Introduction to Network
Theory



What is a Network?

m Network = graph

m Informally a graph is a set of nodes joined by a set of lines or
arrows.

5 @ o

“od o we



Graph-based representations

Representing a problem as a graph can
provide a different point of view

Representing a problem as a graph can
make a problem much simpler

= More accurately, it can provide the
appropriate tools for solving the problem



What is network theory?

Network theory provides a set of
techniques for analysing graphs

Complex systems network theory provides
techniques for analysing structure in a
system of interacting agents, represented
as a network

Applying network theory to a system
means using a graph-theoretic
representation



What makes a problem graph-like?

There are two components to a graph
= Nodes and edges

In graph-like problems, these components

have natural correspondences to problem
elements

= Entities are nodes and interactions between
entities are edges

Most complex systems are graph-like
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Scientific collaboration network




Business ties in US biotech-
industry
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Genetic interaction network
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Protein-Protein Interaction
Networks
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Internet




Ecological Networks




Graph Theory - History

Leonhard Euler's paper on “Seven
Bridges of Kénigsberg”,

published in 1736.




Graph Theory - History

Cycles in Polyhedra

Thomas P. Kirkman William R Hamilton

Hamiltonian cycles in Platonic graphs



Graph Theory - History

Trees in Electric Circuits

Gustav Kirchhoff



Graph Theory - History

Enumeration of Chemical Isomers

— CH — — —
CH3 CH2 CH3



Graph Theory - History

Four Colors of Maps

Francis Guthrie Auguste DeMorgan




Definition: Graph

m G is an ordered triple G:=(V, E, 1)

V is a set of nodes, points, or vertices.
E is a set, whose elements are known as edges or lines.
fis a function

+ maps each element of E

+ to an unordered pair of vertices in V.



Definitions

Vertex

Basic Element
Drawn as a node or a dot.
Vertex set of G is usually denoted by V(G), or V

Edge

A set of two elements

Drawn as a line connecting two vertices, called end vertices, or
endpoints.

The edge set of G is usually denoted by E(G), or E.



Example

m V:={1,234,5,6}
» E:={1,2}{1,5}{2,3}{2,5}{3,4}{4,5}{4,6}}



Simple Graphs

Simple graphs are graphs without multiple edges or self-loops.




Directed Graph (digraph)

m Edges have directions

An edge is an ordered pair of nodes




Weighted graphs

is a graph for which each edge has an associated weight, usually
given by a weight function w: E — R.




Structures and structural
metrics

Graph structures are used to isolate
interesting or important sections of a
graph

Structural metrics provide a measurement
of a structural property of a graph

= Global metrics refer to a whole graph

= Local metrics refer to a single node in a graph



Graph structures

Identify interesting sections of a graph

= Interesting because they form a significant
domain-specific structure, or because they
significantly contribute to graph properties

A subset of the nodes and edges in a

graph that possess certain characteristics,

or relate to each other in particular ways



Connectivity

a graph is connected if

you can get from any node to any other by following a sequence of edges
OR

any two nodes are connected by a path.

A directed graph is strongly connected if there is a directed path from
any node to any other node.



Component

m Every disconnected graph can be split up into a number of
connected components.




Degree

m Number of edges incident on a node

The degree of 5 is 3



Degree (Directed Graphs)

m In-degree: Number of edges entering
m Out-degree: Number of edges leaving

m Degree =indeg + outdeg

outdeg(1)=2
indeg(1)=0

outdeg(2)=2
indeg(2)=2

outdeg(3)=1
indeg(3)=4




Degree: Simple Facts

m If G is a graph with m edges, then
2. deg(v) =2m=21E]|

m If G is adigraph then
2 indeg(v):Z outdeg(v) =IE |

m Number of Odd degree Nodes is even



Walks

A walk of length k in a graph is a succession of k
(not necessarily different) edges of the form

uv,vw,wx,...,yzZ.

This walk is denote by uvwx...xz, and is referred to
as a walk between u and z.

A walk is closed is u=z.



Path

A path is a walk in which all the edges and all the nodes are different.

Walks and Paths
1,2,5,2,3,4 1,2,5,2,3,2,1 1,2,3,4,6
walk of length 5  CW of length 6 path of length 4



Cycle

A cycle is a closed path in which all the edges are different.

1,2,51 2,3,4,5,2
3-cycle  4-cycle



Special Types of Graphs

m Empty Graph / Edgeless graph
No edge

® O
m Null graph @ @
No nodes @ @

Obviously no e

- -



Trees

m Connected Acyclic Graph

m Two nodes have exactly one path
between them



Special Trees

(D—2 )4 )—(5) Paths

Stars



Regular

® Connected Graph

® All nodes have the same
degree




Special Regular Graphs: Cycles

AL




Bipartite graph

m V.can be partitioned into 2 sets V,
and V,
such that (u,v)€E implies
eitherueV, and vev,
ORveYV, and ueV,




Complete Graph

m Every pair of vertices are adjacent
m Has n(n-1)/2 edges




Complete Bipartite Graph

m Bipartite Variation of Complete Graph

m Every node of one set is connected to every other node on the
other set

Stars




Planar Graphs

m Can be drawn on a plane such that no two edges intersect
m K, is the largest complete graph that is planar




Subgraph

m Vertex and edge sets are subsets of those of G

a supergraph of a graph G is a graph that contains G as a
subgraph.




