
Multiple Constructors

public class Student {
 private String mName;
 private int mScore;

 public Student(String s) {
 mName=s;
 mScore=0;
 }
 public Student(String s, int sc) {
 mName=s;
 mScore=sc;
 }

 public static void main(String[] args) {
 Student s1 = new Student("Bob");
 Student s2 = new Student("Bob",55);
 }
 }

 You can specify as many
constructors as you like.

 Each constructor must have a
different signature (argument
list)

Constructor Chaining

 When you construct an object of a type with parent
classes, we call the constructors of all of the parents
in sequence

Student s = new Student();

Animal

Person

Student

1. Call Animal()

2. Call Person()

3. Call Student()

Destructors

 Most OO languages have a notion of a destructor too
 Gets run when the object is destroyed
 Allows us to release any resources (open files, etc) or memory

that we might have created especially for the object

class FileReader {
 public:

 // Constructor
 FileReader() {
 f = fopen(“myfile”,”r”);
 }

 // Destructor
 ~FileReader() {
 fclose(f);
 }

 private :
 FILE *file;
}

int main(int argc, char ** argv) {

 // Construct a FileReader Object
 FileReader *f = new FileReader();

 // Use object here
 ...

 // Destruct the object
 delete f;

}

C++

Cleaning Up

 A typical program creates lots of objects, not all of which
need to stick around all the time

 Approach 1:
 Allow the programmer to specify when objects should

be deleted from memory
 Lots of control, but what if they forget to delete an

object?
 Approach 2:

 Delete the objects automatically (Garbage
collection)

 But how do you know when an object is finished with
if the programmer doesn't explicitly tell you it is?

Cleaning Up (Java) I

 Java reference counts. i.e. it keeps track of how many
references point to a given object. If there are none, the
programmer can't access that object ever again so it can be
deleted

Person object
#ref = 2

r2

r1

r1 = null;
r2 = null;

Person object
#ref = 0

r2

r1

Deletable

Cleaning Up (Java) II

 Good:
 System cleans up after us

 Bad:
 It has to keep searching for objects with no

references. This requires effort on the part of
the CPU so it degrades performance.

 We can't easily predict when an object will be
deleted

Cleaning Up (Java) III

 So we can't tell when a destructor would run – so Java
doesn't have them!!

 It does have the notion of a finalizer that gets run when
an object is garbage collected
 BUT there's no guarantee an object will ever get

garbage collected in Java...
 Garbage Collection != Destruction

Class-Level Data

Class-Level Data and Functionality I
 Imagine we have a class ShopItem. Every ShopItem

has an individual core price to which we need to add
VAT

 Two issues here:
1. If the VAT rate changes, we need to find every

ShopItem object and run SetVATRate(...) on it.
We could end up with different items having
different VAT rates when they shouldn't...

2. It is inefficient. Every time we create a new
ShopItem object, we allocate another 32 bits of
memory just to store exactly the same number!

public class ShopItem {
 private float price;
 private float VATRate = 0.175;

 public float GetSalesPrice() {
 return price*(1.0+VATRate);
 }

 public void SetVATRate(float rate) {
 VATRate=rate;
 }

}

 What we have is a piece of information that is class-level not object level
 Each individual object has the same value at all times

 We throw in the static keyword:

public class ShopItem {
 private float price;
 private static float VATRate;

}

Variable created only once
and has the lifetime of the
program, not the object

Class-Level Data and Functionality II
 We now have one place to update

 More efficient memory usage

17.5

17.5

17.5

17.5

17.5

17.5

 Can also make methods static too
 A static method must be instance independent i.e. it can't rely on member variables in

any way
 Sometimes this is obviously needed. E.g

public class Whatever {
 public static void main(String[] args) {
 ...
 }
}

Must be able to run this
function without creating an
object of type Whatever
(which we would have to do in
the main()..!)

Why Use Other Static Functions?
 A static function is like a function in ML – it can depend only on its

arguments
 Easier to debug (not dependent on any state)
 Self documenting
 Allows us to group related methods in a Class, but not require us

to create an object to run them
 The compiler can produce more efficient code since no specific

object is involved

public class Math {
 public float sqrt(float x) {…}
 public double sin(float x) {…}
 public double cos(float x) {…}
}

…
Math mathobject = new Math();
mathobject.sqrt(9.0);
...

public class Math {
 public static float sqrt(float x) {…}
 public static float sin(float x) {…}
 public static float cos(float x) {…}
}

…
Math.sqrt(9.0);
...

vs

Exceptions

Error Handling
 You do a lot on this in your practicals, so we'll just touch on it here

 The traditional way of handling errors is to return a value that indicates
success/failure/error

 Problems:

 Could ignore the return value

 Have to keep checking what the 'codes' are for success, etc.

 The result can't be returned in the usual way

public int divide(double a, double b) {
 if (b==0) return -1; // error
 double result = a/b;
 return 0; // success
}

…

if (divide(x,y)<0) System.out.println(“Failure!!”);

Exceptions I

 An exception is an object that can be thrown up by a method
when an error occurs and caught by the calling code

public double divide(double a, double b) throws DivideByZeroException {
 if (b==0) throw DivideByZeroException();
 else return a/b
}

…

try {
 double z = divide(x,y);
}
catch(DivideByZeroException d) {
 // Handle error here
}

Exceptions II

 Advantages:
 Class name is descriptive (no need to look up codes)
 Doesn't interrupt the natural flow of the code by requiring

constant tests
 The exception object itself can contain state that gives lots

of detail on the error that caused the exception
 Can't be ignored, only handled

Copying Java Objects

