bednarik)
 Limerick Ireland (Buckley) Limerick, Ireland (Buckley)
 INRIA Eiffel group, Paris (Détienne, Visser)
 Fraunhofer (Wulf)

4

Other US centres

 University of Colorado at Boulder
 Gerhard Fischer & Alex Repenning

 MIT Media Lab
 Henry Lieberman

 IBM Research TJ Watson
 Rachel Bellamy

 IBM Research Almaden
 Allen Cypher

 Microsoft Research Redmond
Human Interactions in Programming (HIP) group
 Rob DeLine, Gina Venolia & Andrew Begel

Current areas of theoretical attention

Cognitive Dimensions of Notations

 Programming as interaction with an information
structure (Ch 2.2 of PoP book)

 Sample dimension Sample dimension
 Viscosity: a viscous system is difficult to change

 Resources:
 Visual language usability paper in JVLC by Green & Petre
 Tutorial by Green & Blackwell
 Questionnaire by Blackwell & Green
 Chapter in Carroll book Chapter in Carroll book

CDs Theory

 Any visible notation encodes an information structure.
 The structure has different parts
 The parts have various relationships to each other

 Notational Layers
 one structure is often derived from another with similar parts

and relationships
 e.g. web page, from PHP program, from UML diagram, from

whiteboard sketch, from business plan

5

Notational Activities

 Search:
 finding information in a familiar structure

 Exploratory understanding: p y g
 understand a structure you haven’t seen

 Incrementation:
 add new items to existing structure

 Modification:
 change an existing structure

 Transcription:
 create a new structure derived from an existing layer

 Exploratory design:
 create a structure you don’t understand yet

Attention Investment

 Cost-benefit equation - compare mental effort:
 to carry out a programming task
 against effort saved by the program

 With associated risk/uncertainty:
 In estimate of effort to finish the program
 In actual benefit if the program has a bug
 In chance of damage resulting from a severe bug

Attention Investment Biases

 Some expert programmers:
 under-estimate costs, and over-estimate benefits

 Novices might be reluctant to engage in programming: g g g p g g
 If they over-estimate the costs
 If they over-estimate risk of negative return
 Tools can provide ‘gentle slope’ to reduce this bias
 E.g. surprise – explain - reward

Gender HCI

 Attention investment + self-efficacy theory
 You need confidence to start programming
 Attention investment means that female students are less

inclined to explore programming options.

 You need to do programming to gain confidence
 Self-efficacy develops through time spent experimenting

 Encourage ‘tinkering’ to explore behaviour
 But note that the same kind of tinkering can results in poorer

learning for males, who have a tendency to be over-confident,
and not to think about what they are doing

6

Programming by Example

 Based on machine learning techniques
 Infer programs from examples of required output
 Attention Investment benefits: Attention Investment benefits:
 examples can be provided through normal direct manipulation,

so reduced perceived cost
 inferred program is offered to user when already functional, so

reduced perceived risk

Natural Programming

 Programmme of Myers’ group at Carnegie Mellon
 Study natural/everyday description of algorithms
 Design programming languages compatible with naïve Design programming languages compatible with naïve

knowledge
 Pane’s HANDS (for children)
 Miller’s LAPIS (for text manipulation)
 Ko’s CITRUS (constraint-based MVC platform)

Variable Roles

 Programme of Sajaniemi’s group at Joensuu
 Based on analysis of source code corpuses
 Unlike Myer’s focus on naïve knowledge this focuses Unlike Myer’s focus on naïve knowledge, this focuses

on expert knowledge
 Variables are used in only a few ways:
 fixed, stepper, follower, gatherer etc

 Originally used for educational visualisation, instruction
 May be used for intelligent compilers in future

Agile/Pair Programming

 Study interaction between people doing pair
programming

 theoretical focus on sociology rather than psychology theoretical focus on sociology rather than psychology
 See Computer-Supported Collaborative Work (CSCW)

rather than HCI.

7

Programming Aptitude

 How to identify good programmers?
 good programmers are commercially valuable
 Identify talented students

Id if d di ddi i l h l Identify students needing additional help

 Seldom any theoretical explanation, just psychometric
correlations
 cognitive style
 personality measures
 autism spectrum diagnoses

Organizational Contexts

 Speciality of Microsoft HIP group
 Long-term studies of professional programmers in

realistic teamsrealistic teams
 Maintaining code bases on an industrial scale
 E.g. what activities are involved when a new programmmer

joins an established team?

