
UNIVERSITY OF
CAMBRIDGE
Computer Laboratory

Computer Science Tripos Part II

Optimising Compilers (Part A)
http://www.cl.cam.ac.uk/Teaching/1011/OptComp/

Alan Mycroft am@cl.cam.ac.uk

2010–2011 (Michaelmas Term)

http://www.cl.cam.ac.uk/Teaching/1011/OptComp/
mailto:am@cl.cam.ac.uk

Learning Guide

The course as lectured proceeds fairly evenly through these notes, with 7 lectures devoted
to part A, 5 to part B and 3 or 4 devoted to parts C and D. Part A mainly consists of
analysis/transformation pairs on flowgraphs whereas part B consists of more sophisticated
analyses (typically on representations nearer to source languages) where typically a general
framework and an instantiation are given. Part C consists of an introduction to instruction
scheduling and part D an introduction to decompilation and reverse engineering.

One can see part A as intermediate-code to intermediate-code optimisation, part B as
(already typed if necessary) parse-tree to parse-tree optimisation and part C as target-code
to target-code optimisation. Part D is concerned with the reverse process.

Rough contents of each lecture are:

Lecture 1: Introduction, flowgraphs, call graphs, basic blocks, types of analysis

Lecture 2: (Transformation) Unreachable-code elimination

Lecture 3: (Analysis) Live variable analysis

Lecture 4: (Analysis) Available expressions

Lecture 5: (Transformation) Uses of LVA

Lecture 6: (Continuation) Register allocation by colouring

Lecture 7: (Transformation) Uses of Avail; Code motion

Lecture 8: Static Single Assignment; Strength reduction

Lecture 9: (Framework) Abstract interpretation

Lecture 10: (Instance) Strictness analysis

Lecture 11: (Framework) Constraint-based analysis;
(Instance) Control-flow analysis (for λ-terms)

Lecture 12: (Framework) Inference-based program analysis

Lecture 13: (Instance) Effect systems

Lecture 13a: Points-to and alias analysis

Lecture 14: Instruction scheduling

Lecture 15: Same continued, slop

Lecture 16: Decompilation.

2

Books

• Aho, A.V., Sethi, R. & Ullman, J.D. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986. Now a bit long in the tooth and only covers part A of the course.
See http://www.aw-bc.com/catalog/academic/product/0,1144,0321428900,00.html

• Appel A. Modern Compiler Implementation in C/ML/Java (2nd edition). CUP 1997.
See http://www.cs.princeton.edu/~appel/modern/

• Hankin, C.L., Nielson, F., Nielson, H.R. Principles of Program Analysis. Springer 1999.
Good on part A and part B.
See http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-65410-0

• Muchnick, S. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.
See http://books.elsevier.com/uk/mk/uk/subindex.asp?isbn=1558603204

• Wilhelm, R. Compiler Design. Addison-Wesley, 1995.
See http://www.awprofessional.com/bookstore/product.asp?isbn=0201422905

Acknowledgement

I am grateful to Tom Stuart not only for various additions and improvements to these lecture
notes, but above all for the wonderful slides which accompany these notes.

3

http://www.aw-bc.com/catalog/academic/product/0,1144,0321428900,00.html
http://www.cs.princeton.edu/~appel/modern/
http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-65410-0
http://books.elsevier.com/uk/mk/uk/subindex.asp?isbn=1558603204
http://www.awprofessional.com/bookstore/product.asp?isbn=0201422905

Part A: Classical ‘Dataflow’ Optimisations

1 Introduction

Recall the structure of a simple non-optimising compiler (e.g. from CST Part Ib).

�
�

�
�

character
stream

-

lex

�
�

�
�

token
stream

-

syn

�
�

�
�

parse
tree

-

trn

�
�

�
�

intermediate
code

-

gen

�
�

�
�

target
code

In such a compiler “intermediate code” is typically a stack-oriented abstract machine code
(e.g. OCODE in the BCPL compiler or JVM for Java). Note that stages ‘lex’, ‘syn’ and ‘trn’
are in principle source language-dependent, but not target architecture-dependent whereas
stage ‘gen’ is target dependent but not language dependent.