Special Subgraphs: Cliques

A cligue is a maximum complete
connected subgraph.




Spanning subgraph

m Subgraph H has the same vertex set as G.

Possibly not all the edges
“H spans G”.
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Spanning tree

Let G be a connected graph. Then a
spanning tree in G is a subgraph of G
that includes every node and is also a

tree.




lsomorphism

Bijection, i.e., a one-to-one mapping:

f: V(G) > V(H)
u and v from G are adjacent if and only if f(u) and f(v) are
adjacent in H.

If an isomorphism can be constructed between two graphs, then
we say those graphs are isomorphic.



Isomorphism Problem

m Determining whether two graphs are
iIsomorphic
m Although these graphs look very different,
they are isomorphic; one isomorphism
between them is
f(a)=1 f(b)=6 f(c)=8 f(d)=3
f(@)=5 f(h)=2 f(i)=4 1(j)=7




Representation (Matrix)

m Incidence Matrix

VXE

[vertex, edges] contains the edge's data
m Adjacency Matrix

VxV

Boolean values (adjacent or not)
Or Edge Weights



Matrices

L2 15 23 25 34 45 4,6

0)

01 0

0 1

1

0 O

0 1 1
0 0

1

0

1

2

310 1 0 1

410 0 1




Representation (List)

m Edge List

pairs (ordered if directed) of vertices
Optionally weight and other data

m Adjacency List (node list)



Implementation of a Graph.

m Adjacency-list representation

an array of |V | lists, one for each vertex in V.
Foreach ue V, ADJ|[ u] points to all its adjacent vertices.



Edge and Node Lists

Edge List Node List

12 122
12 235
23 33
25 435
33 534
43

45

53

54



Edge Lists for Weighted
Graphs
Edge List

1.2
DR ORI
240.2

-3 410.5
& 54 0.5

631.5
.5



Topological Distance

® A shortest path is the minimum path
connecting two nodes.

® The number of edges in the shortest path
connecting p and q is the topological
distance between these two nodes, d,, ,



Distance Matrix

®|V|x|V| matrix D =(d;) such that

d; is the topological distance between i and j.

W = N = O = DN
D= O =N W
_— O = NN B

o O = N = =

AN O B~ W N



Random Graphs

Erd6s and Renyi (1959)

N nodes

A pair of nodes has probability p of
being connected.

Average degree, k= pN

What interesting things can be said for
different values of p or k ?

(that are true as N > )

p=009; k=1

p=1.0; k="N?
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Random Graphs o

Erd6s and Renyi (1959) ° )

\O - p=0.09; k=1

p=0.045; k=0.5

RS

R }’9,!:;'9":;‘_‘

RAN KR

P A‘V’ <X) > O\
w\ N

Let's look at...

_ _ p=1.0; k= 2N
Diameter (maximum path length between nodes) of the I




Random Graphs

Erd6s and Renyi (1959)

p=00:k=0 p=0045:k=05 p=009:k=1 p=1.0;k=""%N

Diameter of largest component
0 2 7 1



Random Graphs

Erd6s and Renyi (1959)

If k<1:

Atk =1:

Fork>1:

small, isolated clusters
small diameters

a giant component appears
diameter peaks

almost all nodes connected
diameter shrinks

Diameter of largest component (not to scale)

1.0

1.0

0

phase transition



Random Graphs
@nd Renyi (1959) o /

Chung

David
Kentaro
Belhumeur

m If connections between people can be modeled as a random graph, then...

What does this mean?

Because the average person easily knows more than one person (k >> 1),

Erdés and Renyi showed that average
path length between connected nodes is

In N
Ink



Random Graphs
@nd Renyi (1959) - /

David
Kent
/
Chung

What does this mean? BIG “IF”!!!

| Wtween people can be modeled as a random graph, then...

Because the average person easily knows more than one person (k >> 1),

Peter
Belhumeur

We live in a “small world” where within a few links, we are connected to anyone in the world.

Erdés and Renyi computed average
path length between connected nodes to be:

In N
Ink



The Alpha Model

Watts (1999)

The people you know aren’t randomly chosen.

People tend to get to know those who are two
links away (Rapoport , 1957).

The real world exhibits a lot of clustering.

