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Part I: Fourier and related methods
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Inner product spaces
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Introduction
In this section we shall consider what it means to represent a
function f (x) in terms of other, perhaps simpler, functions. One
example is Fourier series of the form

a0

2
+

∞

∑
n=1

[an cos(nx) + bn sin(nx)] .

How are the coefficients an and bn related to the choice of f (x) and
what other representations can we use?
We shall take a quite general approach to these questions and derive
the necessary framework that underpins a wide range of applications.
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Linear space

Definition (Linear space)
A non-empty set V of vectors is a linear space over a field F of
scalars if the following are satisfied.

1. Binary operation + such that if u,v ∈ V then u + v ∈ V
2. + is associative: for all u,v ,w ∈ V then (u + v) + w = u + (v + w)

3. There exists a zero vector, written~0 ∈ V , such that~0 + v = v for
all v ∈ V .

4. For all v ∈ V , there exists an inverse vector, written −v , such
that v + (−v) =~0

5. + is commutative: for all u,v ∈ V then u + v = v + u
6. For all v ∈ V and a ∈ F then av ∈ V is defined
7. For all a ∈ F and u,v ∈ V then a(u + v) = au + av
8. For all a,b ∈ F and v ∈ V then (a + b)v = av + bv

and a(bu) = (ab)u
9. For all v ∈ V then 1v = v , where 1 ∈ F is the unit scalar.
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Choice of scalars
Two common choices of scalar fields, F, are the real numbers, R, and
the complex numbers, C, giving rise to real and complex linear
spaces, respectively.
The term vector space is a synonym for linear space.
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Linear subspace

Definition (Linear subspace)
A subset W ⊂ V is a linear subspace of V if the W is again a linear
space over the same field of scalars.
Thus W is a linear subspace if W 6= /0 and for all u,v ∈W and a,b ∈ F
we have that au + bv ∈W .
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Linear combinations and spans

Definition (Linear combinations)
If V is a linear space and v1,v2, . . . ,vn ∈ V are vectors in V then u ∈ V
is a linear combination of v1,v2, . . . ,vn if there exist
scalars a1,a2, . . . ,an ∈ F such that

u = a1v1 + a2v2 + · · ·+ anvn .

We also define the span of a set of vectors as

span{v1,v2, . . . ,vn}= {u ∈V : u is a linear combination of v1,v2, . . . ,vn} .

Thus, W = span{v1,v2, . . . ,vn} is a linear subspace of V .

10



Linear independence

Definition (Linear independence)
Let V be a linear space. The vectors v1,v2, . . . ,vn ∈ V are linearly
independent if whenever

a1v1 + a2v2 + · · ·+ anvn =~0 a1,a2, . . .an ∈ F

then a1 = a2 = · · ·= an = 0
The vectors v1,v2, . . . ,vn are linearly dependent otherwise.
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Bases

Definition (Basis)
A finite set of vectors v1,v2, . . .vn ∈ V is a basis for the linear space V
if v1,v2, . . . ,vn are linearly independent and V = span{v1,v2, . . . ,vn}.
The number n is called the dimension of V , written n = dim(V ).
A result from linear algebra is that while there are infinitely many
choices of basis vectors any two bases will always consist of the
same number of element vectors. Thus, the dimension of a linear
space is well-defined.
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Inner products and inner product spaces
Suppose that V is either a real or complex linear space (that is, the
scalars F = R or C).

Definition (Inner product)
The inner product of two vectors u,v ∈ V , written 〈u,v〉 ∈ F, is a
scalar value satisfying

1. For each v ∈ V , 〈v ,v〉 is a non-negative real number,
so 〈v ,v〉 ≥ 0

2. For each v ∈ V , 〈v ,v〉= 0 if and only if v =~0
3. For all u,v ,w ∈ V and a,b ∈ F, 〈au + bv ,w〉= a〈u,w〉+ b〈v ,w〉
4. For all u,v ∈ V then 〈u,v〉= 〈v ,u〉.

A linear space together with an inner product is called an inner
product space.
Here, 〈v ,u〉 denotes the complex conjugate of the complex
number 〈v ,u〉. Note that for a real linear space (so, F = R) the
complex conjugate is redundant so the last condition above just says
that 〈u,v〉= 〈v ,u〉= 〈v ,u〉.
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Useful properties of the inner product
Before looking at some examples of inner products there are several
consequences of the definition of an inner product that are useful in
calculations.

1. For all v ∈ V and a ∈ F then 〈av ,av〉= |a|2〈v ,v〉
2. For all v ∈ V , 〈~0,v〉= 0
3. For all v ∈ V and finite sequences of vectors u1,u2, . . . ,un ∈ V

and scalars a1,a2, . . . ,an then〈
n

∑
i=1

aiui ,v

〉
=

n

∑
i=1

ai〈ui ,v〉〈
v ,

n

∑
i=1

aiui

〉
=

n

∑
i=1

ai〈v ,ui〉
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Inner product: examples

Example (Euclidean space, Rn)
V = Rn with the usual operations of vector addition and multiplication
by a real-valued scalar is a linear space over R. Given two
vectors x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) in Rn we can define
an inner product by

〈x ,y〉=
n

∑
i=1

xiyi .

Often this inner product is known as the dot product and is
written x ·y .

Example
Similarly, for V = Cn, we can define an inner product by

〈x ,y〉= x ·y =
n

∑
i=1

xiyi .
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Example (Space of continuous functions)
V = C[a,b], the space of continuous functions f : [a,b]→ C with the
standard operations of the sum of two functions and multiplication by
a scalar, is a linear space over C and we can define an inner product
for f ,g ∈ C[a,b] by

〈f ,g〉=
∫ b

a
f (x)g(x)dx .
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Norms
The concept of a norm is closely related to an inner product and we
shall see that there is a natural way to define a norm given an inner
product.

