
Object Oriented Programming
Dr Robert Harle

IA CST, PPS (CS) and NST (CS)
Lent 2010/11

The OOP Course

 Last term you studied functional programming (ML)
 This term you are looking at imperative programming

(Java primarily).
 You already have a few weeks of Java experience
 This course is hopefully going to let you separate the

fundamental software design principles from Java's
quirks and specifics

 Four Parts
 From Functional to Imperative
 Object-Oriented Concepts
 The Java Platform

 Design Patterns and OOP design examples

Java Practicals

 This course is meant to complement your
practicals in Java
 Some material appears only here
 Some material appears only in the practicals
 Some material appears in both: deliberately*!

* Some material may be repeated unintentionally. If so I will claim it was deliberate.

Books and Resources I

 OOP Concepts
 Look for books for those learning to first program in an OOP language

(Java, C++, Python)

 Java: How to Program by Deitel & Deitel (also C++)

 Thinking in Java by Eckels

 Java in a Nutshell (O' Reilly) if you already know another OOP
language

 Lots of good resources on the web

 Design Patterns

 Design Patterns by Gamma et al.

 Lots of good resources on the web

Books and Resources II
 Also check the course web page

 Updated notes (with annotations where possible)
 Code from the lectures
 Sample tripos questions

http://www.cl.cam.ac.uk/teaching/1011/OOProg/

From Functional to Imperative Programming

What can Computers Do? I

 The computability problem
 Given infinite computing 'power' what can we do?

How do we do it? What can't we do?
 Option 1: Forget any notion of a physical machine

and do it all in maths
 Leads to an abstract mathematical programming approach

that uses functions
 Gets us Declaritive/Functional Programming (e.g. ML)

 Option 2: Build a computer and extrapolate what it
can do from how it works
 Not so abstract. Now the programming language links

closely to the hardware
 This leads naturally to imperative programming (and

on to object-oriented)

λ

What can Computers Do? II

 The computability problem
 Both very different (and valid)

approaches to understanding computer
and computers
 Turns out that they are equivalent
 Useful for the functional programmers since

if it didn't, you couldn't put functional
programs on real machines...

Some Programming Paradigms

Declarative Imperative

Functional Logic Structured Non-Structured

Procedural Object-Oriented

Key Declarative/Imperative Differences

 Declarative programs do not have state
 Declarative programs have functions whilst

imperative programs have procedures
 Imperative programs require you to

explicitly specify the type of every variable
 Declarative languages typically rely on

recursion whilst imperative languages can
also use control flow techniques such as
while, for, etc.

Thinking Imperatively

 Most people find imperative more natural,
but each has its own strengths and
weaknesses

 Because imperative is a bit closer to the
hardware, it does help to have a good
understanding of the basics of computers.

 It's worth reviewing a few points from the
CF course last term to make sure we're all
up to speed...

Dumb Model of a Computer I

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

1P

X

Y

Z
ALU

CPU

Dumb Model of a Computer II

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

63

2P

X

Y

Z
ALU

CPU

Dumb Model of a Computer III

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

12

63

3P

X

Y

Z
ALU

CPU

Dumb Model of a Computer IV

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

75

12

63

4P

X

Y

Z
ALU

CPU

System Memory

 We model memory as a series of slots
 Each slot has a set size (1 byte or 8 bits)
 Each slot has a unique address

 Each address is a set length of n bits
 Mostly n=32 or n=64 in today’s world
 Because of this there is obviously a maximum number of

addresses available for any given system, which means
a maximum amount of installable memory

Memory

0 1 2 3 4 5 6 7 8

Big Numbers

 So what happens if we can’t fit the data into 8
bits e.g. the number 512?

 We end up distributing the data across
(consecutive) slots

 Now, if we want to act on the number as a whole,
we have to process each slot individually and
then combine the result

 Perfectly possible, but who wants to do that every
time you need an operation?

Memory

0 1 2 3 4 5 6 7 8

Pointers

 In many imperative languages we have variables
that hold memory addresses.

 These are called pointers

 A pointer is just the memory address of the first
memory slot used by the object

 The pointer type tells the compiler how many
slots the whole object uses

xptr2

xxptr1
int x = 72;
int *xptr1 = &x;
int *xptr2 = xptr1;

Example...

References

 The danger with pointers is that you can just
randomly assign numbers to them (this can be
very useful, but also dangerous as we've seen)

 Therefore many languages introduce a safer
version of pointers: references
 References always point to a valid place in

memory or are explicitly NULL
 You can't perform pointer arithmetic on them

xref2

xxref1

References Example (Java)

{1,2,3,4}
ref2

ref1

{1,2,3,72}
ref2

ref1

int[] ref1 = {1,2,3,4};
int[] ref2 = r1;

ref2[3]=72;

Dealing with Machine Architectures

 Different CPUs have different instruction sets
 We write high level code
 We compile the code to a specific architecture

 Where was the compiled
result when you were
doing ML then?

Source Code (e.g. C++)

Binary executable
for PC (x86)

Binary executable
for ARM

C++ Compiler
for ARM

C++ Compiler
for x86

Enter Java

 Sun Microcomputers came up with a different solution
 They conceived of a Virtual Machine – a sort of idealised

computer.
 You compile Java source code into a set of instructions for this

Virtual Machine (“bytecode”)
 Your real computer runs a program (the “Virtual machine” or

VM) that can efficiently translate from bytecode to local
machine code.

 Java is also a Platform
 So, for example, creating a window is the same on any

platform
 The VM makes sure that a Java window looks the same on a

Windows machine as a Linux machine.

 Sun sells this as “Write Once, Run Anywhere”