%, Andrzej Turski
2 i Susan Dumais
i Cezary Marcjan Mary Czerwinski
na Williams

1 “Jonathan Grudin

‘j‘ Nlissagnne Evans
4 Lili Cheng
3 Doy Vionay

J‘ Kentaro Toyama

ggan
ji Social Computing Group
Shelly Famham

& pras upfggsn;{e__a,& Kott

The Personal Map
by MSR Redmond’s Social Computing Group




The Alpha Model

Watts (1999)

a model: Add edges to nodes, as in random
graphs, but makes links more likely when
two nodes have a common friend.

Ordered Extreme

Propensity to become friends

Random Extreme J ]

" i i L i I 1 A A " 1 " 1 i 1 L L 1
0 0.2 0.4 0.6 0.8 1
Mutual friends as a fraction of total friends

Probability of linkage as a function
of number of mutual friends
(cis O in upper left,

1 in diagonal,
and « in bottom right curves.)



The Alpha Model

Watts (1999)

a model: Add edges to nodes, as in random
graphs, but makes links more likely when
two nodes have a common friend.
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Clustering coefficient (C) and
average path length (L)
plotted against o



The Beta Model

Watts and Strogatz (1998)

p=0 p=0.125
People know People know People know
their neighbors. their neighbors, others at

and a few distant people. random.



The Beta Model

Donner
@nd Strogatz (1998) oy /

Hanaki

Kentaro
Toyama

First five random links reduce the average path
length of the network by half, regardless of N!

Both a and g models reproduce short-path results
of random graphs, but also allow for clustering.

Small-world phenomena occur at threshold
between order and chaos.

Clustering coefficient /

0 0.2 0.4 0.6 0.8 1
3

Clustering coefficient (C) and average
path length (L) plotted against



Power Laws

Albert and Barabasi (1999)

What'’s the degree (number of edges) distribution

over a graph, for real-world graphs?
0.10 | V/‘\E:(«)/N
. / . ‘ Random-graph model results in Poisson
N3 / distribution.
0.05 -
\ ]
[ ]
[
[
<k> .
0.00 ' : l ®08s0e |
0 10 20 30

K

Degree distribution of a random graph,
N=10,000 p=0.0015 k=15.
(Curve is a Poisson curve, for comparison.)



Power Laws

Albert and Barabasi (1999)

What'’s the degree (number of edges) distribution
over a graph, for real-world graphs?

pik)

Random-graph model results in Poisson
distribution.

-

Typical shape of a power-law distribution.

-
k



Power Laws

. 10° ; ; : -

Albert and Barabasi (1999) ; ;
10 (@) 1k (b) 3
107 ] ;

107
Power-law distributions are straight lines in log-log 107 | ; 1
space. 10° | i ]
< 10°, :

a 10
107 15 g
How should random graphs be generated to create 107 | ©) - @ |
a power-law distribution of node degrees? 10° | 1; §
107 ir 1
107§ F 1
10_8 o " ...l1 L 12 " .13 ‘0 " A1 1aa .12 ..I3
10° 10' 10° 10°10° 10" 10° 10
k

Power laws in real networks:

(a) WWW hyperlinks

(b) co-starring in movies

(c) co-authorship of physicists

(d) co-authorship of neuroscientists



Power Laws

Anandan
Kentaro

Toyama

Albert and(Barabasi)(1999)

Jennifer
Chayes

“The rich get richer!”

Power-law distribution of node distribution arises if

Additional variable fitness coefficient allows for some
nodes to grow faster than others.

H00 0w
“Map of the Internet” poster

. S e
b o >,
Map of the Internet, The Qpte-Project, wwio



Searchable Networks

Kleinberg (2000)

THE ENCYCLOPEDIA OF

The FBI's
TEN MOST

WANTED
LIST

1950 to the Present

Just because a short path exists, doesn’t mean
you can easily find it.

You don’t know all of the people whom your
friends know.



Searchable Networks

Kleinberg (2000)

a) Variation of Watts’s 8 model:

Lattice is d-dimensional (d=2).
One random link per node.

Parameter « controls probability of random link — greater for closer nodes.

b)
For low a, random graph; no “geographic” correlation in links
For high a, not a small world; no short paths to be found.

c) Searchability dips at a=2, in simulation

Exponent g in

(1]

In T for greedy algorithm

O O O O O O
O @) @] O O O
O (@) (@)
o o o oXg o
O O O %0« *Q O
o o o o b o
~ 0.8F
= (2-0)/3 (a=2)/(a-1)
©
5
2
5
3
0 | | |
0 1 2 3 4
Clustering exponent ()
7.0
o]
BOO o
6.0 [~ Oooo o
S0 l I Ooloooocl) L
0 1 2

Clustering exponent (a)



Searchable Networks

Kentaro
Kleinber (2000) Toyama

Watts, Dodds, Newman (2002) show that for d = 2

or 3, real networks are quite searchable.
12

10

Killworth and Bernard (1978) found that people
tended to search their networks by d = 2:
geography and profession.

Number of compieted chains

o N & OO @

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of steps in letter chain

The Watts-Dodds-Newman model
closely fitting a real-world experiment
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