
Methods and Inheritance: Overriding
 We might want to require that every Person can dance. But the way

a Lecturer dances is not likely to be the same as the way a Student
dances...

class Person {
 public void dance() {
 jiggle_a_bit();
 }
}

class Student extends Person {
 public void dance() {
 body_pop();
 }
}

class Lecturer extends Person {
}

Person defines a
'default'
implementation of
dance()

Lecturer just
inherits the default
implementation and
jiggles

Student overrides
the default

(Subtype) Polymorphism
 Assuming Person has a default

dance() method, what should happen
here??

Student s = new Student();
Person p = (Person)s;
p.dance();

 Option 1
 Compiler says “p is of type Person”
 So p.dance() should do the default dance() action in Person

 Option 2
 Compiler says “The object in memory is really a Student”
 So p.dance() should run the Student dance() method

Polymorphic behaviour

The Canonical Example I

 A drawing program that can draw circles,
squares, ovals and stars

 It would presumably keep a list of all the
drawing objects

 Option 1
 Keep a list of Circle objects, a list of

Square objects,...
 Iterate over each list drawing each

object in turn
 What has to change if we want to add

a new shape?

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

The Canonical Example II

 Option 2
 Keep a single list of Shape references
 Figure out what each object really is,

narrow the reference and then draw()

 What if we want to add a new shape?

Shape

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

for every Shape s in myShapeList
 if (s is really a Circle)
 Circle c = (Circle)s;
 c.draw();
 else if (s is really a Square)
 Square sq = (Square)s;
 sq.draw();
 else if...

The Canonical Example III

 Option 3 (Polymorphic)
 Keep a single list of Shape references
 Let the compiler figure out what to do

with each Shape reference

 What if we want to add a new shape?

Shape
- x_position: int
- y_position: int

+ draw()

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList
 s.draw();

Implementations
 Java

 All methods are polymorphic. Full stop.

 Python

 All methods are polymorphic.

 C++
 Only functions marked virtual are polymorphic

 Polymorphism is an extremely important concept that you need to make
sure you understand...

Abstract Methods
 There are times when we have a definite

concept but we expect every specialism of
it to have a different implementation (like
the draw() method in the Shape example).
We want to enforce that idea without
providing a default method

 E.g. We want to enforce that all objects that
are Persons support a dance() method
 But we don't now think that there's a

default dance()

 We specify an abstract dance method in
the Person class
 i.e. we don't fill in any implementation

(code) at all in Person.

class Person {
 public void dance();
}

class Student extends Person {
 public void dance() {
 body_pop();
 }
}

class Lecturer extends Person {
 public void dance() {
 jiggle_a_bit();
 }
}

Abstract Classes
 Before we could write Person p = new Person()
 But now p.dance() is undefined
 Therefore we have implicitly made the class abstract ie. It cannot be directly

instantiated to an object
 Languages require some way to tell them that the class is meant to be abstract and

it wasn't a mistake:

 Note that an abstract class can contain state variables that get inherited as normal
 Note also that, in Java, we can declare a class as abstract despite not specifying

an abstract method in it!!

public abstract class Person {
 public abstract void dance();
}

class Person {
 public:
 virtual void dance()=0;
}

Java C++

Representing Abstract Classes

Student Lecturer

Person

+ dance()

+ dance()+ dance()

Italics indicate the
class or method is
abstract

Multiple Inheritance

Student Lecturer

StudentLecturer

 What if we have a Lecturer who studies for
another degree?

 If we do as shown, we have a bit of a
problem
 StudentLecturer inherits two different

dance() methods
 So which one should it use if we instruct

a StudentLecturer to dance()?
 The Java designers felt that this kind of

problem mostly occurs when you have
designed your class hierarchy badly

 Their solution? You can only extend
(inherit) from one class in Java
 (which may itself inherit from another...)
 This is a Java oddity (C++ allows

multiple class inheritance)

Interfaces (Java only)
 Java has the notion of an interface which is like a class except:

 There is no state whatsoever

 All methods are abstract

 For an interface, there can then be no clashes of methods or variables to
worry about, so we can allow multiple inheritance

<<interface>>
 Drivable

+ turn()
+ brake()

Car

<<interface>>
 Identifiable

+ getIdentifier()

Bicycle

+ turn()
+ brake()

+ turn()
+ brake()

+ turn()
+ brake()
+ getIdentifier()

Interface Drivable {
 public void turn();
 public void brake();
}

Interface Identifiable {
 public void getIdentifier();
}

class Bicycle implements Drivable {
 public void turn() {...}
 public void brake() {… }
}

class Car implements Drivable, Identifiable {
 public void turn() {...}
 public void brake() {… }
 Public void getIdentifier() {...}
}

abstract
assumed for
interfaces

Recap

 Important OOP concepts you need to understand:

 Modularity (classes, objects)
 Data Encapsulation
 Inheritance
 Abstraction
 Polymorphism

Lifecycle of an Object

Constructors

 You will have noticed that the RHS looks rather like a function
call, and that's exactly what it is.

 It's a method that gets called when the object is constructed,
and it goes by the name of a constructor (it's not rocket
science).

 We use constructors to initialise the state of the class in a
convenient way.
 A constructor has the same name as the class
 A constructor has no return type specified

MyObject m = new MyObject();

Constructor Examples

public class Person {
 private String mName;

 // Constructor
 public Person(String name) {
 mName=name;
 }

 public static void main(String[] args) {
 Person p = new Person(“Bob”);
 }

}

class Person {
 private:
 std::string mName;

 public:
 Person(std::string &name) {
 mName=name;
 }
};

int main(int argc, char ** argv) {
 Person p (“Bob”);
}

Java C++

Default Constructor

public class Person {
 private String mName;

 public static void main(String[] args) {
 Person p = new Person();
 }

}

 If you specify no constructor at
all, the Java fills in an empty
one for you

 The default constructor takes no
arguments