To ease optimisation (really ‘amelioration’ !) we need an intermediate code which makes
inter-instruction dependencies explicit to ease moving computations around. Typically we
use 3-address code (sometimes called ‘quadruples’). This is also near to modern RISC archi-
tectures and so facilitates target-dependent stage ‘gen’. This intermediate code is stored in
a flowgraph G—a graph whose nodes are labelled with 3-address instructions (or later ‘basic
blocks’). We write

pred(n) = {n′ | (n′, n) ∈ edges(G)}

succ(n) = {n′ | (n, n′) ∈ edges(G)}

for the sets of predecessor and successor nodes of a given node; we assume common graph
theory notions like path and cycle.

Forms of 3-address instructions (a, b, c are operands, f is a procedure name, and lab is a
label):

• ENTRY f : no predecessors;

• EXIT: no successors;

• ALU a, b, c: one successor (ADD, MUL, . . .);

• CMP〈cond〉 a, b, lab: two successors (CMPNE, CMPEQ, . . .) — in straight-line code these
instructions take a label argument (and fall through to the next instruction if the branch
doesn’t occur), whereas in a flowgraph they have two successor edges.

Multi-way branches (e.g. case) can be considered for this course as a cascade of CMP in-
structions. Procedure calls (CALL f) and indirect calls (CALLI a) are treated as atomic
instructions like ALU a, b, c. Similarly one distinguishes MOV a, b instructions (a special case
of ALU ignoring one operand) from indirect memory reference instructions (LDI a, b and
STI a, b) used to represent pointer dereference including accessing array elements. Indirect
branches (used for local goto 〈exp〉) terminate a basic block (see later); their successors must
include all the possible branch targets (see the description of Fortran ASSIGNED GOTO).

4

A safe way to over-estimate this is to treat as successors all labels which occur other than in
a direct goto l form. Arguments to and results from procedures are presumed to be stored
in standard places, e.g. global variables arg1, arg2, res1, res2, etc. These would typically
be machine registers in a modern procedure-calling standard.

As a brief example, consider the following high-level language implementation of the fac-
torial function:

int fact (int n)

{
if (n == 0) {

return 1;

} else {
return n * fact(n-1);

}
}

This might eventually be translated into the following 3-address code:

ENTRY fact ; begins a procedure called "fact"

MOV t32,arg1 ; saves a copy of arg1 in t32

CMPEQ t32,#0,lab1 ; branches to lab1 if arg1 == 0

SUB arg1,t32,#1 ; decrements arg1 in preparation for CALL

CALL fact ; leaves fact(arg1) in res1 (t32 is preserved)

MUL res1,t32,res1

EXIT ; exits from the procedure

lab1: MOV res1,#1

EXIT ; exits from the procedure

Slogan: Optimisation = Analysis + Transformation

Transformations are often simple (e.g. delete this instruction) but may need complicated
analysis to show valid. Note also the use of Analyses without corresponding Transformations
for the purposes of compile-time debugging (e.g. see the later use of LVA to warn about the
dataflow anomaly of possibly uninitialised variables).

Hence new structure of the compiler:

�
�

�
�

character
stream

-

lex

�
�

�
�

token
stream

-

syn

�
�

�
�

parse
tree

-

trn

�
�

�
�

intermediate
code

� �
?

optimise

-

gen

�
�

�
�

target
code

This course only considers the optimiser, which in principle is both source-language and
target-architecture independent, but certain gross target features may be exploited (e.g. num-
ber of user allocatable registers for a register allocation phase).

5

Often we group instructions into basic blocks: a basic block is a maximal sequence of
instructions n1, . . . , nk which have

• exactly one predecessor (except possibly for n1)

• exactly one successor (except possibly for nk)

The basic blocks in our example 3-address code factorial procedure are therefore:

ENTRY fact

MOV t32,arg1

CMPEQ t32,#0,lab1

SUB arg1,t32,#1

CALL fact

MUL res1,t32,res1

EXIT

lab1: MOV res1,#1

EXIT

Basic blocks reduce space and time requirements for analysis algorithms by calculating
and storing data-flow information once-per-block (and recomputing within a block if required)
over storing data-flow information once-per-instruction.