Definition (Norm)
Let V be a real or complex linear space so that, F = R or C. A norm
on V is a function from V to R+, written ||v ||, that satisfies

1. For all v ∈ V , ||v || ≥ 0

2. ||v ||= 0 if and only if v =~0
3. For each v ∈ V and a ∈ F, ||av ||= |a| ||v ||
4. For all u,v ∈ V , ||u + v || ≤ ||u||+ ||v || (the triangle inequality).

A norm can be thought of as a generalisation of the notion of
distance, where for any two vectors u,v ∈ V the number ||u−v || is
the distance between u and v .
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Norms: examples

Example (Eucidean norm)
If V = Rn or Cn then for x = (x1,x2, . . . ,xn) ∈ V define

||x ||= +

√
n

∑
i=1
|xi |2 .

Example (Uniform norm)
If V = Rn or Cn then for x = (x1,x2, . . . ,xn) ∈ V define

||x ||∞ = max{|xi | : i = 1,2, . . . ,n} .

Example (Uniform norm)
If V = C[a,b] then for each function f ∈ V , define

||f ||∞ = max{|f (x)| : x ∈ [a,b]} .
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Cauchy-Schwarz inequality
Theorem (Cauchy-Schwarz inequality)
Let V be a real or complex inner product space with scalars F then for
all u,v ∈ V

|〈u,v〉|2 ≤ 〈u,u〉〈v ,v〉 .

Proof.
If v =~0 then the result holds trivially. Now assume v 6=~0 so
that 〈v ,v〉 6= 0 and let λ ∈ F then

0≤ 〈u−λv ,u−λv〉= 〈u,u〉−λ 〈u,v〉−λ 〈v ,u〉+ |λ |2〈v ,v〉

Now set λ = 〈u,v〉
〈v ,v〉 so that

0≤ 〈u,u〉− |〈u,v〉|
2

〈v ,v〉

and hence
|〈u,v〉|2 ≤ 〈u,u〉〈v ,v〉 .
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Inner products and norms
Given an inner product space, V , with inner product 〈·, ·〉 there is a
natural choice of norm, namely, for all v ∈ V

||v ||= +
√
〈v ,v〉 .

Most of the properties that make this a norm follow simply from the
properties of the inner product but we shall use the Cauchy-Schwarz
inequality to establish the triangle inequality. We have,

||u + v ||2 = 〈u + v ,u + v〉
= ||u||2 + 〈u,v〉+ 〈v ,u〉+ ||v ||2

≤ ||u||2 + 2|〈u,v〉|+ ||v ||2

≤ ||u||2 + 2||u|| ||v ||+ ||v ||2

= (||u||+ ||v ||)2 .

Hence, the triangle inequality, ||u + v || ≤ ||u||+ ||v || holds.
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Orthogonal and orthonormal systems
Let V be an inner product space and take the natural choice of norm.

Definition (Orthogonality)
We say that u,v ∈ V are orthogonal (written u ⊥ v ) if 〈u,v〉= 0.

Definition (Orthogonal system)
A finite or infinite sequence of vectors (ui ) in V is an orthogonal
system if

1. ui 6=~0 for all such vectors ui

2. ui ⊥ uj for all i 6= j .

Definition (Orthonormal system)
An orthogonal system is called an orthonormal system if, in
addition, ||ui ||= 1 for all such vectors ui .
A vector v ∈ V such that ||v ||= 1 is called a unit vector.
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Theorem
Suppose that {e1,e2, . . . ,en} is an orthonormal system in the inner
product space V . If u = ∑

n
i=1 aiei then ai = 〈u,ei〉.

Proof.

〈u,ei〉= 〈a1e1 + a2e2 + · · ·+ anen,ei〉
= a1〈e1,ei〉+ a2〈e2,ei〉+ · · ·+ an〈en,ei〉
= ai .

Hence, if {e1,e2, . . . ,en} is an orthonormal system then for
all u ∈ span{e1,e2, . . . ,en} we have

u =
n

∑
i=1

aiei =
n

∑
i=1
〈u,ei〉ei .
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Fourier coefficients
Let V be an inner product space and e1,e2, . . . ,en an orthonormal
system (n being finite or infinite).

Definition (Generalized Fourier coefficients)
Given a vector u ∈ V , the scalars 〈u,ei〉 (i = 1,2, . . . ,n) are called the
Generalized Fourier coefficients of u with respect to the given
orthonormal system.
These coefficients are generalized in the sense that they refer to a
general orthonormal system.
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Let V be an inner product space and e1,e2, . . . ,en an orthonormal
system. If a1,a2, . . . ,an and b1,b2, . . . ,bn are any sequences of
scalars then 〈

n

∑
i=1

aiei ,
n

∑
i=1

biei

〉
=

n

∑
i=1

aibi .

Equivalently, for u,v ∈ span{e1,e2, . . . ,en}

〈u,v〉=
n

∑
i=1
〈u,ei〉〈v ,ei〉 .

A consequence of these relations is the following theorem.

Theorem (Generalized Pythagorean Theorem)
Suppose that {u1,u2, . . . ,un} is an orthogonal system in V
and a1,a2, . . . ,an are scalars then

||
n

∑
i=1

aiui ||2 =
n

∑
i=1
|ai |2 ||ui ||2 .
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Orthogonal projections
Suppose that V is an inner product space and e1,e2, . . . ,en an
orthonormal system. Define W = span{e1,e2, . . . ,en} and let u ∈ V
be any vector. We have seen that for u ∈W

u =
n

∑
i=1
〈u,ei〉ei

but if u 6∈W then certainly

u 6=
n

∑
i=1
〈u,ei〉ei

since u is not a linear combination of the vectors e1,e2, . . . ,en.
Nevertheless, there is a close connection between u and the
expression ∑

n
i=1〈u,ei〉ei .

Definition (Orthogonal projection)
For all u ∈ V we define the orthogonal projection of u in W , ũ, by

ũ =
n

∑
i=1
〈u,ei〉ei .
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Theorem
For each u ∈ V and for all w ∈W

1. 〈u− ũ,w〉= 0
2. ||u−w ||2 = ||u− ũ||2 + ||ũ−w ||2.

