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Catastrophic cascade of failures in interdependent
networks
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Complex networks have been studied intensively for a decade, but
research still focuses on the limited case of a single, non-interacting
network1–14. Modern systems are coupled together15–19 and there-
fore should be modelled as interdependent networks. A fun-
damental property of interdependent networks is that failure of
nodes in one network may lead to failure of dependent nodes in
other networks. This may happen recursively and can lead to a
cascade of failures. In fact, a failure of a very small fraction of nodes
in one network may lead to the complete fragmentation of a system
of several interdependent networks. A dramatic real-world
example of a cascade of failures (‘concurrent malfunction’) is the
electrical blackout that affected much of Italy on 28 September
2003: the shutdown of power stations directly led to the failure of
nodes in the Internet communication network, which in turn
caused further breakdown of power stations20. Here we develop a
framework for understanding the robustness of interacting
networks subject to such cascading failures. We present exact ana-
lytical solutions for the critical fraction of nodes that, on removal,
will lead to a failure cascade and to a complete fragmentation of two
interdependent networks. Surprisingly, a broader degree distri-
bution increases the vulnerability of interdependent networks to
random failure, which is opposite to how a single network behaves.
Our findings highlight the need to consider interdependent
network properties in designing robust networks.

Today’s networks are becoming increasingly dependent on one
another. Diverse infrastructures such as water supply, transportation,
fuel and power stations are coupled together. We show that owing to
this coupling, interdependent networks are extremely sensitive to
random failure, such that a random removal of a small fraction of
nodes from one network can produce an iterative cascade of failures
in several interdependent networks. Electrical blackouts frequently
result from a cascade of failures between interdependent networks,
and the problem has been dramatically exemplified by the several
large-scale blackouts that have occurred in recent years. In this Letter,
we demonstrate a cascade of failures using real-world data from a
power network and an Internet network (a supervisory control and
data acquisition system) that were implicated in the blackout that
affected much of Italy on 28 September 200320. These two networks
feature a bidirectional dependence such that power stations depend
on communication nodes for control and communication nodes
depend on power stations for their electricity supply.

Figure 1 shows the two networks and the connections between
them, based on the real geographical locations. The figure exemplifies
a situation in which an initial failure of only one power station may
lead to an iterative cascade of failures that causes both networks to
become fragmented. For an isolated single network, a significant
number of the network nodes must be randomly removed before
the network breaks down. However, when taking into account the

dependencies between the networks, removal of only a small fraction
of nodes can result in the complete fragmentation of the entire system.

To model interdependent networks, we consider for simplicity,
and without loss of generality, two networks, A and B, with the same
number of nodes, N. The functioning of node Ai (i 5 1, 2, …, N), in
network A, depends on the ability of node Bi , in network B, to supply
a critical resource, and vice versa. If node Ai stops functioning owing
to attack or failure, node Bi stops functioning. Similarly, if node Bi

stops functioning then node Ai stops functioning. We denote such a
dependence by a bidirectional link, Ai « Bi, that defines a one-to-one
correspondence between nodes of network A and nodes of network
B. Within network A, the nodes are randomly connected by A-links
with degree distribution PA(k), where the degree, k, of each node is
defined as the number of A-links connected to that node in network
A. Analogously, within network B, the nodes are randomly connected
by B-links with degree distribution PB(k) (Fig. 2).

We begin by randomly removing a fraction, 1 2 p, of the nodes of
network A and removing all the A-links connected to these removed
nodes (Fig. 2a). Owing to the dependence between the networks, all
the nodes in network B that are connected to the removed A-nodes by
A « B links must also be removed (Fig. 2b). Any B-links connected
to the removed B-nodes are then also removed. As nodes and links
are sequentially removed, each network begins to fragment into con-
nected components, which we call clusters. The clusters in network A
and the clusters in network B are different because each network is
connected differently. A set of nodes, a, in network A and the cor-
responding set of nodes, b, in network B form a mutually connected
set if (1) each pair of nodes in a is connected by a path that consists of
nodes belonging to a and links of network A, and (2) each pair of
nodes in b is connected by a path that consists of nodes belonging to b
and links of network B. We call a mutually connected set a mutually
connected cluster if it cannot be enlarged by adding other nodes and
still satisfy the conditions above. Only mutually connected clusters
are potentially functional.