It is common to arrange that stage ‘trn’ which translates a tree into a flowgraph uses a new
temporary variable on each occasion that one is required. Such a basic block (or flowgraph)
is referred to as being in normal form. For example, we would translate

x = a*b+c;

y = a*b+d;

into

MUL t1,a,b

ADD x,t1,c

MUL t2,a,b

ADD y,t2,d.

Later we will see how general optimisations can map these code sequences into more efficient
ones.

1.1 Forms of analysis

Form of analysis (and hence optimisation) are often classified:

• ‘local’ or ‘peephole’: within a basic block;

• ‘global’ or ‘intra-procedural’: outwith a basic block, but within a procedure;

• ‘inter-procedural’: over the whole program.

This course mainly considers intra-procedural analyses in part A (an exception being ‘unreachable-
procedure elimination’ in section 1.3) whereas the techniques in part B often are applicable
intra- or inter-procedurally (since the latter are not flowgraph-based further classification by
basic block is not relevant).

6

1.2 Simple example: unreachable-code elimination

(Reachability) Analysis = ‘find reachable blocks’; Transformation = ‘delete code which reach-
ability does not mark as reachable’. Analysis:

• mark entry node of each procedure as reachable;

• mark every successor of a marked node as reachable and repeat until no further marks
are required.

Analysis is safe: every node to which execution may flow at execution will be marked by the
algorithm. The converse is in general false:

if tautology(x) then C1 else C2.

The undecidability of arithmetic (cf. the halting problem) means that we can never spot all
such cases. Note that safety requires the successor nodes to goto 〈exp〉 (see earlier) not to be
under-estimated. Note also that constant propagation (not covered in this course) could be
used to propagate known values to tests and hence sometimes to reduce (safely) the number
of successors of a comparison node.

1.3 Simple example: unreachable-procedure elimination

(A simple interprocedural analysis.) Analysis = ‘find callable procedures’; Transformation
= ‘delete procedures which analysis does not mark as callable’. Data-structure: call-graph,
a graph with one node for each procedure and an edge (f, g) whenever f has a CALL g

statement or f has a CALLI a statement and we suspect that the value of a may be g. A safe
(i.e. over-estimate in general) interpretation is to treat CALLI a as calling any procedure in
the program which occurs other than in a direct call context—in C this means (implicitly or
explicitly) address taken. Analysis:

• mark procedure main as callable;

• mark every successor of a marked node as callable and repeat until no further marks
are required.

Analysis is safe: every procedure which may be invoked during execution will be marked by
the algorithm. The converse is again false in general. Note that label variable and procedure
variables may reduce optimisation compared with direct code—do not use these features of a
programming language unless you are sure they are of overall benefit.

7

2 Live Variable Analysis—LVA

A variable x is semantically live1 at node n if there is some execution sequence starting at n

whose I/O behaviour can be affected by changing the value of x.
A variable x is syntactically live at node n if there is a path in the flowgraph to a node

n′ at which the current value of x may be used (i.e. a path from n to n′ which contains no
definition of x and with n′ containing a reference to x). Note that such a path may not
actually occur during any execution, e.g.

l1: ; /* is ’t’ live here? */

if ((x+1)*(x+1) == y) t = 1;

if (x*x+2*x+1 != y) t = 2;

l2: print t;

Because of the optimisations we will later base on the results of LVA, safety consists of over-
estimating liveness, i.e.

sem-live(n) ⊆ syn-live(n)

where live(n) is the set of variable live at n. Logicians might note the connection of semantic
liveness and |= and also syntactic liveness and ⊢.

From the non-algorithmic definition of syntactic liveness we can obtain dataflow equations:

live(n) =

⋃

s∈succ(n)

live(s)

 \ def (n) ∪ ref (n)

You might prefer to derive these in two stages, writing in-live(n) for variables live on entry
to node n and out-live(n) for those live on exit. This gives

in-live(n) = out-live(n) \ def (n) ∪ ref (n)

out-live(n) =
⋃

s∈succ(n)

in-live(s)

Here def (n) is the set of variables defined at node n, i.e. {x} in the instruction x = x+y and
ref (n) the set of variables referenced at node n, i.e. {x, y}.