Proof

First 〈u− ũ,ej〉= 0 for all j = 1,2, . . . ,n since

〈u− ũ,ej〉= 〈u,ej〉−
〈

n

∑
i=1
〈u,ei〉ei ,ej

〉
= 〈u,ej〉−

n

∑
i=1
〈u,ei〉〈ei ,ej〉

= 〈u,ej〉−〈u,ej〉〈ej ,ej〉= 〈u,ej〉−〈u,ej〉= 0 .
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So take any w ∈W with w = ∑
n
j=1 bjej for some scalars b1,b2, . . . ,bn

and

〈u− ũ,w〉=

〈
u− ũ,

n

∑
j=1

bjej

〉
=

n

∑
j=1

bj〈u− ũ,ej〉=
n

∑
j=1

bj ·0 = 0 .

Now (u− ũ)⊥ w for all w ∈W and so since ũ−w ∈W
(u− ũ)⊥ (ũ−w). Hence,

||u−w ||2 = ||u− ũ + ũ−w ||2 = ||u− ũ||2 + ||ũ−w ||2 .
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Best approximation

Theorem
Let V be an inner product space and {e1,e2, . . . ,en} an orthonormal
system. Let W = span{e1,e2, . . . ,en} and u ∈ V be any vector
then ũ = ∑

n
i=1〈u,ei〉ei is the closest vector to u in W. Moreover, ũ is

the unique such vector in W.

Proof.
For all w ∈W ,

||u−w ||2 = ||u− ũ||2 + ||ũ−w ||2

and so ||u− ũ|| ≤ ||u−w || for all w ∈W .
To show uniqueness, suppose that ||u− ũ||= ||u−w || for
some w ∈W then ||ũ−w ||= 0 and so w = ũ.
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Infinite orthonormal systems
We now consider the situation of an inner product space, V ,
with dim(V ) = ∞ and consider orthonormal systems {e1,e2, . . .}
consisting of infinitely many vectors.

Definition (Convergence in norm)
Let {u1,u2, . . .} be an infinite sequence of vectors in the normed linear
space V and let {a1,a2, . . .} be a sequence of scalars. We say that
the series

∞

∑
n=1

anun

converges in norm to w ∈ V if

lim
m→∞

||w −
m

∑
n=1

anun||= 0 .
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Closure and completeness
Two further properties are defined for an infinite orthonormal
system {e1,e2, . . .} in an inner product space V .

Definition (Closed)
The system is called closed in V if for all u ∈ V

lim
m→∞

||u−
m

∑
n=1
〈u,en〉en||= 0 .

Definition (Complete)
The system is called complete in V if the zero vector u =~0 is the only
solution to the set of equations

〈u,en〉= 0 n = 1,2, . . . .
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Remarks on closure and completeness
I It can be shown that a closed infinite orthonormal

system {e1,e2, . . .} is necessarily complete (but not the
converse).

I If a system is not closed then there must exist some u ∈ V such
that the linear combination

m

∑
n=1
〈u,en〉en

cannot be made arbitrarily close to u, for all choices of m.
I If the system is closed it may still be that the required number of

terms in the above linear combination for a “good” approximation
is too great for practical purposes.

I Seeking alternative closed systems of orthonormal vectors may
produce “better” approximations in the sense of requiring fewer
terms for a given accuracy.
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Fourier series
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Representing functions
In seeking to represent functions as linear combinations of simpler
functions we shall need to consider spaces of functions with closed
orthonormal systems.

Definition (piecewise continuous)
A function is piecewise continuous if it is continuous, except at a finite
number of points and at each such point of discontinuity, the right and
left limits exists and are finite.
The space, E , of piecewise continuous functions f : [−π,π]→ C is
seen to be a linear space, under the convention that we regard two
functions in E as identical if they are equal at all but a finite number of
points.
For f ,g ∈ E , then

〈f ,g〉=
1
π

∫
π

−π

f (x)g(x)dx

defines an inner product on E .
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A closed infinite orthonormal system for E
An important result is that{

1√
2
,sin(x),cos(x),sin(2x),cos(2x),sin(3x),cos(3x), . . .

}
is a closed infinite orthonormal system in the space E .
Here we shall just demonstrate orthonormality and omit establishing
that this system is closed.
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Writing
||f ||= +

√
< f , f >

as the norm associated with our inner product, it can be establish that

|| 1√
2
||2 = 1

and similarily that for each n = 1,2, . . .

||sin(nx)||2 = ||cos(nx)||2 = 1

and that for m,n ∈ N
I 〈 1√

2
,sin(nx)〉= 0

I 〈 1√
2
,cos(nx)〉= 0

I 〈sin(mx),cos(nx)〉= 0
I 〈sin(mx),sin(nx)〉= 0, m 6= n
I 〈cos(mx),cos(nx)〉= 0, m 6= n.
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Fourier series
From our knowledge of closed orthonormal systems {e1,e2, . . .} we
know that we can represent any function f ∈ E by a linear combination

∞

∑
n=1
〈f ,en〉en .

We now turn to consider the individual terms 〈f ,en〉en in the case of
the closed orthonormal system{

1√
2
,sin(x),cos(x),sin(2x),cos(2x),sin(3x),cos(3x), . . .

}
.

There are three cases, either en = 1√
2

or sin(nx) or cos(nx). Recall
that the vectors en are actually functions
in E = {f : [−π,π]→ C : f is piecewise continuous}
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If en = 1/
√

2 then

〈f ,en〉en =
1
π

(∫
π

−π

f (t)
1√
2

dt
)

1√
2

=
1

2π

∫
π

−π

f (t)dt .

If en = sin(nx) then

〈f ,en〉en =
1
π

(∫
π

−π

f (t)sin(nt)dt
)

sin(nx) .