 Hard to achieve for academics
 beyond the resources of academic research budgets
 relies on access to commercially sensitive information

Syntax and tools

Integrated Development Environments

 The language is not the only usability problem
 Manage modules & dependencies
 integrated editors

d b i d i li i l debugging and visualisation tools

 Some research using custom plug-ins for Eclipse
 Burnett’s Forms/3 research platform
 Complete novel IDEs for education use
 BlueJ & Scratch
 Extensions to CMU Alice

 Ko’s WhyLine
 Kelleher’s storytelling Alice
 (compare Good’s struggles with Neverwinter Nights)

8

Visual Languages

 The ambition dates back to 60s and 70s
 Idea of measuring improvement arrived at IEEE VL 1996
 IEEE VL became IEEE VL/HCC soon afterward

 Pioneering commercial products
 National Instruments LabVIEW
 Prograph

 Recent examples
 Yahoo Pipes
 Microsoft Kodu Microsoft Kodu
 Google AppInventor

 Most could benefit from evaluation, or application of
Cognitive Dimensions

Spreadsheets

 Widely used, sometimes for surprising purposes
 A large proportion of commercial spreadsheets contain errors

(Panko)
S d h h (S ffidi) Spreadsheet research corpus (Scaffidi)

 Empirical studies and extensions:
 Excel
 Burnett’s Forms/3, with free-format cells

 Specific usability improvements:
 testing and debugging facilities such as WYSIWYT (Burnett) testing and debugging facilities such as WYSIWYT (Burnett)
 type systems and generators (Erwig)
 Functional programming in Excel (Peyton-Jones, Blackwell,

Burnett)

Scripting Languages

 Allow users to customize and extend products, e.g.
 LISP variants in AutoCAD and EMACS
 Linden Scripting Language (LSL) in Second Life

A l A (d li H d) Apple Automator (and earlier Hypercard)

 Key research concern in end-user programming (later)
 Note that many evolve into professional languages (Perl, Flash)
 While others never really considered end-user needs (TCL,

JavaScript)

 Can address attention investment by starting with Can address attention investment by starting with
macro recording, then exposing source code for
modification
 Visual Basic in Microsoft Word
 CoScripter for Firefox (Allen Cypher)

Lecture 2: Research methods in the
study of programming.

9

Ethical Issues in Research

 Review the Cambridge Technology Ethics guide
 What kind of study are you planning?
 What potential concerns might there be?

Wh ill d dd h ? What will you do to address them?

 Submit a proposal to the Computer Lab Ethics
committee, giving above details.

Controlled Experimental Methods

 Participants (subjects), potentially in groups
 Experimental task
 Performance measures (speed & accuracy) Performance measures (speed & accuracy)
 Trials
 Conditions / Treatments / Manipulations
 modify the programming language
 use different languages
 Use different features of the programming environment Use different features of the programming environment

 Effect of treatments on sample means
 Within-subjects (each participant uses all versions)
 Between-subjects (different groups use different versions)

Controlled Experiments

 Based on a number of observations:
 How long did Fred take to fix this bug (speed)?
 Did he get it right (accuracy)?

 But every observation is different.
 So we compare averages:
 Over a number of trials
 Over a range of people (participants)

 Results often have a normal distribution
 Compare difference of means

 Require significance testing
 What likelihood that result could occur at random?
 Is difference of means large relative to variance?

Typical experimental tasks

 Production tasks
 write a program that is correct, and write it quickly

 Comprehension tasksp
 understanding, interpretation or recall

 Search tasks
 find code responsible for functionality, or bug

 May be possible to use standardised tasks, for
comparison to previous PPIG research
 See Blackwell list
 But ‘toy problems can lack external validity

 Perhaps use the six Cognitive Dimensions activities?

10

Experimental Manipulations

 Compare productivity gains (effect size) of version with new
feature to one without?
 Will system work without the new feature?
 Will the experimental task be meaningful if the feature is disabled? Will the experimental task be meaningful if the feature is disabled?
 Must new feature be presented second in a within-subjects

comparison (order effect)
 Is your system sufficiently well-designed for external validity of

productivity measure?

