
UNIVERSITY OF

CAMBRIDGE

Alias and Points-to Analysis

Alan Mycroft

Computer Laboratory, Cambridge University

http://www.cl.cam.ac.uk/teaching/current/OptComp

Lecture 13a

Alias and Points-to Analysis 1 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Points-to analysis, parallelisation etc.

Consider an MP3 player containing code:

for (channel = 0; channel < 2; channel++)

process_audio(channel);

or even

process_audio_left();

process_audio_right();

Can we run these two calls in parallel?

Alias and Points-to Analysis 2 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Points-to analysis, parallelisation etc. (2)

Multi-core CPU: probably want to run these two calls in parallel:

#pragma omp parallel for // OpenMP

for (channel = 0; channel < 2; channel++)

process_audio(channel);

or

spawn process_audio_left(); // e.g. Cilk, X10

process_audio_right();

sync;

or

par { process_audio_left() // language primitives

||| process_audio_right()

}

Question: when is this transformation safe?

Alias and Points-to Analysis 3 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Can we know what locations are read/written?

Basic parallelisation criterion: parallelise only if neither call writes to

a memory location read or written by the other.

So, we want to know (at compile time) what locations a procedure

might write to at run time. Sounds hard!

Alias and Points-to Analysis 4 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Can we know what locations are read/written?

Non-address-taken variables are easy, but consider:

for (i = 0; i < n; i++) v[i]->field++;

Can this be parallelised? Depends on knowing that each cell of v[]

points to a distinct object (i.e. there is no aliasing).

So, given a pointer value, we are interested in finding a finite

description of what locations it might point to – or, given a

procedure, a description of what locations it might read from or write

to.

If two such descriptions have empty intersection then we can

parallelise.

Alias and Points-to Analysis 5 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Can we know what locations are read/written?

For simple variables, even including address-taken variables, this is

moderately easy (we have done similar things in “ambiguous ref” in

LVA and “ambiguous kill” in Avail). Multi-level pointers, e.g.

int a, *b, **c;

b=&a;

c=&b;

make the problem more complicated here.

What about new, especially in a loop?

Coarse solution: treat all allocations done at a single program point

as being aliased (as if they all return a pointer to a single piece of

memory).

Alias and Points-to Analysis 6 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis

An O(n3) analysis – underlying problem same as 0-CFA.

We’ll only look at the intra-procedural case.

First assume program has been re-written so that all pointer-typed

operations are of the form

x := newℓ ℓ is a program point (label)

x := null optional, can see as variant of new

x := &y only in C-like languages, also like new variant

x := y copy

x := ∗y field access of object

∗x := y field access of object

Note: no pointer arithmetic (or pointer-returning functions here).

Also fields conflated (but ‘field-sensitive’ is possible too).

Alias and Points-to Analysis 7 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis (2)

Get set of abstract values V = Var ∪ {newℓ | ℓ ∈ Prog} ∪ {null}.

Note that this means that all new allocations at program point ℓ are

conflated – makes things finite but loses precision.

The points-to relation is seen as a function pt : V → P(V). While we

might imagine having a different pt at each program point (like

liveness) Andersen keeps one per function.

Have type-like constraints (one per source-level assignment)

⊢ x := &y : y ∈ pt(x) ⊢ x := y : pt(y) ⊆ pt(x)

z ∈ pt(y)

⊢ x := ∗y : pt(z) ⊆ pt(x)

z ∈ pt(x)

⊢ ∗x := y : pt(y) ⊆ pt(z)

x := newℓ and x := null are treated identically to x := &y.

Alias and Points-to Analysis 8 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis (3)

Alternatively, the same formulae presented in the style of 0-CFA (this

is only stylistic, it’s the same constraint system, but there are no

obvious deep connections between 0-CFA and Andersen’s points-to):

• for command x := &y emit constraint pt(x) ⊇ {y}

• for command x := y emit constraint pt(x) ⊇ pt(y)

• for command x := ∗y emit constraint implication

pt(y) ⊇ {z} =⇒ pt(x) ⊇ pt(z)

• for command ∗x := y emit constraint implication

pt(x) ⊇ {z} =⇒ pt(z) ⊇ pt(y)

Alias and Points-to Analysis 9 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen’s points-to analysis (4)

Flow-insensitive – we only look at the assignments, not in which

order they occur. Faster but less precise – syntax-directed rules all

use the same set-like combination of constraints (∪ here).

Flow-insensitive means property inference rules are essentially of the

form:

(ASS)
⊢ x := e : . . .

(SEQ)
⊢ C : S ⊢ C ′ : S′

⊢ C; C ′ : S ∪ S′

(COND)
⊢ C : S ⊢ C ′ : S′

⊢ if e then C else C ′ : S ∪ S′

(WHILE)
⊢ C : S

⊢ while e do C : S

Alias and Points-to Analysis 10 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen: example

[Example taken from notes by Michelle Mills Strout of Colorado

State University]

command constraint solution

a = &b; pt(a) ⊇ {b} pt(a) = {b, d}

c = a; pt(c) ⊇ pt(a) pt(c) = {b, d}

a = &d; pt(a) ⊇ {d} pt(b) = pt(d) = {}

e = a; pt(e) ⊇ pt(a) pt(e) = {b, d}

Note that a flow-sensitive algorithm would instead give pt(c) = {b}

and pt(e) = {d} (assuming the statements appear in the above order

in a single basic block).

Alias and Points-to Analysis 11 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Andersen: example (2)

command constraint solution

a = &b; pt(a) ⊇ {b} pt(a) = {b, d}

c = &d; pt(c) ⊇ {d} pt(c) = {d}

e = &a; pt(e) ⊇ {a} pt(e) = {a}

f = a; pt(f) ⊇ pt(a) pt(f) = {b, d}

∗ e = c; pt(e) ⊇ {z} =⇒ pt(z) ⊇ pt(c)

(generates) pt(a) ⊇ pt(c)

Alias and Points-to Analysis 12 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Points-to analysis – some other approaches

• Steensgaard’s algorithm: treat e := e′ and e′ := e identically.

Less accurate than Andersen’s algorithm but runs in

almost-linear time.

• shape analysis (Sagiv, Wilhelm, Reps) – a program analysis with

elements being abstract heap nodes (representing a family of

real-world heap notes) and edges between them being must or

may point-to. Nodes are labelled with variables and fields which

may point to them. More accurate but abstract heaps can

become very large.

Coarse techniques can give poor results (especially

inter-procedurally), while more sophisticated techniques can become

very expensive for large programs.

Alias and Points-to Analysis 13 Lecture 13a

UNIVERSITY OF

CAMBRIDGE

Points-to and alias analysis

“Alias analysis is undecidable in theory and intractable in practice.”

It’s also very discontinuous: small changes in program can produce

global changes in analysis of aliasing. Potentially bad during program

development.

So what can we do?

Possible answer: languages with type-like restrictions on where

pointers can point to.

• Dijkstra said (effectively): spaghetti code is bad; so use

structured programming.

• I argue elsewhere that spaghetti data is bad; so need language

primitives to control aliasing (“structured data”).

Alias and Points-to Analysis 14 Lecture 13a