If en = cos(nx) then

〈f ,en〉en =
1
π

(∫
π

−π

f (t)cos(nt)dt
)

cos(nx) .
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Fourier coefficients
Thus the linear combination

∞

∑
n=1
〈f ,en〉en

becomes the familiar Fourier series for a function f , namely

a0

2
+

∞

∑
n=1

[an cos(nx) + bn sin(nx)]

where

an =
1
π

∫
π

−π

f (x)cos(nx)dx , n = 0,1,2, . . .

bn =
1
π

∫
π

−π

f (x)sin(nx)dx , n = 1,2,3, . . . .

Note how the constant term is written a0/2 where a0 = 1
π

∫
π

−π
f (x)dx .
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Periodic functions
Our Fourier series

a0

2
+

∞

∑
n=1

[an cos(nx) + bn sin(nx)]

defines a function, g(x), say, that is 2π-periodic in the sense that

g(x + 2π) = g(x), for all x ∈ R .

Hence, it is convenient to extend f ∈ E to a 2π-periodic function
defined on R instead of being restricted to [−π,π].
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Even and odd functions
A particularly useful simplification occurs when the function f ∈ E is
either an even function, that is, for all x ,

f (−x) = f (x)

or an odd function, that is, for all x ,

f (−x) =−f (x) .

The following properties can be easily verified.
1. If f ,g are even then fg is even
2. If f ,g are odd then fg is even
3. If f is even and g is odd then fg is odd

4. If g is odd then for any h > 0 then
∫ h
−h g(x)dx = 0

5. If g is even then for any h > 0 then
∫ h
−h g(x)dx = 2

∫ h
0 g(x)dx .
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Even functions and cosine series
Recall that the Fourier coefficients are given by

an =
1
π

∫
π

−π

f (x)cos(nx)dx , n = 0,1,2, . . .

bn =
1
π

∫
π

−π

f (x)sin(nx)dx , n = 1,2,3, . . .

so if f is even then they become

an =
2
π

∫
π

0
f (x)cos(nx)dx , n = 0,1,2, . . .

bn = 0, n = 1,2,3, . . . .
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Odd functions and sine series
Similarly, the Fourier coefficients

an =
1
π

∫
π

−π

f (x)cos(nx)dx , n = 0,1,2, . . .

bn =
1
π

∫
π

−π

f (x)sin(nx)dx , n = 1,2,3, . . . ,

for the case where f is an odd function become

an = 0, n = 0,1,2, . . .

bn =
2
π

∫
π

0
f (x)sin(nx)dx , n = 1,2,3, . . . .

42



Fourier series: example 1
Consider f (x) = x for x ∈ [−π,π] then f is clearly odd and so we need
to calculate a sine series with coefficients, bn, n = 1,2, . . . given by

bn =
2
π

∫
π

0
x sin(nx)dx =

2
π

{[
−x

cos(nx)

n

]π

0
+
∫

π

0

cos(nx)

n
dx
}

=
2
π

{
−π

(−1)n

n
+

[
sin(nx)

n2

]π

0

}
=

2
π

{
−π

(−1)n

n
+ 0
}

=
2(−1)n+1

n
.

Hence the Fourier series of f (x) = x is

∞

∑
n=1

2(−1)n+1

n
sin(nx) .

Observe that the series does not agree with f (x) at x =±π — a
matter that we shall return to later.
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example 1, ctd
Consider the partial sums to m terms

m

∑
n=1

2(−1)n+1

n
sin(nx) .

− π 0 π

π

− π

m=1 term

− π 0 π

π

− π

m=2 terms

− π 0 π

π

− π

m=4 terms

− π 0 π

π

− π

m=8 terms

− π 0 π

π

− π

m=16 terms

− π 0 π

π

− π

m=32 terms
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Fourier series: example 2
Now suppose f (x) = |x | for x ∈ [−π,π] which is clearly an even
function so we need to construct a cosine series with coefficients

a0 =
2
π

∫
π

0
xdx =

2
π

π2

2
= π

and for n = 1,2, . . .

an =
2
π

∫
π

0
x cos(nx)dx =

2
π

{[
x sin(nx)

n

]π

0
−
∫

π

0

sin(nx)

n
dx
}

=
2
π

{[
cos(nx)

n2

]π

0

}
=

2
π

{
(−1)n−1

n2

}
=

{
− 4

πn2 n is odd
0 n is even

.

Hence, the Fourier series of f (x) = |x | is

π

2
−

∞

∑
k=1

4
π(2k −1)2 cos((2k −1)x) .
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example 2, ctd
Consider the partial sums to m terms

π

2
−

m

∑
k=1

4
π(2k −1)2 cos((2k −1)x) .

− π 0 π

π

m=1 term

− π 0 π

π

m=2 terms

− π 0 π

π

m=4 terms

− π 0 π

π

m=8 terms

− π 0 π

π

m=16 terms

− π 0 π

π

m=32 terms
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Complex Fourier series I
We have used real-valued functions sin(nx) and cos(nx) as our
orthonormal system for the linear space E but we can also use
complex-valued functions. In this case, we should amend our inner
product to

〈f ,g〉=
1

2π

∫
π

−π

f (x)g(x)dx .

A suitable orthonormal system in this case is the collection of
functions {

1,eix ,e−ix ,ei2x ,e−i2x , . . .
}
.

Then if f ∈ E we have a representation, known as the complex
Fourier series of f ∈ E , given by

∞

∑
n=−∞

cneinx

where
cn =

1
2π

∫
π

−π

f (x)e−inxdx , n = 0,±1,±2, . . . .
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Complex Fourier series II
Euler’s formula (eix = cos(x) + i sin(x)) gives for n = 1,2, . . . that

einx = cos(nx) + i sin(nx)

e−inx = cos(nx)− i sin(nx)

and ei0x = 1. Using these relations it can be shown that for n = 1,2, . . .

cn =
an− ibn

2
, c−n =

an + ibn

2
.