Notes:

• These are ‘backwards’ flow equations: liveness depends on the future whereas normal
execution flow depends on the past;

• Any solution of these dataflow equations is safe (w.r.t. semantic liveness).

Problems with address-taken variables—consider:

int x,y,z,t,*p;

x = 1, y = 2, z = 3;

p = &y;

if (...) p = &y;

*p = 7;

if (...) p = &x;

t = *p;

print z+t;

1 Mention the words ‘extensional’ for this notion and ‘intentional’ for the ‘syntactic’ property below.

8

Here we are unsure whether the assignment *p = 7; assigns to x or y. Similarly we are
uncertain whether the reference t = *p; references x or y (but we are certain that both
reference p). These are ambiguous definitions and references. For safety we treat (for LVA)
an ambiguous reference as referencing any address-taken variable (cf. label variable and pro-
cedure variables—an indirect reference is just a ‘variable’ variable). Similarly an ambiguous
definition is just ignored. Hence in the above, for *p = 7; we have ref = {p} and def = {}
whereas t = *p; has ref = {p, x, y} and def = {t}.

Algorithm (implement live as an array live[]):

for i=1 to N do live[i] := {}

while (live[] changes) do

for i=1 to N do

live[i] :=

⋃

s∈succ(i)

live[s]

 \ def (i) ∪ ref (i).

Clearly if the algorithm terminates then it results in a solution of the dataflow equation.
Actually the theory of complete partial orders (cpo’s) means that it always terminates with
the least solution, the one with as few variables as possible live consistent with safety. (The
powerset of the set of variables used in the program is a finite lattice and the map from
old-liveness to new-liveness in the loop is continuous.)

Notes:

• we can implement the live[] array as a bit vector using bit k being set to represent
that variable xk (according to a given numbering scheme) is live.

• we can speed execution and reduce store consumption by storing liveness information
only once per basic block and re-computing within a basic block if needed (typically
only during the use of LVA to validate a transformation). In this case the dataflow
equations become:

live(n) =

⋃

s∈succ(n)

live(s)

 \ def (ik) ∪ ref (ik) · · · \ def (i1) ∪ ref (i1)

where (i1, . . . , ik) are the instructions in basic block n.

3 Available expressions

Available expressions analysis (AVAIL) has many similarities to LVA. An expression e (typ-
ically the RHS of a 3-address instruction) is available at node n if on every path leading to
n the expression e has been evaluated and not invalidated by an intervening assignment to a
variable occurring in e.

This leads to dataflow equations:

avail(n) =
⋂

p∈pred(n) (avail(p) \ kill(p) ∪ gen(p)) if pred(n) 6= {}

avail(n) = {} if pred(n) = {}.

Here gen(n) gives the expressions freshly computed at n: gen(x = y+z) = {y + z}, for exam-
ple; but gen(x = x+z) = {} because, although this instruction does compute x + z, it then

9

changes the value of x, so if the expression x + z is needed in the future it must be recom-
puted in light of this.2 Similarly kill(n) gives the expressions killed at n, i.e. all expressions
containing a variable updated at n. These are ‘forwards’ equations since avail(n) depends on
the past rather than the future. Note also the change from ∪ in LVA to ∩ in AVAIL. You
should also consider the effect of ambiguous kill and gen (cf. ambiguous ref and def in LVA)
caused by pointer-based access to address-taken variables.

Again any solution of these equations is safe but, given our intended use, we wish the
greatest solution (in that it enables most optimisations). This leads to an algorithm (assuming
flowgraph node 1 is the only entry node):

avail[1] := {}

for i=2 to N do avail[i] := U

while (avail[] changes) do

for i=2 to N do

avail[i] :=
⋂

p∈pred(i)

(avail[p] \ kill(p) ∪ gen(p)).

Here U is the set of all expressions; it suffices here to consider all RHS’s of 3-address instruc-
tions. Indeed if one arranges that every assignment assigns to a distinct temporary (a little
strengthening of normal form for temporaries) then a numbering of the temporary variables
allows a particularly simple bit-vector representation of avail[].

4 Uses of LVA

There are two main uses of LVA:

• to report on dataflow anomalies, particularly a warning to the effect that “variable ‘x’
may be used before being set”;

• to perform ‘register allocation by colouring’.

