Object Oriented Programming
Dr Robert Harle

JA CST, PPS (CS) and NST (CS)
Lent 2010/11

The OOP Course

= | ast term you studied functional programming (ML)

= This term you are looking at imperative programming
(Java primarily).
= You already have a few weeks of Java experience

» This course is hopefully going to let you separate the
fundamental software design principles from Java's
quirks and specifics

= Four Parts
= From Functional to Imperative
= Object-Oriented Concepts
= The Java Platform
= Design Patterns and OOP design examples

Java Practicals

* This course Is meant to complement your
practicals in Java

= Some material appears only here
= Some material appears only in the practicals
= Some material appears in both: deliberately™!

* Some material may be repeated unintentionally. If so | will claim it was deliberate.

Books and Resources |

= OOP Concepts

» Look for books for those learning to first program in an OOP language
(Java, C++, Python)

= Java: How to Program by Deitel & Deitel (also C++)
= Thinking in Java by Eckels

» Java in a Nutshell (O' Reilly) if you already know another OOP
language

= Lots of good resources on the web

= Design Patterns
= Design Patterns by Gamma et al.
= Lots of good resources on the web

Books and Resources |

= Also check the course web page
» Updated notes (with annotations where possible)
= Code from the lectures
= Sample tripos questions

http://www.cl.cam.ac.uk/teaching/1011/O0Prog/

From Functional to Imperative Programming

" The computability problem

* Given infinite computing 'power' what can we do?
How do we do it? What can't we do?

" Option 1: Forget any notion of a physical machine

and do it all in maths
" Leads to an abstract mathematical programming approach

that uses functions
= Gets us Declafitive/Functional Programming (e.g. ML)

* Option 2: Build a computer and extrapolate what it
can do from how it works

" Not so abstract. Now the programming language links

—)) >— closely to the hardware

* This leads naturally to imperative programming (and
on to object-oriented)

* The computability problem

* Both very different (and valid)
approaches to understanding computer
and computers

= Turns out that they are equivalent

= Useful for the functional programmers since
If it didn't, you couldn't put functional
programs on real machines...

Some Programming Paradigms

Declarative Imperative
Functional Structured Non-Structured

7\

Procedural Object-Oriented

Dec
Dec

arative programs do not have state
arative programs have functions whilst

imperative programs have procedures

Imperative programs require you to
explicitly specify the type of every variable

Declarative languages typically rely on
recursion whilst imperative languages can
also use control flow technigues such as
while, for, etc.

= Most people find imperative more natural,
but each has its own strengths and
weaknesses

» Because imperative is a bit closer to the
hardware, it does help to have a good
understanding of the basics of computers.

= |t's worth reviewing a few points from the
CF course last term to make sure we're all
up to speed...

Dumb Model of a Computer |

M Memory o
16X | L7y | Axvz| szs 63) 12
0 2 3 4 5 /S 71 8
L A [(

frogroen
CPU
ib|(Slf:;T\

Registers

Dumb Model of a Computer I

- Memory
Lex [L7y) Axvz| szs 63 |(12)

Registers

P LS

Dumb Model of a Computer Il

Memory
L6X | L7Y [(AxvZ)| sz8 63 | 12

Dumb Model of a Computer IV

Memory

L6X | L7Y | AXYZ 5@ 63 | 12 |33
4

0 1 2 3

CPU %

Registers

System Memory

Memory
0 1 2 (D [4) 5 6 7 3

= We model memory as a series of slots | b fe
= Each slot has a set size (1 byte or 8 bits) B J
= Each slot has a unique address

= Each address is a set length of n bits
= Mostly n=32 or n=64 in today’s world

= Because of this there is obviously a maximum number of
addresses available for any given system, which means
a maximum amount of installable memory

Big Numbers

= So what happens if we can’t fit the data into 8
bits e.g. the number 5127

= We end up distributing the data across

(consecutive) slots F—f
LTy
Memoy

0 1 2 3 4 5 6 I 8

* Now, if we want to act on the number as a whole,
we have to process each slot individually and
then combine the result

= Perfectly possible, but who wants to do that every
time you need an operation?

* |n many imperative languages we have variables

that hold memory addresses.
* These are called pointers

int x = 72;
int *xptrl = &x;
int *xptr2 = xptrl;

xptr1 |——

X

v

N
xptr2 i
= A pointer is just the memory ;s of the first

memory slot used by the object

* The pointer type tells the compiler how many

slots the whole object uses

Example...

References

* The danger with pointers is that you can just
randomly assign numbers to them (this can be
very useful, but also dangerous as we've seen)

* Therefore many languages introduce a safer

version of pointers: references

* References always point to a valid place in
memory or are explicitly NULL

* You can't perform pointer arithmetic on them

xref1

—,>

-/

xref2

References Example (Java)

int[] refl = {1,2,3,4};
int(] ref2 =g&; 1| -
intl]ref2 =g ref)

e _——

'y/»l/ arEJ x

ref1

ref2

W] o s

ref2[3]=72;

{1,2,3,4}

/

ref1

>

ref2

Y

{1,2,3,72)

Dealing with Machine Architectures

= Different CPUs have different instruction sets
= We write high level code
= We compile the code to a specific architecture

Source Code (e.g. C++)
C++ Compilerl ‘ C++ Compiler

for x86 for ARM

Binary executable

Binary executable

for ARM

for PC (x86)

* Where was the compiled
result when you were
doing ML then?

= Sun Microcomputers came up with a different solution

* They conceived of a Virtual Machine - a sort of idealised
computer.

= You compile Java source code into a set of instructions for this
Virtual Machine (“bytecode”)

= Your real computer runs a program (the “Virtual machine” or
VM) that can efficiently translate from bytecode to local
machine code.

* Java is also a Platform

= So, for example, creating a window is the same on any
platform

* The VM makes sure that a Java window looks the same on a
Windows machine as a Linux machine.

= Sun sells this as “Write Once, Run Anywhere” (_g)

Java