Hence,
an = cn + c−n, bn = i(cn−c−n)

and
c0 =

1
2π

∫
π

−π

f (x)e−i0xdx =
1

2π

∫
π

−π

f (x)dx =
a0

2
.
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Pointwise convergence and Dirichlet’s conditions
The closure property of the trigonometric orthonormal system
guarantees that the Fourier series for any function f ∈ E converges in
norm to f . That is,

lim
m→∞

||f (x)−
(

a0

2
+

m

∑
n=1

[an cos(nx) + bn sin(nx)]

)
||= 0

or, equivalently,

lim
m→∞

∫
π

−π

∣∣∣∣∣f (x)−
(

a0

2
+

m

∑
n=1

[an cos(nx) + bn sin(nx)]

)∣∣∣∣∣
2

dx = 0 .

As we have already seen in the example of f (x) = x , this does not
imply convergence to f (x) at every point x .
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The Dirichlet conditions
We now consider conditions on the space of functions that allow us to
determine how the Fourier series behaves at individual points x .

Definition (Dirichlet conditions)
We define a subspace, E ′, of E by the Dirichlet conditions:

1. f ∈ E
2. For all x ∈ [−π,π) both the left and right derivatives exist (and are

finite).

Recall, that in the space E each function has a left and right limit at
every point. Let these values be f (x−) and f (x+), respectively.
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Theorem (Dirichlet’s theorem)
For all x ∈ [−π,π] the Fourier series of a function f ∈ E ′ converges to
the value of the expression

f (x−) + f (x+)

2
.

I Here we should consider f not just defined on [−π,π] but also
make it 2π-periodic to handle the end points ±π correctly.

I Recall that functions f ∈ E can have at most a finite number of
points of discontinuity (that is, points where f (x−) and f (x+)
differ).

I Hence, we can conclude that if a function f satisfies the Dirichlet
conditions then the function’s Fourier series converges to f at all
points where f is continuous and at points of discontinuity it
converges to the average of the left and right hand limits. This
was indeed the case in our earlier example where f (x) = x .
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General intervals
We have so far considered functions defined on the interval [−π,π]
but we may readily extend our approach to a general interval of the
form [a,b] (for any a < b). If we define E [a,b] to be the space of
piecewise continuous functions f : [a,b]→ C then we may define the
Fourier series of f ∈ E [a,b] as

a0

2
+

∞

∑
n=1

[
an cos

(
2nπx

(b−a)

)
+ bn sin

(
2nπx

(b−a)

)]
where

an =
2

(b−a)

∫ b

a
f (x)cos

(
2nπx

(b−a)

)
dx , n = 0,1,2, . . .

bn =
2

(b−a)

∫ b

a
f (x)sin

(
2nπx

(b−a)

)
dx , n = 1,2,3, . . . .

52



This may be justified by showing, for example, that{
1√
2
,cos

(
2nπx

(b−a)

)
,sin

(
2nπx

(b−a)

)
for n = 1,2, . . .

}
is an infinite orthonormal system for functions in E [a,b] with respect
to the inner product

〈f ,g〉=
2

(b−a)

∫ b

a
f (x)g(x)dx .

Exercise: establish the corresponding details for the case of the
complex Fourier series representation and a general interval [a,b].
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Fourier transforms
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Introduction
I We have seen how functions f : [−π,π]→ C, f ∈ E can be studied

in alternative forms using closed orthonormal systems such as

∞

∑
n=−∞

cneinx

where

cn =
1

2π

∫
π

−π

f (x)e−inxdx n = 0,±1,±2, . . . .

The domain [−π,π] can be swapped for a general interval [a,b]
and the function can be regarded as L-periodic and defined for
all R, where L = (b−a) < ∞ is the length of the interval.

I We shall now consider the situation where f : R→ C may be a
non-periodic function.
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Fourier transform

Definition (Fourier transform)
For f : R→ C define the Fourier transform of f to be the
function F : R→ C given by

F (ω) = F[f ](ω) =
1

2π

∫
∞

−∞

f (x)e−iωxdx

whenever the integral exists.
We shall use the notation F (ω) or F[f ](ω) as convenient. The
notation f̂ (ω) is also seen widely in the literature.
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For functions f : R→ C define the two properties
1. piecewise continuous: if f is piecewise continuous on every finite

interval. Thus f may have an infinite number of discontinuities but
only a finite number in any subinterval.

2. absolutely integrable: if ∫
∞

−∞

|f (x)|dx < ∞

Let G(R) be the collection of all functions f : R→ C that are piecewise
continuous and absolutely integrable.
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Immediate properties
It may be shown that G(R) is a linear space over the scalars C and
that for f ∈G(R)

1. F (ω) is defined for all ω ∈ R
2. F is a continuous function
3. limω→±∞ F (ω) = 0
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Examples
For a > 0, let f (x) = e−a|x | then

F (ω) =
1

2π

∫
∞

−∞

e−a|x |e−iωxdx

=
1

2π

{∫
∞

0
e−axe−iωxdx +

∫ 0

−∞

eaxe−iωxdx
}

=
1

2π

{
−
[

e−(a+iω)x

a + iω

]∞

0
+

[
e(a−iω)x

a− iω

]0

−∞

}

=
1

2π

{
1

a + iω
+

1
a− iω

}
=

a
π(a2 + ω2)

.

59



Properties
Several properties of the Fourier transform are very helpful in
calculations.
First, note that by the linearity of integrals we have that if f ,g ∈G(R)
and a,b ∈ C then

F[af+bg](ω) = aF[f ](ω) + bF[g](ω)

and af + bg ∈G(R).
Secondly, if f is real-valued then

F (−ω) = F (ω) .
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Even and odd real-valued functions

Theorem
If f ∈G(R) is an even real-valued function then F is even and
real-valued. If f is an odd real-valued function then F is odd and
purely imaginary.