For the first of these it suffices to note that the above warning can be issued if ‘x’ is live at
entry to the procedure (or scope) containing it. (Note here ‘safety’ concerns are different—it is
debatable whether a spurious warning about code which avoids executing a seeming error for
rather deep reasons is better or worse than omitting to give a possible warning for suspicious
code; decidability means we cannot have both.) For the second, we note that if there is
no 3-address instruction where two variables are both live then the variables can share the
same memory location (or, more usefully, the same register). The justification is that when
a variable is not live its value can be corrupted arbitrarily without affecting execution.

4.1 Register allocation by colouring

Generate naive 3-address code assuming all variables (and temporaries) are allocated a differ-
ent (virtual) register (recall ‘normal form’). Gives good code, but real machines have a finite
number of registers, typically 32. Derive a graph (the ‘clash graph’) whose nodes are virtual
registers and there is an edge between two virtual registers which are ever simultaneously

2This definition of gen(n) is rather awkward. It would be tidier to say that gen(x = x+z) = {x + z},
because x + z is certainly computed by the instruction regardless of the subsequent assignment. However, the
given definition is chosen so that avail(n) can be defined in the way that it is; I may say more in lectures.

10

live (this needs a little care when liveness is calculated merely for basic block starts—we
need to check for simultaneous liveness within blocks as well as at block start!). Now try
to colour (= give a different value for adjacent nodes) the clash graph using the real (target
architecture) registers as colours. (Clearly this is easier if the target has a large-ish number
of interchangeable registers—not an early 8086.) Although planar graphs (corresponding to
terrestrial maps) can always be coloured with four colours this is not generally the case for
clash graphs (exercise).

Graph colouring is NP-complete but here is a simple heuristic for choosing an order to
colour virtual registers (and to decide which need to be spilt to memory where access can be
achieved via LD/ST to a dedicated temporary instead of directly by ALU register-register
instructions):

• choose a virtual register with the least number of clashes;

• if this is less than the number of colours then push it on a LIFO stack since we can
guarantee to colour it after we know the colour of its remaining neighbours. Remove the
register from the clash graph and reduce the number of clashes of each of its neighbours.

• if all virtual registers have more clashes than colours then one will have to be spilt.
Choose one (e.g. the one with least number of accesses3) to spill and reduce the clashes
of all its neighbours by one.

• when the clash graph is empty, pop in turn the virtual registers from the stack and
colour them in any way to avoid the colours of their (already-coloured) neighbours. By
construction this is always possible.

Note that when we have a free choice between several colours (permitted by the clash graph)
for a register, it makes sense to choose a colour which converts a MOV r1,r2 instruction into
a no-op by allocating r1 and r2 to the same register (provided they do not clash). This can
be achieved by keeping a separate ‘preference’ graph.

4.2 Non-orthogonal instructions and procedure calling standards

A central principle which justifies the idea of register allocation by colouring at all is that
of having a reasonable large interchangeable register set from which we can select at a later
time. It is assumed that if we generate a (say) multiply instruction then registers for it can be
chosen later. This assumption is a little violated on the 80x86 architecture where the multiply
instruction always uses a standard register unlike other instructions which have a reasonably
free choice of operands. Similarly, it is violated on a VAX where some instructions corrupt
registers r0–r5.

However, we can design a uniform framework in which such small deviations from unifor-
mity can be gracefully handled. We start by arranging that physical registers are a subset of
virtual registers by arranging that (say) virtual registers v0–v31 are pre-allocated to physical
registers r0–r31 and virtual registers allocated for temporaries and user variables start from
32. Now

3Of course this is a static count, but can be made more realistic by counting an access within a loop nesting
of n as worth 4n non-loop accesses. Similarly a user register declaration can be here viewed as an extra (say)
1000 accesses.

11

• when an instruction requires an operand in a given physical register, we use a MOV to
move it to the virtual encoding of the given physical register—the preference graph will
try to ensure calculations are targeted to the given source register;

• similarly when an instruction produces a result in a given physical register, we move
the result to an allocatable destination register;

• finally, when an instruction corrupts (say) rx during its calculation, we arrange that its
virtual correspondent vx has a clash with every virtual register live at the occurrence
of the instruction.