To identify these mutually connected clusters, we first define the
a1-clusters as the clusters of network A remaining after a fraction
1 2 p of the A-nodes are removed as the result of an attack or mal-
function (Fig. 2b). This state of the networks is the first stage in the
cascade of failures. Next we define the b1-sets as the sets of B-nodes
that are connected to a1-clusters by A « B links. According to the
definition of mutually connected clusters, all the B-links connecting
different b1-sets must be removed. Because the two networks are
connected differently, each b1-set may split into several clusters,
which we define as b2-clusters (Fig. 2c). The b1-sets that do not split,
and hence coincide with a1-clusters, are mutually connected. This
state of the networks is the second stage in the cascade of failures. In
the third stage, we determine all the a3-clusters (Fig. 2d), in a similar
way, and in the fourth stage we determine all the b4-clusters. We
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continue this process until no further splitting and link removal can
occur (Fig. 2d). We find that this process leads to a percolation phase
transition for the two interdependent networks at a critical threshold,
p 5 pc, which is significantly larger than the equivalent threshold for a
single network. As in classical network theory21–25, we define the giant
mutually connected component to be the mutually connected cluster
spanning the entire network. Below pc there is no giant mutually
connected component, whereas above pc a giant mutually connected
cluster exists.

Our insight based on percolation theory is that when the network
is fragmented, the nodes belonging to the giant component connect-
ing a finite fraction of the network are still functional, whereas the
nodes that are part of the remaining small clusters become non-
functional. Therefore, for interdependent networks only the giant

mutually connected cluster is of interest. The probability that two
neighbouring A-nodes are connected by A « B links to two neigh-
bouring B-nodes scales as 1/N (Supplementary Information). Hence,
at the end of the cascade process of failures, above pc only very small
mutually connected clusters and one giant mutually connected clus-
ter exist, in contrast to traditional percolation, wherein the cluster
size distribution obeys a power law. When the giant component
exists, the interdependent networks preserve their functionality; if
it does not exist, the networks split into small fragments that cannot
function on their own.

We apply our model first to the case of two Erdo0 s–Rényi net-
works21–23 with average degrees ÆkAæ and ÆkBæ. We remove a random
fraction, 1 2 p, of the nodes in network A and follow the iterative
process of forming a1-, b2-, a3-, …, b2k- and a2k11-clusters as
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Figure 2 | Modelling an iterative process of a cascade of failures. Each
node in network A depends on one and only one node in network B, and vice
versa. Links between the networks are shown as horizontal straight lines, and
A-links and B-links are shown as arcs. a, One node from network A is
removed (‘attack’). b, Stage 1: a dependent node in network B is also
eliminated and network A breaks into three a1-clusters, namely a11, a12 and
a13. c, Stage 2: B-links that link sets of B-nodes connected to separate a1-
clusters are eliminated and network B breaks into four b2-clusters, namely

b21, b22, b23 and b24. d, Stage 3: A-links that link sets of A-nodes connected to
separate b2-clusters are eliminated and network A breaks into four a3-
clusters, namely a31, a32, a33 and a34. These coincide with the clusters b21, b22,
b23 and b24, and no further link elimination and network breaking occurs.
Therefore, each connected b2-cluster/a3-cluster pair is a mutually connected
cluster and the clusters b24 and a34, which are the largest among them,
constitute the giant mutually connected component.
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Figure 1 | Modelling a blackout in Italy. Illustration of an iterative process of
a cascade of failures using real-world data from a power network (located on
the map of Italy) and an Internet network (shifted above the map) that were
implicated in an electrical blackout that occurred in Italy in September
200320. The networks are drawn using the real geographical locations and
every Internet server is connected to the geographically nearest power
station. a, One power station is removed (red node on map) from the power
network and as a result the Internet nodes depending on it are removed from
the Internet network (red nodes above the map). The nodes that will be
disconnected from the giant cluster (a cluster that spans the entire network)

at the next step are marked in green. b, Additional nodes that were
disconnected from the Internet communication network giant component
are removed (red nodes above map). As a result the power stations
depending on them are removed from the power network (red nodes on
map). Again, the nodes that will be disconnected from the giant cluster at the
next step are marked in green. c, Additional nodes that were disconnected
from the giant component of the power network are removed (red nodes on
map) as well as the nodes in the Internet network that depend on them (red
nodes above map).
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described above. After each stage, n, in the cascade of failures, we
determine the fraction of nodes, mn, in the largest an- or bn-cluster. At
the end of the process, mn converges to m‘, the probability that a
randomly chosen node belongs to the mutually connected largest
cluster. As N R ‘, the probability m‘ converges to a well defined
function, m‘(p), which has a single step discontinuity at the threshold
p 5 pc, where it changes from zero for p , pc to m‘(pc) . 0 for p 5 pc