Proof.
Suppose that f is even and real-valued then

F (ω) =
1

2π

∫
∞

−∞

f (x)e−iωxdx

=
1

2π

∫
∞

−∞

f (x) [cos(ωx)− i sin(ωx)]dx

=
1

2π

∫
∞

−∞

f (x)cos(ωx)dx .

Hence, F is real-valued and even (the imaginary part has vanished
and both f and cos(ωx) are themselves even functions). The second
part follows similarly.
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Shift and scale properties

Theorem
Let f ∈G(R) and a,b ∈ R with a 6= 0 and define

g(x) = f (ax + b)

then g ∈G(R) and

F[g](ω) =
1
|a|e

iωb/aF[f ]

(
ω

a

)
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Proof

Set y = ax + b so for a > 0 then

F[g](ω) =
1

2π

∫
∞

−∞

f (y)e−iω(
y−b

a ) dy
a

and for a < 0

F[g](ω) =− 1
2π

∫
∞

−∞

f (y)e−iω(
y−b

a ) dy
a

.

Hence,

F[g](ω) =
1
|a|e

iωb/a 1
2π

∫
∞

−∞

f (y)e−iωy/ady =
1
|a|e

iωb/aF[f ]

(
ω

a

)
.
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Special cases
Two special cases are worth highlighting.

1. Suppose that b = 0 so g(x) = f (ax) and so

F[g](ω) =
1
|a|F[f ]

(
ω

a

)
.

2. Suppose that a = 1 so g(x) = f (x + b) and so

F[g](ω) = eiωbF[f ](ω) .
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Theorem
For f ∈G(R) and c ∈ R then

F[eicx f (x)](ω) = F[f ](ω−c) .

Proof.

F[eicx f (x)](ω) =
1

2π

∫
∞

−∞

eicx f (x)e−iωxdx

=
1

2π

∫
∞

−∞

f (x)e−i(ω−c)xdx

= F[f ](ω−c) .
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Modulation property
Theorem
For f ∈G(R) and c ∈ R then

F[f (x)cos(cx)](ω) =
F[f ](ω−c) +F[f ](ω + c)

2

F[f (x)sin(cx)](ω) =
F[f ](ω−c)−F[f ](ω + c)

2i
.

Proof.
We have that

F[f (x)cos(cx)](ω) = F[
f (x) eicx+e−icx

2

](ω)

=
1
2

F[f (x)eicx ](ω) +
1
2

F[f (x)e−icx ](ω)

=
F[f ](ω−c) +F[f ](ω + c)

2
.

Similarly, for F[f (x)sin(cx)](ω).
66



Derivatives
There are further properties relating to the Fourier transform of
derivatives that we shall state here but omit further proofs.

Theorem
If f is such that both f , f ′ ∈G(R) then

F[f ′](ω) = iωF[f ](ω) .
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Inverse Fourier transform
We have studied the Fourier transform. There is also an inverse
operation of recovering a function f given the function F (ω) = F[f ](ω)
which takes the form

f (x) =
∫

∞

−∞

F[f ](ω)eiωxdω .

More precisely, and recalling Dirichlet’s theorem for Fourier series,
the following holds.

Theorem (Inverse Fourier transform)
If f ∈G(R) then for every point x ∈ R where the one-sided derivatives
exist

f (x−) + f (x+)

2
= lim

M→∞

∫ M

−M
F[f ](ω)eiωxdω .
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Convolution
An important operation between two functions in signal processing
applications is convolution defined as follows.

Definition (Convolution)
If f and g are two functions R→ C then the convolution function,
written f ∗g, is given by

(f ∗g)(x) =
∫

∞

−∞

f (x −y)g(y)dy

whenever the integral exists.
Exercise: show that the convolution operation is commutative, that
is f ∗g = g ∗ f .
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Fourier transforms and convolutions
The importance of Fourier transform techniques in signal processing
rests, in part, on the following result that leads to much simpler
descriptions and mathematical formulae in the Fourier domain.

Theorem (Convolution theorem)
For f ,g ∈G(R) then

F[f∗g](ω) = 2πF[f ](ω) ·F[g](ω) .
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Proof

We have that

F[f∗g](ω) =
1

2π

∫
∞

−∞

(f ∗g)(x)e−iωxdx

=
1

2π

∫
∞

−∞

(∫
∞

−∞

f (x −y)g(y)dy
)

e−iωxdx

=
1

2π

∫
∞

−∞

∫
∞

−∞

f (x −y)e−iω(x−y)g(y)e−iωy dxdy

=
∫

∞

−∞

(
1

2π

∫
∞

−∞

f (x −y)e−iω(x−y)dx
)

g(y)e−iωy dy

= F[f ](ω)
∫

∞

−∞

g(y)e−iωy dy

= 2πF[f ](ω) ·F[g](ω) .
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Some signal processing applications
We first note two types of limitations on functions.

Definition (Time-limited)
A function f is time-limited if

f (x) = 0 for all |x | ≥M

for some constant M.

Definition (Band-limited)
A function f ∈G(R) is band-limited if

F[f ](ω) = 0 for all |ω| ≥ L

for some constant L.
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Let us first calculate the Fourier transform of

f (x) =

{
1 a≤ x ≤ b
0 otherwise .

We have that

F (ω) =
1

2π

∫
∞

−∞

f (x)e−iωxdx =
1

2π

∫ b

a
e−iωxdx .

So, for ω 6= 0,

F (ω) =

[
1

2π

(
e−iωx

−iω

)]b

a
=

e−iωa−e−iωb

2π iω
.

However, for ω = 0 we have that F (0) = 1
2π

∫ b
a dx = (b−a)

2π
.

For the special case when a =−b with b > 0 then

F (ω) =

{
eiωb−e−iωb

2π iω = sin(ωb)
ωπ

ω 6= 0
b
π

ω = 0 .
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Low-pass filters
Suppose that f ∈G(R) with Fourier transform F (ω) and choose a
positive constant L > 0. Define

FL(ω) =

{
F (ω) |ω| ≤ L
0 |ω|> L .