Note that this process has also solved the problem of handling register allocation over
procedure calls. A typical procedure calling standard specified n registers for temporaries, say
r0–r[n-1] (of which the first m are used for arguments and results—these are the standard
places arg1, arg2, res1, res2, etc. mentioned at the start of the course) and k registers to
be preserved over procedure call. A CALL or CALLI instruction then causes each variable
live over a procedure call to clash with each non-preserved physical register which results in
them being allocated a preserved register. For example,

int f(int x) { return g(x)+h(x)+1;}

might generate intermediate code of the form

ENTRY f

MOV v32,r0 ; save arg1 in x

MOV r0,v32 ; omitted (by "other lecturer did it" technique)

CALL g

MOV v33,r0 ; save result as v33

MOV r0,v32 ; get x back for arg1

CALL h

ADD v34,v33,r0 ; v34 = g(x)+h(x)

ADD r0,v34,#1 ; result = v34+1

EXIT

which, noting that v32 and v33 clash with all non-preserved registers (being live over a
procedure call), might generate code (on a machine where r4 upwards are specified to be
preserved over procedure call)

f: push {r4,r5} ; on ARM we do: push {r4,r5,lr}

mov r4,r0

call g

mov r5,r0

mov r0,r4

call h

add r0,r5,r0

add r0,r0,#1

pop {r4,r5} ; on ARM we do: pop {r4,r5,pc} which returns ...

ret ; ... so don’t need this on ARM.

12

Note that r4 and r5 need to be push’d and pop’d at entry and exit from the procedure
to preserve the invariant that these registers are preserved over a procedure call (which is
exploited by using these registers over the calls to g and h. In general a sensible procedure
calling standard specifies that some (but not all) registers are preserved over procedure call.
The effect is that store-multiple (or push-multiple) instructions can be used more effectively
than sporadic ld/st to stack.

4.3 Global variables and register allocation

The techniques presented have implicitly dealt with register allocation of local variables. These
are live for (at most) their containing procedure, and can be saved and restored by called
procedures. Global variables (e.g. C static or extern) are in general live on entry to, and exit
from, a procedure and in general cannot be allocated to a register except for a whole program
“reserve register r〈n〉 for variable 〈x〉” declaration. The allocator then avoids such registers
for local variables (because without whole program analysis it is hard to know whether a call
may indirectly affect r〈n〉 and hence 〈x〉).

An amusing exception might be a C local static variable which is not live on entry to a
procedure—this does not have to be preserved from call-to-call and can thus be treated as an
ordinary local variable (and indeed perhaps the programmer should be warned about sloppy
code). The Green Hills C compiler used to do this optimisation.

5 Uses of AVAIL

The main use of AVAIL is common sub-expression elimination, CSE, (AVAIL provides a tech-
nique for doing CSE outwith a single basic block whereas simple-minded tree-oriented CSE
algorithms are generally restricted to one expression without side-effects). If an expression e

is available at a node n which computes e then we can ensure that the calculations of e on
each path to n are saved in a new variable which can be re-used at n instead of re-computing
e at n.

In more detail (for any ALU operation ⊕):

• for each node n containing x := a ⊕ b with a ⊕ b available at n:

• create a new temporary t;

• replace n : x := a ⊕ b with n : x := t;

• on each path scanning backwards from n, for the first occurrence of a⊕ b (say n′ : y :=
a ⊕ b) in the RHS of a 3-address instruction (which we know exists by AVAIL) replace
n′ with two instructions n′ : t := a ⊕ b; n′′ : y := t.

Note that the additional temporary t above can be allocated by register allocation (and also
that it encourages the register allocator to choose the same register for t and as many as
possible of the various y). If it becomes spilt, we should ask whether the common sub-
expression is big enough to justify the LD/ST cost of spilling of whether the common sub-
expression is small enough that ignoring it by re-computing is cheaper. (See Section 8).