 Test a fundamental research question?
 e.g. imperative vs declarative paradigms, textual vs visual syntaxg p p g , y
 Are your two languages properly representative of the paradigms, yet

also equivalent in other respects?
 Are your experimental tasks equally suited to different paradigms?

 Is full implementation necessary?
 Can you simulate features with Wizard of Oz technique?

Measurement

 Speed (classically ‘reaction time’)
 E.g. time to write program

 Accuracy (number of (non)errors). y (())
 Is program correct?

 Trade-off between speed and accuracy?
 Or poor performance on both?
 Check correlation between them

 Task completion:
 Stop after a fixed amount of time (ideally < 1 hour)
 Measure proportion of the overall task completed

Self-Report

 Did you find this easy to use? (Likert scale)
 applied value: appeal to customers
 theoretical value: estimate ‘cognitive load’

 Danger of bias
 Subjective impressions of performance inaccurate
 Suffer from experimental demand

 Participants want to be nice to the experimenter
 Should disguise which manipulation is the novel one

 May be necessary to capture affect measures:y y p
 Did you enjoy it, feel creative/ enthusiastic?

 Alternative is to collect ‘richer’ data …

Think-aloud

 “Tell me everything you are thinking”
 ‘concurrent verbalisation’

 Problems:
 Hard tasks become even harder while speaking aloud
 During the most intense (interesting) periods, participants

simply stop talking,

 Alternative:
 make video recording, or eye-tracking trace
 playback for participant to narrate playback for participant to narrate
 ‘retrospective verbal report’

11

Qualitative Data

 Protocol analysis methods, e.g.
 verbal protocol – transcript of recorded verbal data
 video protocol – recording of actions

 Hypothesis-, or theory-driven
 Create ‘coding frame’ for hypothesised categories of behaviour
 Segment the protocol into episodes, utterances, phrases etc
 Classify these into relevant categories (with inter-rater

reliability)
 Compare frequency or order statistically

 Grounded theory (ch 7 of HCI Research Methods)
 Open coding, looking for patterns in the data
 Stages of thematic grouping and generalization
 Constant comparison of emerging framework to original data
 More interpretive, danger of subjective bias

Experiment Design

 Arrangement of participants, groups, tasks, trials, conditions,
measures, and hypothesized effects of treatments

 Within-subjects designs are preferred
 because so much variation between programmers because so much variation between programmers

 This leads to order effects:
 first condition may seem worse, because of learning effect
 last condition may suffer from fatigue effect
 task familiarity – can’t use the same task twice

 Precautions:
 Prior training to reduce learning effects Prior training to reduce learning effects
 Minimise experimental session length to reduce fatigue effects
 Use different tasks in each condition, but ‘balance’ with treatment and

order

 These are typically combined in a ‘latin square’ where each
participant gets a different combination

Analysis

 For an easy life, plan your analysis before collecting
data!

 Will quantitative data be normally distributed? Will quantitative data be normally distributed?
 t-test to compare two groups
 ANOVA to compare effect of multiple conditions (which include

latin square of task and order)
 Pearson correlation to compare relationship between measures

 Distributions of task times are often skewed:
 a small number of individuals complete the task quite slowly a small number of individuals complete the task quite slowly
 don’t exclude ‘outliers’ who have difficulty with your system
 log transform of time is usually found to be normally distributed

 Subjective ratings are seldom normally distributed
 chi-square test of categories
 ‘non-parametric’ comparison of means

Evaluation

 Rather than testing hypothesis, or comparing
treatments
 ask ‘is my language usable’?

 More typical of commercial practice, for short-term
goals, rather than general understanding
 Formative evaluation assesses options early in design process
 Summative evaluation identifies usability problems in a system

you have built
 Repeated for iterative refinement in user-centred designp g

 Weaker research, because no direct contribution to
theory
 However some mainstream applied research venues are starting

to require evidence of any claims made for new tools
 e.g. ICSE, OOPSLA/SPLASH

12

Field Study Methods

 Laboratory studies are not adequate for:
 organizational context of software development
 interaction within software development teams

b h i f i l k behaviour of programmers in actual work context

 Typical methods:
 ‘contextual inquiry’ interviews
 ‘focus group’ discussions
 ‘case studies’ of projects or organisations
 ‘ethnographic’ field work as participant-observer

 All result in qualitative data, often transcribed, and
analysed using grounded theory approaches

 You won’t have time!