We wish to find fL such that F[fL] = FL, that is, a function band-limited
by L whose Fourier transform equals F in [−L,L].
Rewrite FL(ω) = F (ω)GL(ω) where

GL(ω) =

{
1 |ω| ≤ L
0 |ω|> L .

We will now use the convolution theorem to find fL.
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By the inverse transform theorem we have that for |x | 6= L

GL(x) =
∫

∞

−∞

sinωL
ωπ

eiωxdω

But GL is clearly an even function so

GL(x) = GL(−x) =
∫

∞

−∞

sinωL
ωπ

e−iωxdω

and if we interchange the variables x and ω we have

GL(ω) =
1

2π

∫
∞

−∞

2sinLx
x

e−iωxdx .

This says that if gL(x) = 2sinLx
x then F[gL](ω) = GL(ω).
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In terms of convolutions we have

fL =
1

2π
(f ∗gL)

fL(x) =
1

2π

∫
∞

−∞

f (y)
2sin(L(x −y))

x −y
dy

=
1
π

∫
∞

−∞

f (y)sin(L(x −y))

x −y
dy

In particular, if f ∈G(R) is such that F[f ](ω) = 0 for |ω| ≥ L then f
satisfies

f (x) = fL(x) =
1
π

∫
∞

−∞

f (y)sin(L(x −y)))

x −y
dy .
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Shannon sampling theorem

Theorem (Shannon sampling theorem)
If f ∈G(R) is band-limited by the constant L then

f (x) =
∞

∑
n=−∞

f
(nπ

L

) sin(Lx −nπ)

Lx −nπ
.

Proof

Set F (ω) = F[f ](ω) and use the inverse Fourier transform theorem to
give

f (x) =
∫

∞

−∞

F (ω)eiωxdω =
∫ L

−L
F (ω)eiωxdω .

So, taking x = nπ

L for n ∈ Z we get

f
(nπ

L

)
=
∫ L

−L
F (ω)eiωnπ/Ldω .
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Consider the complex Fourier series of F (ω) restricted to ω ∈ [−L,L]
given by

∞

∑
n=−∞

cne−inπω/L

where the coefficients, cn, are

cn = 〈F ,e−inπω/L〉=
1
2L

∫ L

−L
F (ω)einπω/Ldω =

1
2L

f
(nπ

L

)
Thus, since f is band-limited by L

F (ω) =

(
∞

∑
n=−∞

cne−inπω/L

)
GL(ω) .

Hence,

F (ω) =
1

2L

∞

∑
n=−∞

f
(nπ

L

)(
e−inπω/LGL(ω)

)
.
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But we have seen that GL(ω) = F
[ 2sinLx

x ]
(ω) hence using the shift

formula
e−inπω/LGL(ω) = F[gL,n](ω)

where
gL,n(x) =

2sin(Lx−nπ)

x − nπ

L
.

Putting this all together we have that

F (ω) =
1
2L

∞

∑
n=−∞

f
(nπ

L

)
F[gL,n](ω)

and taking inverse transforms

f (x) =
1
2L

∞

∑
n=−∞

f
(nπ

L

)
gL,n(x) =

∞

∑
n=−∞

f
(nπ

L

) sin(Lx −nπ)

Lx −nπ
.
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Remarks on Shannon’s sampling theorem
I The theorem says that band-limited functions by a constant L

(that is, F[f ](ω) = 0 for |ω|> L) are completely determined by
their values at evenly spaced points a distance π

L apart.
I Moreover, we may recover the function exactly given only it’s

values at this sequence of points.
I It may be shown that the functions

sin(Lx −nπ)

Lx −nπ

for n ∈ Z form an orthonormal system with inner product

〈f ,g〉=
L
π

∫
∞

−∞

f (x)g(x)dx .
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Discrete Fourier Transforms
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We now shift attention from functions defined on intervals or on the
whole of R to sequences of values f [0], f [1], . . . , f [N−1] and consider
how we might represent them.
An important result in this area of discrete transforms is that the
vectors {e0,e1, . . . ,eN−1} form an orthogonal system in the space CN

with the usual inner product where the nth component of ek is given
by

(ek )n = e2π ink/N n = 0,1,2, . . . ,N−1 .

and k = 0,1,2, . . . ,N−1.

82



Applying the usual inner product

〈u,v〉=
N−1

∑
n=0

u[n]v [n]

we shall see that
||ek ||2 = 〈ek ,ek 〉= N .

In fact, using {e0,e1, . . . ,eN−1} we can represent any
sequence f = (f [0], f [1], . . . , f [N−1]) ∈ CN by

f =
1
N

N−1

∑
k=0
〈f ,ek 〉ek .

Recall the generalized Fourier coefficients that we studied earlier.
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Orthogonality
We shall show orthogonality of the vectors ek by considering the N
distinct complex roots of the equation zN = 1. Put w = e2π i/N then
the N distinct roots zj (j = 0,1, . . . ,N−1) of zN = 1 are

zj = e2π ij/N = w j .

Now for an arbitrary integer n

1
N

N−1

∑
k=0

e2π ink/N =
1
N

N−1

∑
k=0

wnk

=

{
1 if n is an integer multiple of N
1
N

1−wnN

1−wn = 0 otherwise .

84



Thus,

〈ea,eb〉=
N−1

∑
k=0

e2π ika/Ne−2π ikb/N

=
N−1

∑
k=0

e2π ik(a−b)/N

=

{
N if (a−b) is a multiple of N
0 otherwise .

So, indeed, we have that

||ek ||2 = 〈ek ,ek 〉= N .

