
Object Oriented Programming
Dr Robert Harle

IA CST, PPS (CS) and NST (CS)
Lent 2010/11

The OOP Course

 Last term you studied functional programming (ML)
 This term you are looking at imperative programming

(Java primarily).
 You already have a few weeks of Java experience
 This course is hopefully going to let you separate the

fundamental software design principles from Java's
quirks and specifics

 Four Parts
 From Functional to Imperative
 Object-Oriented Concepts
 The Java Platform

 Design Patterns and OOP design examples

Java Practicals

 This course is meant to complement your
practicals in Java
 Some material appears only here
 Some material appears only in the practicals
 Some material appears in both: deliberately*!

* Some material may be repeated unintentionally. If so I will claim it was deliberate.

Books and Resources I

 OOP Concepts
 Look for books for those learning to first program in an OOP language

(Java, C++, Python)

 Java: How to Program by Deitel & Deitel (also C++)

 Thinking in Java by Eckels

 Java in a Nutshell (O' Reilly) if you already know another OOP
language

 Lots of good resources on the web

 Design Patterns

 Design Patterns by Gamma et al.

 Lots of good resources on the web

Books and Resources II
 Also check the course web page

 Updated notes (with annotations where possible)
 Code from the lectures
 Sample tripos questions

http://www.cl.cam.ac.uk/teaching/1011/OOProg/

From Functional to Imperative Programming

What can Computers Do? I

 The computability problem
 Given infinite computing 'power' what can we do?

How do we do it? What can't we do?
 Option 1: Forget any notion of a physical machine

and do it all in maths
 Leads to an abstract mathematical programming approach

that uses functions
 Gets us Declaritive/Functional Programming (e.g. ML)

 Option 2: Build a computer and extrapolate what it
can do from how it works
 Not so abstract. Now the programming language links

closely to the hardware
 This leads naturally to imperative programming (and

on to object-oriented)

λ

What can Computers Do? II

 The computability problem
 Both very different (and valid)

approaches to understanding computer
and computers
 Turns out that they are equivalent
 Useful for the functional programmers since

if it didn't, you couldn't put functional
programs on real machines...

Some Programming Paradigms

Declarative Imperative

Functional Logic Structured Non-Structured

Procedural Object-Oriented

Key Declarative/Imperative Differences

 Declarative programs do not have state
 Declarative programs have functions whilst

imperative programs have procedures
 Imperative programs require you to

explicitly specify the type of every variable
 Declarative languages typically rely on

recursion whilst imperative languages can
also use control flow techniques such as
while, for, etc.

Thinking Imperatively

 Most people find imperative more natural,
but each has its own strengths and
weaknesses

 Because imperative is a bit closer to the
hardware, it does help to have a good
understanding of the basics of computers.

 It's worth reviewing a few points from the
CF course last term to make sure we're all
up to speed...

Dumb Model of a Computer I

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

1P

X

Y

Z
ALU

CPU

Dumb Model of a Computer II

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

63

2P

X

Y

Z
ALU

CPU

Dumb Model of a Computer III

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

12

63

3P

X

Y

Z
ALU

CPU

Dumb Model of a Computer IV

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

75

12

63

4P

X

Y

Z
ALU

CPU

System Memory

 We model memory as a series of slots
 Each slot has a set size (1 byte or 8 bits)
 Each slot has a unique address

 Each address is a set length of n bits
 Mostly n=32 or n=64 in today’s world
 Because of this there is obviously a maximum number of

addresses available for any given system, which means
a maximum amount of installable memory

Memory

0 1 2 3 4 5 6 7 8

Big Numbers

 So what happens if we can’t fit the data into 8
bits e.g. the number 512?

 We end up distributing the data across
(consecutive) slots

 Now, if we want to act on the number as a whole,
we have to process each slot individually and
then combine the result

 Perfectly possible, but who wants to do that every
time you need an operation?

Memory

0 1 2 3 4 5 6 7 8

Pointers

 In many imperative languages we have variables
that hold memory addresses.

 These are called pointers

 A pointer is just the memory address of the first
memory slot used by the object

 The pointer type tells the compiler how many
slots the whole object uses

xptr2

xxptr1
int x = 72;
int *xptr1 = &x;
int *xptr2 = xptr1;

Example...

References

 The danger with pointers is that you can just
randomly assign numbers to them (this can be
very useful, but also dangerous as we've seen)

 Therefore many languages introduce a safer
version of pointers: references
 References always point to a valid place in

memory or are explicitly NULL
 You can't perform pointer arithmetic on them

xref2

xxref1

References Example (Java)

{1,2,3,4}
ref2

ref1

{1,2,3,72}
ref2

ref1

int[] ref1 = {1,2,3,4};
int[] ref2 = r1;

ref2[3]=72;

Dealing with Machine Architectures

 Different CPUs have different instruction sets
 We write high level code
 We compile the code to a specific architecture

 Where was the compiled
result when you were
doing ML then?

Source Code (e.g. C++)

Binary executable
for PC (x86)

Binary executable
for ARM

C++ Compiler
for ARM

C++ Compiler
for x86

Enter Java

 Sun Microcomputers came up with a different solution
 They conceived of a Virtual Machine – a sort of idealised

computer.
 You compile Java source code into a set of instructions for this

Virtual Machine (“bytecode”)
 Your real computer runs a program (the “Virtual machine” or

VM) that can efficiently translate from bytecode to local
machine code.

 Java is also a Platform
 So, for example, creating a window is the same on any

platform
 The VM makes sure that a Java window looks the same on a

Windows machine as a Linux machine.

 Sun sells this as “Write Once, Run Anywhere”

