Methods and Inheritance: Overriding

= We might want to require that every Person can dance. But the way
a Lecturer dances is not likely to be the same as the way a Student

dances...
CIaSSbIID'erSO'r(]j{d) {4 Person defines a
public void dance | |
jiggle _a_bit(); .defaU|t :
} implementation of
} dance()
Student » class Student extends Person {
udaent overrides public void dance() {
the default > body_pop();

}
}

class Lecturer extends Person { !—eCtU_rer just
} - inherits the default

implementation and
jiggles

(Subtype) Polymorphism

Student s = new Student(): = Assuming Person has a default

Person p = (Person)s; dance() method, what should happen
p-dance(); here??
" Option 1

" Compiler says “p is of type Person”
" So p.dance() should do the default dance() action in Person

"= Option 2
" Compiler says “The object in memory is really a Student”
" So p.dance() should run the Student dance() method

~ Polymorphic behaviour

= A drawing program that can draw circles,
squares, ovals and stars

* |t would presumably keep a list of all the
drawing objects

Circle = Option 1
+ drawl) = Keep a list of Circle objects, a list of
Square Square objects,...
+ draw() = |terate over each list drawing each
object in turn
Oval

* What has to change if we want to add

+ draw()

a new shape?

Star

+ draw()

Shape

Circle

+ draw()

Square

+ draw()

Oval

+ draw()

Star

+ drawl()

= Option 2
» Keep a single list of Shape references

* Figure out what each object really is,
narrow the reference and then draw()

for every Shape s in myShapelList

if (s is really a Circle)
Circle c = (Circle)s;
c.draw();

else if (s is really a Square)
Square sq = (Square)s;
sg.draw();

else if...

* What if we want to add a new shape?

Shape

- X_position: int
- y_position: int

+ draw()

JAY

Circle

+ draw()

Square

+ draw()

Oval

+ draw()

Star

+ drawl()

= Option 3 (Polymorphic)
» Keep a single list of Shape references

* Let the compiler figure out what to do
with each Shape reference

For every Shape s in myShapelList
s.draw();

= What if we want to add a new shape?

Implementations

Java

= All methods are polymorphic. Full stop.
Python

= All methods are polymorphic.

C++
= Only functions marked virtual are polymorphic

Polymorphism is an extremely important concept that you need to make
sure you understand...

class Person {

}

class Student extends Person {
public void dance() {

}

class Lecturer extends Person {
public void dance() {

}

public void dance();

}

}

body_pop();

jiggle_a_Dbit();

There are times when we have a definite
concept but we expect every specialism of
it to have a different implementation (like
the draw() method in the Shape example).
We want to enforce that idea without
providing a default method

E.g. We want to enforce that all objects that
are Persons support a dance() method

= But we don't now think that there's a
default dance()

We specify an abstract dance method in
the Person class

" j.e. we don'tfill in any implementation
(code) at all in Person.

Abstract Classes

Before we could write Person p = new Person()
But now p.dance() is undefined

Therefore we have implicitly made the class abstract ie. It cannot be directly
instantiated to an object

Languages require some way to tell them that the class is meant to be abstract and
it wasn't a mistake:

publig abstract ?Iass Person { class Person {
public ab t void dance(); public:

} virtual void dance()=0;
S

}
Java C++

Note that an abstract class can contain state variables that get inherited as normal

Note also that, in Java, we can declare a class as abstract despite not specifying
an abstract method in it!!

Representing Abstract Classes

=
(f'Person%
Iltalics indicate the
+ dance() < nel

class or method is

abstract
Student Lecturer

+ dancel() + dancel()

Student Lecturer What if we have a Lecturer who studies for

another degree?

= |f we do as shown, we have a bit of a
problem

A A = StudentLecturer inherits two different
&60/\ dance() methods

= So which one should it use if we instruct
o

a StudentlLecturer to dance()?

<

problem mostly occurs when you have

/ " The Java designers felt that this kind of
Cf’-L@L— designed your class hierarchy badly

StudentLecturer " Their solution? You can only extend

(inherit) from one class in Java
" (which may itself inherit from another...)

" This is a Java oddity (C++ allows
multiple class inheritance)

= Java has the notion of an interface which is like a class except:

= There is no state whatsoever

= All methods are abstract

* For an interface, there can then be no clashes of methods or variables to
worry about, so we can allow multiple inheritance

<<jnterface>> <<jnterface>>
Drivable Identifiable
+ turn() + getldentifier()
+ brake()

JANIAN

N\

Bicycle

+ turn()
+ brake()

Car

+ turn()
+ brake()
+ getldentifier()

Interface Drivable {

public void turn(); - abstract
) public void brake(); ~ assumed for
interfaces

Interface Identifiable {
public void getldentifier();

}

class Bicycle implements Drivable {
public void turn() {...}
public void brake() {... }

}

class Car implements Drivable, Identifiable {
public void turn() {...}
public void brake() {... }
Public void getldentifier() {...}

}

= Important OOP concepts you need to understand:

* Modularity (classes, objects)
= Data Encapsulation

* Inheritance

= Abstraction

= Polymorphism

Lifecycle of an Object

Constructors

MyObject m = new MyObject();

—_— —
-_——

= You will have noticed that the RHS looks rather like a function

call, and that's exactly what it is.

lt's a method that gets called when the object is constructed,
and it goes by the name of a constructor (it's not rocket
science).

We use constructors to initialise the state of the class in a
convenient way.

= A constructor has the same name as the class
= A constructor has no return type specified

Constructor Examples

public class Person {
private String mName;

/| Constructor
) public Person(String name) {
mName=name;
}

]

—

public static void main(String[] args) {
Person p = new Person(“Bob”);

}

Java

class Person {
private:
std::string mName;

public:

MName=name;

}
};

_.. Person(std::string &name) {

int main(int argc, char ** argv) {

Person p (“Bob”);
}

C++

Default Constructor

public class Person {
private String mName;

public static void main(String[] args) {
Person p = new Person();

}

" If you specify no constructor at
all, the Java fills in an empty
one for you

" The default constructor takes no
arguments