(Supplementary Information). This behaviour is characteristic of a
first-order phase transition, quite different from a second-order
phase transition such as that characterizing percolation of a single
network, where m‘(p) is a continuous function at p 5 pc. For a finite
N and p close to pc, the giant mutually connected component exists in
a particular network realization with probability P‘(p, N). As N R ‘,
P‘(p, N) converges to a Heaviside step function, H(p 2 pc), which
discontinuously changes value from zero for p , pc to one for p . pc

(Fig. 3a). Our simulation results for the value of pc (Fig. 3a) agree
with the analytical results presented below.

For two interdependent scale-free networks2 with power-law
degree distributions, PA(k) 5 PB(k) / k2l, we find that the existence
criteria for the giant component are quite different from those in a
single network. For a single scale-free network with l ( 3, a giant

component exists for every non-zero value of p. However, for inter-
dependent scale-free networks, the giant component does not exist
below the critical value pc ? 0, even for 2 , l ( 3.

In the case of a single network, pc is smaller for a broader degree
distribution. In sharp contrast, for interdependent networks a
broader degree distribution results in a larger value of pc because
high-degree nodes of one network can depend on low-degree nodes
of the other. The hubs (defined as nodes of exceptionally large
degree) that have a dominant role in the robustness of a single net-
work become vulnerable when a cascade of failures occurs in two
interdependent networks. Moreover, a broader distribution with the
same average degree implies that there are more low-degree nodes.
Because the low-degree nodes are more easily disconnected, the
advantage of a broad distribution for a single network becomes a
disadvantage for interdependent networks. In Fig. 3b, we demon-
strate this behaviour by comparing simulation results for several
scale-free networks with different l values, an Erdo0 s–Rényi network
and a random regular network, all with an average degree of Ækæ 5 4.
The simulation results are in full agreement with our analytical
results and show that pc is indeed higher for a broader distribution.

Next we analytically solve our model of interconnected networks
using the mathematical technique of generating functions. We will
define generating functions for network A; similar equations describe
network B. As in refs 24–26, we will introduce generating functions of
the degree distributions, GA0(z) 5

P
kPA(k)zk. Analogously, we will

introduce generating functions of the underlying branching pro-
cesses, GA1(z) 5 G’A0(z)=G’A0(1).

Random removal of fraction, 1 2 p, of nodes will change the
degree distribution of the remaining nodes, so the generating func-
tion of the new distribution is equal to the generating function of the
original distribution with argument 1 2 p(1 2 z) (ref. 24). We denote
the subsets of nodes remaining after the random removal of 1 2 p
nodes as A0 , A and B0 , B, and note that there is one-to-one cor-
respondence between nodes in A0 and nodes in B0, established by
A « B links. As the total number of nodes in network A is N, the
number of nodes in A0 and B0 is N0 5 pN. The fraction of nodes that
belong to the giant component of network A0 is gA(p) 5 1 2
GA0[1 2 p(1 2 fA)] (refs 25, 26), where fA is a function of p that
satisfies the transcendental equation fA 5 GA1[1 2 p(1 2 fA)].
Analogous equations exist for network B.

Using the generating function approach, we find that the fraction,
mn, of the nodes in the giant component after stage n in the cascade of
failures obeys a simple recursion relation (Supplementary
Information). We find good agreement between simulations and
theory (Supplementary Fig. 1).