One subtlety which I have rather side-stepped in this course is the following issue. Suppose
we have source code

13

x := a*b+c;

y := a*b+c;

then this would become 3-address instructions:

MUL t1,a,b

ADD x,t1,c

MUL t2,a,b

ADD y,t2,c

CSE as presented converts this to

MUL t3,a,b

MOV t1,t3

ADD x,t1,c

MOV t2,t3

ADD y,t2,c

which is not obviously an improvement! There are two solutions to this problem. One is to
consider bigger CSE’s than a single 3-address instruction RHS (so that effectively a*b+c is
a CSE even though it is computed via two different temporaries). The other is to use copy
propagation—we remove MOV t1,t3 and MOV t2,t3 by the expedient of renaming t1 and t2

as t3. This is only applicable because we know that t1, t2 and t3 are not otherwise updated.
The result is that t3+c becomes another CSE so we get

MUL t3,a,b

ADD t4,t3,c

MOV x,t4

MOV y,t4

which is just about optimal for input to register allocation (remember that x or y may be
spilt to memory whereas t3 and t4 are highly unlikely to be; moreover t4 (and even t3) are
likely to be allocated the same register as either x or y if they are not spilt).

6 Code Motion

Transformations such as CSE are known collectively as code motion transformations. Another
famous one (more general than CSE4) is Partial Redundancy Elimination. Consider

a = ...;

b = ...;

do

{ ... = a+b; /* here */

a = ...;

... = a+b;

} while (...)

the marked expression a+b is redundantly calculated (in addition to the non-redundant cal-
culation) every time round the loop except the first. Therefore it can be time-optimised (even
if the program stays the same size) by first transforming it into:

4 One can see CSE as a method to remove totally redundant expression computations.

14

a = ...;

b = ...;

... = a+b;

do

{ ... = a+b; /* here */

a = ...;

... = a+b;

} while (...)

and then the expression marked ‘here’ can be optimised away by CSE.

7 Static Single Assignment Form

Register allocation re-visited: sometimes the algorithm presented for register allocation is not
optimal in that it assumes a single user-variable will live in a single place (store location or
register) for the whole of its scope. Consider the following illustrative program:

extern int f(int);

extern void h(int,int);

void g()

{ int a,b,c;

a = f(1); b = f(2); h(a,b);

b = f(3); c = f(4); h(b,c);

c = f(5); a = f(6); h(c,a);

}

Here a, b and c all mutually clash and so all get separate registers. However, note that the
first variable on each line could use (say) r4, a register preserved over function calls, and the
second variable a distinct variable (say) r1. This would reduce the need for registers from
three to two, by having distinct registers used for a given variable at different points in its
scope. (Note this may be hard to represent in debugger tables.)

The transformation is often called live range splitting and can be seen as resulting from
source-to-source transformation:

void g()

{ int a1,a2, b1,b2, c1,c2;

a1 = f(1); b2 = f(2); h(a1,b2);

b1 = f(3); c2 = f(4); h(b1,c2);

c1 = f(5); a2 = f(6); h(c1,a2);

}

This problem does not arise with temporaries because we have arranged that every need
for a temporary gets a new temporary variable (and hence virtual register) allocated (at least
before register colouring). The critical property of temporaries which we wish to extend to
user-variables is that each temporary is assigned a value only once (statically at least—going
round a loop can clearly assign lots of values dynamically).

This leads to the notion of Static Single Assignment (SSA) form and the transformation
to it.

15

The Static Single Assignment (SSA) form (see e.g. [2]) is a compilation technique to enable
repeated assignments to the same variable (in flowgraph-style code) to be replaced by code
in which each variable occurs (statically) as a destination exactly once.

In straight-line code the transformation to SSA is straightforward, each variable v is re-
placed by a numbered instance vi of v. When an update to v occurs this index is incremented.
This results in code like

v = 3; v = v+1; v = v+w; w = v*2;

(with next available index 4 for w and 7 for v) being mapped to

v7 = 3; v8 = v7+1; v9 = v8+w3; w4 = v9*2;

On path-merge in the flowgraph we have to ensure instances of such variables continue to
cause the same data-flow as previously. This is achieved by placing a logical (static single)
assignment to a new common variable on the path-merge arcs. Because flowgraph nodes
(rather than edges) contain code this is conventionally represented by a invoking a so-called
φ-function at entry to the path-merge node. The intent is that φ(x, y) takes value x if control
arrived from the left arc and y if it arrived from the right arc; the value of the φ-function is
used to define a new singly-assigned variable. Thus consider