Lecture 3: Special classes of
programming language use

Educational Languages

 Computer Science Education vs programming for children
 Papert’s Logo
 Kay’s Smalltalk
 Repenning’s AgentSheets
 Cypher and Smith’s StageCast
 Kahn’s ToonTalk
 Kolling’s Greenfoot
 Carnegie Mellon’s Alice
 MIT’s Scratch

 Many use VL techniques, to overcome syntax problems
 Is it ‘cheating’ to avoid teaching syntax?
 Or motivate children by making it easy for them to do things that

interest them (videogames or animations)
 ‘learning to program’ or ‘programming to learn’?
 ‘user-centred’ or ‘curriculum-centred’ design?

 If curriculum, what theoretical principles? Logic? Functional?
Objects?

End-User Programming

 In Information Systems ‘user’ is a (professional)
organisation
 ‘end-user’ is a person who will actually use the system

 ‘ d ’ b h h d an ‘end-user programmer’ both writes the program and uses it.
 ‘end-user development’ (EUD)
 ‘end-user customisation’ (EUC)

 Interesting research because:
 An externally valid source of ‘novice’ programmers
 Ubiquitous computing increases market for customisation

P f i l d ’ l i h Professional programmers don’t complain enough

13

End-User Programming

 EUP is usually defined to refer to a person who has
 not trained as a programmer
 not primarily employed as a programmer

d f i k b d does not program for its own sake, but as a means to an end

 Motivation for end-user software engineering (e.g.
testing and debugging)
 programs may be used by other people
 programs may be business-critical

 Domain specific languages Domain-specific languages
 Programming ‘novices’ are often domain experts
 LabView, MATLAB are both DSLs
 Even some mainstream tools are increasingly domain-specific,

e.g. WPF

Creative mashups and composition

 Not like military, industrial, bureaucratic domains
 those are well structured, with ample resources.
 leisure, media and the arts imply ‘discretionary-use’

 digital media creators collage, sample & mash-up
 art strategies are next generation agile methods

 Current generation of artist languages
 Max/MSP (+ Jitter)
 Processing
 SuperCollider SuperCollider

 Current research in Cambridge
 Flow in composition
 Live coding
 EUSE for improvisation processes

Domestic automation

 Classic domestic HCI challenges
 home heating controls
 VCR programming

i fi i privacy configuration

 Home networking
 WiFi, Zigbee. X10
 AutoHAN
 software plumber or software DIY?

 Research opportunities Research opportunities
 Understand domestic economy of digital technology
 Apply gentle slope and attention investment

Lecture 4: Planning practical
empirical studies.

14

Goal

 Prepare for design of your study
 Previous lectures followed:
 theories of programmingp g g
 experimental methods
 specific users and programming technologies

 We use reverse order:
 specific programming technologies and users
 experimental methods
 theories of programming theories of programming

Candidate programming languages/tools

 your own personal research
 e.g. MPhil dissertation

 Other research
 other research in Cambridge
 recent product releases
 research prototypes developed elsewhere

 Who is the intended user?
 What will they be trying to achieve?

Representative tasks and measures

 Identify user activities you plan to observe
 assigned tasks (controlled experiment)
 or user’s goal (observational study)

 Will these explore an interesting research question?
 What measures are relevant to that question?
 Will qualitative data analysis be necessary?
 Will there be a threat to external validity?
 From task measure or analysis From task, measure or analysis

Review of study design options

 Do you wish to carry out a comparison, an evaluation,
or an open exploratory study?

 If you plan to conduct a controlled experiment, will it be If you plan to conduct a controlled experiment, will it be
possible to use a within-subjects design?

 What data analysis method will you use?
 What would you need to do in order to complete a pilot

study?
 What ethical issues are raised by your planned What ethical issues are raised by your planned

research?

15

Theoretical goal

 What do you expect to learn from conducting your
study?

 What contribution will it make to the research literature What contribution will it make to the research literature
relevant to usability of programming languages?

 Where would you publish the results?

Course structure

 Assignment A, presented at seminars 1 & 2
 Target language, paradigm, tool or environment
 Review of relevant literature

S d d i Study design
 Outline of analytic methods

 Assignment B, presented at seminars 3 & 4
 Full experimental report
 Data analysis and findings
 Suitable for publication at venue such as PPIG

