
Generics I

 The original Collections framework just dealt with
collections of Objects
 Everything in Java “is-a” Object so that way our

collections framework will apply to any class we like
without any special modification.

 It gets messy when we get something from our
collection though: it is returned as an Object and
we have to do a narrowing conversion to make use
of it:

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Generics II

 It gets worse when you realise that the add() method
doesn't stop us from throwing in random objects:

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Going to fail for the
second element!
(But it will compile:
the error will be at
runtime)

Generics III

 To help solve this sort of problem, Java introduced
Generics in JDK 1.5

 Basically, this allows us to tell the compiler what is
supposed to go in the Collection

 So it can generate an error at compile-time, not run-
time

// Make a TreeSet of Integers
TreeSet<Integer> ts = new TreeSet<Integer>();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator<Integer> it = ts.iterator();
while(it.hasNext()) {
 Integer i = it.next();
}

Won't even compile

No need to cast :-)

Notation in Java API

 Set<E>
 List<E>
 Queue<E>
 Map<K,V>

Generics and SubTyping
// Object casting
Person p = new Person();
Animal o = (Animal) p;

// List casting
List<Person> plist = new LinkedList<Person>();
List<Animal> alist = (List<Animal>)plist;<<interface>>

Collection
Person

<<interface>>
Collection

Animal

So a list of Persons is a list of Animals, yes?

Comparing Java Classes

Comparing Primitives

> Greater Than

>= Greater than or equal to

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

 Clearly compare the value of a primitive
 But what does (object1==object2) mean??

 Same object?
 Same state (“value”) but different object?

Option 1: a==b, a!=b

 These compare the references

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

p1==p1;

False (references differ)

True (references differ)

True (references the same)

String s = “Hello”;
if (s==”Hello”) System.out.println(“Hello”);
else System.out.println(“Nope”);

Option 2: The equals() Method

 Object defines an equals() method. By default, this
method just does the same as ==.
 Returns boolean, so can only test equality
 Override it if you want it to do something different
 Most (all?) of the core Java classes have properly

implemented equals() methods

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

String s1 = “Bob”;
String s2 = “Bob”;

(s1==s2);

False (we haven't
overridden the equals()
method so it just
compares references

True (String has equals()
overridden)

Option 3: Comparable<T> Interface
I

int compareTo(T obj);

 Part of the Collections Framework
 Returns an integer, r:

 r<0 This object is less than obj
 r==0 This object is equal to obj
 r>0 This object is greater than obj

Option 3: Comparable<T> Interface
II

public class Point implements Comparable<Point> {
 private final int mX;
 private final int mY;
 public Point (int, int y) { mX=x; mY=y; }

 // sort by y, then x
 public int compareTo(Point p) {
 if (mY>p.mY) return 1;
 else if (mY<p.mY) return -1;
 else {
 if (mX>p.mX) return 1;
 else if (mX<p.mX) return -1;
 else return 0.
 }
 }
}

// This will be sorted automatically by y, then x
Set<Point> list = new TreeSet<Point>();

Option 4: Comparator<T> Interface

int compareTo(T obj1, T obj2)

 Also part of the Collections framework and
allows us to specify a particular comparator
for a particular job

 E.g. a Person might have a compareTo()
method that sorts by surname. We might
wish to create a class AgeComparator that
sorts Person objects by age. We could then
feed that to a Collections object.

Java's I/O framework

 Support for system input and output (from/to sources
such as network, files, etc).

<<interface>>
Collection

Reader
Abstract class for reading
data from some source

<<interface>>
Collection

InputStreamReader

<<interface>>
Collection

FileReader

Concrete Instance that works
 on an InputStream object

Specialisation that allows us to
specify a filename, then creates
and InputStream for it

Speeding it up

 In general file I/O is sloowwww

 One trick we can use is that whenever we're asked to read
some data in (say one byte) we actually read lots more in
(say a kilobyte) and buffer it somewhere on the assumption
that it will be wanted eventually and it will just be there in
memory, waiting for us. :-)

 Java supports this in the form of a BufferedReader

FileReader f = new FileReader();
BufferedReader br = new BufferedReader(f); Reader

InputStreamReader BufferedReader

BufferedReader

 Whenever we call read() on a
BufferedReader it looks in its
buffer to see whether it has
the data already

 If not it passes the request
onto the Reader object

 We'll come back to this...

