Fact or fiction?
Topics in Security:
Forensic Signal Analysis
Markus Kuhn, Andrew Lewis

娄图 UNIVERSITY OF
Computer Laboratory
http://www.cl.cam.ac.uk/teaching/1011/R08/

Michaelmas 2010 - MPhil ACS

Introductory examples:
manipulation of photographs
Hans D. Baumann, DOCMA

Real

or fantasy

Hans D. Baumann, DOCMA
... unreliable government hardware ...

Iranian missile test, July 2008
http://www.cs.dartmouth.edu/farid/research/digitaltampering/
... or even body parts.

President Nicolas Sarkozy. Paris Match, August 2007

Forensic Signal Analysis

This course looks at the use of digital signal processing techniques in a security context, to uncover hidden information from image, video audio, electromagnetic, etc. signals, in particular to
\longrightarrow identify manipulation;
\longrightarrow identify/verify processing history;
\longrightarrow identify/verify type or instance of the acquiring sensor;
\longrightarrow eavesdrop on persons or computer systems;
\longrightarrow communicate covertly (steganography).
This is a "reading class", i.e. the "lecture notes" are selected recent original research publications and the material is mostly presented by the students.

Prerequisites

A background in digital signal processing, image processing, linear algebra, probability, statistics, data compression, communication technology (modulation and detection) will be useful.
Some background reading beyond the presented papers will be helpful, in particular on
\longrightarrow Fourier transform, linear time-invariant systems, filters http://www.cl.cam.ac.uk/teaching/0809/DSP/
\longrightarrow Discrete Cosine Transform, JPEG, MPEG
http://www.w3.org/Graphics/JPEG/itu-t81.pdf
Pennebaker, Mitchell: JPEG still image data compression standard. (Moore Library)
\longrightarrow Digital photography
CCD/CMOS sensors, Bayer pattern and interpolation, "raw" formats, noise reduction algorithms, ..