{ if (p) { v = v+1; v = v+w; } else v=v-1; } w = v*2;

which would map to (only annotating v and starting at 4)

{ if (p) { v4 = v3+1; v5 = v4+w; } else v6=v3-1; } v7 = φ(v5,v6); w = v7*2;

8 The Phase-Order Problem

The ‘phase order problem’ refers to the issue in compilation that whenever we have multiple
optimisations to be done on a single data structure (e.g. register allocation and CSE on the
flowgraph) we find situations where doing any given optimisation yields better results for
some programs if done after another optimisation, but better results if done before for other
programs. A slightly more subtle version is that we might want to bias choices within one
phase to make more optimisations possible in a later phase. These notes just assume that
CSE is done before register allocation and if SSA is done then it is done between them.

We just saw the edge of the phase order problem: what happens if doing CSE causes
a cheap-to-recompute expression to be stored in a variable which is spilt into expensive-to-
access memory. In general other code motion operations (including Instruction Scheduling in
Part C) have harder-to-resolve phase order issues.

8.1 Gratuitous Advertisement (non-examinable)

All the work described above is at least ten years old and is generally a bit creaky when
examined closely (e.g. the phase-order problem between CSE and register allocation, e.g. the
flowgraph over-determines execution order). There have been various other data structures
proposed to help the second issue (find “{Data,Program,Value,System} {Dependence, Depen-
dency} Graph” and “Data Flow Graph” on the web—note also that what we call a flowgraph

16

is generally called a “Control Flow Graph” or CFG), but let me shamelessly highlight [7]
which generalises the flowgraph to the Value State Dependence Graph (VSDG) and then
shows that code motion optimisations (like CSE and instruction re-ordering) and register
allocation can be done in an interleaved manner on the VSDG, thus avoiding some aspects
of the phase order problem.

9 Compiling for Multi-core

Multi-core processors are becoming the norm with the inability of additional transistors due
to Moore’s Law to translate into faster processor speeds.

Effectively compiling for them is, however, a challenging task and current industrial offer-
ings far from satisfactory. One key issue is whether we wish to write in a sequential language
and then hope that the compiler can parallelise it (this is liable to be rather optimistic for
languages which contain aliasing especially on NUMA architectures, but also on x86-style
multi-core) since “alias analysis” (determining whether two pointers may point to the same
location) is undecidable in theory and tends to be ineffective in practice (see Section 18 for
an O(n3) approach). Otherwise a compiler for a sequential language needs hints about where
parallelism is possible and/or safe. Open/MP and Cilk++ are two general-purpose offerings
with very different flavours.

The alternative is writing explicitly parallel code, but this easily becomes target-specific
and hence non-portable. Languages with explicit message passing (MPI) are possibilities, and
for graphics cards nVidia’s CUDA (currently forming an input to the “OpenCL” standardis-
ation) is promising.

A promising direction is that of languages which explicitly express the isolation of two
processes (disjointness of memory accesses).

For time reasons this course will not say more on this topic, but it is worth noting that the
change from uni-processing to multi-core is bigger than almost any other change in comput-
ing, and the sequential languages which we learned how to compile efficiently for sequential
machines seem no longer appropriate.

17

	Introduction
	Forms of analysis
	Simple example: unreachable-code elimination
	Simple example: unreachable-procedure elimination

	Live Variable Analysis---LVA
	Available expressions
	Uses of LVA
	Register allocation by colouring
	Non-orthogonal instructions and procedure calling standards
	Global variables and register allocation

	Uses of AVAIL
	Code Motion
	Static Single Assignment Form
	The Phase-Order Problem
	Gratuitous Advertisement (non-examinable)

	Compiling for Multi-core
	Algebraic Identities
	Strength Reduction

	Abstract Interpretation
	Strictness analysis
	Constraint-based analysis
	Constraint Systems and their Solution

	Control-flow analysis (for lambda-terms)
	Class Hierarchy Analysis
	Inference-based program analysis
	Effect systems
	Points-to and alias analysis
	Introduction
	Antagonism of register allocation and instruction scheduling