To determine the final size of the giant mutually connected com-
ponent, we recall that the fraction of nodes in the giant mutually
connected component, m‘, is the limit of the sequence mn as n R ‘.
This limit must satisfy the equations m2m11 5 m2m 5 m2m21 because
the cluster is not further fragmented. This condition leads to the
following system of two unknowns, x and y (Supplementary
Information), where m‘ 5 xgB(x) 5 ygA(y):

x~gA(y)p

y~gB(x)p

�
ð1Þ

The system of equations (1) has one trivial solution, x 5 0 and y 5 0,
for any p value, corresponding to the giant mutually connected com-
ponent being of zero size. If p is large enough, there also exists a
solution such that the giant mutually connected component is of
non-zero size. We can easily exclude y from these equations and
obtain a single equation

x~gA½gB(x)p�p ð2Þ
which can be solved graphically (Supplementary Fig. 2) as the inter-
section of the straight line y 5 x and the curve y 5 gA[gB(x)p]p. When p
is small enough, the curve increases very slowly and does not intersect
the straight line (except at the origin, which intersection corresponds to
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Figure 3 | Numerical validation of theoretical results. a, Numerical
simulations of coupled Erdo0 s–Rényi networks with Ækæ 5 ÆkAæ 5 ÆkBæ and a
finite number of nodes, N. The probability of existence of the giant mutually
connected component, P‘, is shown as function of p for different values of N.
As N R ‘, the curves converge to a step function. The theoretical prediction
of pc is shown by the arrow. b, Simulation results for P‘ as a function of p for
coupled scale-free (SF) networks with l 5 3, 2.7, 2.3, coupled Erdo0 s–Rényi
(ER) networks and coupled random regular (RR) networks, all with an
average degree of Ækæ 5 4 and N 5 50,000. The simulation results agree with
our analytical results. We note that the broader the distribution, the higher
the value of pc.
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the trivial solution). A nontrivial solution first emerges in the critical
case (p 5 pc), in which the line touches the curve at a single point,
x 5 xc, where they have equal derivatives. Therefore, we have the
condition

1~p2 dgA

dx
½pgB(x)� dgB

dx
(x)

����
x~xc, p~pc

ð3Þ

which, together with equation (2), yields the solution for pc and the
critical size of the giant mutually connected component,
m‘(pc) 5 xcgB(xc).

In the case of two Erdo0 s–Rényi networks21–23, the problem can be
solved explicitly. Then, GA1(x) 5 GA0 5 exp[ÆkAæ(x 2 1)], GB1 5
GB0 5 exp[ÆkBæ(x 2 1)] and the system of transcendental equations
(2) and (3) for the critical value of p 5 pc can be expressed in terms of
elementary functions (Supplementary Information). In the simple
case with ÆkAæ 5 ÆkBæ 5 Ækæ, the critical parameters can be expressed in
terms of the nontrivial root f 5 fA 5 fB 5 0.28467 of the equation
f 5 exp[(f 2 1)/2f]. We find that pc 5 [2Ækæf(1 2 f)]21 5 2.4554/Ækæ
and that m‘(pc) 5 (1 2 f)/(2Ækæf) 5 1.2564/Ækæ. Our simulations of
Erdo0 s–Rényi networks agree with our theory (Fig. 3a).

We also find that the known result for a single scale-free network,
namely that pc R 0 as N R ‘ for l # 3, is not valid for two scale-free
interdependent networks, where instead pc is finite for any l . 2.
Analysis of the behaviour of the generating functions as z R 1 shows
that as x R 0 the right-hand side of equation (2) can be approximated
by a power law, Cxg (see Supplementary Information for a detailed
derivation), where C is constant and

g~1=(3{lA)(3{lB)

For 2 , lA , 3 and 2 , lB , 3, g . 1. Thus, the curve y 5

gA[gB(x)p]p always passes below y 5 x as x R 0 and for sufficiently
small values of p we do not have a non-trivial solution (Supplemen-
tary Fig. 2), which means that the giant mutually connected com-
ponent is absent. Hence, we have a percolation phase transition at
some finite p 5 pc . 0 (Fig. 3b).

The model presented here captures the important phenomenon of
a cascade of failures in interdependent networks that results in the
first-order percolation phase transition. The model can be general-
ized to the case of three or more interdependent networks, to the case
in which the A « B links connecting the networks are unidirectional
rather than bidirectional, and to the case in which a node from
network A can depend on more than one node from network B.
All these generalizations can be treated analytically by using generat-
ing functions, provided the networks are randomly connected and
uncorrelated.
Note added in proof: After this work was completed, we learned of the
independent work of E. Leicht and R. de Souza, also addressing the
challenges of interacting networks.
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