85



Definition (Discrete Fourier Transform/DFT)
The sequence F [k ], k ∈ Z, defined by

F [k ] = 〈f ,ek 〉=
N−1

∑
n=0

f [n]e−2π ink/N

is called the N-point Discrete Fourier Transform of f [n]

Thus, for n = 0,1,2, . . . ,N−1, we have the inverse transform

f [n] =
1
N

N−1

∑
k=0

F [k ]e2π ink/N .
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Periodicity
Note that the sequence F [k ] has period N since

F [k + N] =
N−1

∑
n=0

f [n]e−2π in(k+N)/N =
N−1

∑
n=0

f [n]e−2π ink/N = F [k ]

using the relation

e−2π in(k+N)/N = e−2π ink/Ne−2π in = e−2π ink/N .
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Properties of the DFT
The DFT satisfies a range of similar properties to those of the FT
relating to linearity, and shifts in either the n or k domain.
However, the convolution operation is defined a little differently.

Definition (Cyclical convolution)
The cyclical convolution of two periodic sequences f [n] and g[n] of
period N is defined as

(f ∗g)[n] =
N−1

∑
m=0

f [m]g[n−m] .

It can then be shown that the DFT of f ∗g is the product F [k ]G[k ]
where F and G are the DFTs of f and g, respectively.
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Fast Fourier Transform algorithm
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Fast Fourier Transform
The Fast Fourier Transform is not a new transform but a particular
numerical algorithm for computing the DFT.
Since

F [k ] =
N−1

∑
n=0

f [n]e−2π ink/N

= f [0] + f [1]e−2π ik/N + · · ·+ f [N−1]e−2π ik(N−1)/N

we can see that in order to compute F [k ] we need to do about 2N
(complex) additions and multiplications. To compute F [k ] in this way
for all k = 0,1,2, . . . ,N−1 would require about 2N2 such operations.
In practice, where DFTs are computed for a large number of points N,
faster algorithms have been developed. Most approaches are based
on the factorization of N into prime factors and are known collectively
as Fast Fourier Transforms (FFT). In most popular methods N is
supposed to be a power of 2.
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Fast algorithms for the DFT
In 1965, James W. Cooley and John W. Tukey published a new and
substantially faster algorithm for computing the DFT than the
direct N2 approach.
They showed that when N is a composite number with N = P1P2 ·Pm
then it is possible to reduce the cost of computing the DFT of a vector
of length N from

N2 = N(P1P2 · · ·Pm) to N((P1−1) + (P2−1) + · · ·+ (Pm−1))

complex operations. In the case when P1 = P2 = · · ·= Pm = 2 then
this reduces from N2 = 22m to 2m ·m = N log2 N.
For example, if N = 1024 = 210 then there is a roughly a 100 fold
improvement from N2 = 1,048,576 down to N log2 N = 10,240.
See: J.W. Cooley and J.W. Tukey. (1965) An algorithm for the machine
computation of complex Fourier series, Math. Comp, 19, 297–301.
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We shall not derive any of the details here but instead give an
impression of how the method operates.
First, the task of computing the DFT can be represented with
matrices as

F = Af

but where the N×N matrix, A, has a great deal of internal structure.
Cooley and Tukey exploited this structure in the case when N = 2m

(so m = log2 N) to rewrite A as a product of matrices each of which is
sparse

A = MmMm−1 · · ·M1B .

Since each of these matrices contains only a small number of
non-zero entries the effective number of complex operations is much
reduced compared to working with A itself.
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Wavelet Transforms
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Wavelets
Wavelets are a further method of representing functions that has
received much interest in applied fields over the last several decades.
The approach fits into the general scheme of expansion using
orthonormal functions. Here we expand functions f (x) in terms of a
doubly-infinite series

f (x) =
∞

∑
j=−∞

∞

∑
k=−∞

djk Ψjk (x)

where Ψjk (x) are the orthonormal functions.
The orthonormal functions arise from shifting and scaling operations
applied to a single function, Ψ(x), known as the mother wavelet.
The orthonormal functions are given for integers j and k by

Ψjk (x) = 2j/2Ψ(2jx −k)
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The Haar wavelet
A common example is the Haar wavelet whose mother function is
both localised and oscillatory defined by

Ψ(x) =


1 if 0≤ x < 1

2 ,

−1 if 1
2 ≤ x < 1 ,

0 otherwise .

−1

1
Ψ(x)

−2 −1 1 2
x

0
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Wavelet dilations and translations
The Haar mother wavelet oscillates and has a width (or scale) of one.
The dyadic dilates of Ψ(x), namely,

. . . ,Ψ(2−2x),Ψ(2−1x),Ψ(x),Ψ(2x),Ψ(22x), . . .

have widths
. . . ,22,21,1,2−1,2−2, . . .

respectively. Since the dilate Ψ(2jx) has width 2−j , its translates

Ψ(2jx −k) = Ψ(2j (x −k2−j )), k = 0,±1,±2, . . .

will cover the whole x-axis. The collection of coefficients djk are
termed the Discrete wavelet transform, or DWT, of the function f (x).
Just as with Fourier transforms there are fast implementations that
exploit structure.
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Interpretation of djk
How should we intrepret the values djk ?
Since the Haar wavelet function Ψ(2jx −k) vanishes except when

0≤ 2jx −k < 1 , that is k2−j ≤ x < (k + 1)2−j

we see that djk gives us information about the behaviour of f near the
point x = k2−j measured on the scale of 2−j .
For example, the coefficients d−10,k , k = 0,±1,±2, . . . correspond to
variations of f that take place over intervals of length 210 = 1024 while
the coefficients d10,k k = 0,±1,±2, . . . correspond to fluctuations of f
over intervals of length 2−10.
These observations help explain how the discrete wavelet transform
can be an exceptionally efficient scheme for representing functions.
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Comparison with Fourier analysis
Some of the practical motivations underlying the use of the
orthonormal functions such as Fourier analysis or wavelet analysis
are
I improved understanding,
I denoising signals, and
I data compression.

By representation of signals or functions in other forms these tasks
become easier or more effective.
The approach taken with Fourier analysis represents signals in terms
of trigonometric functions and as such is particularly suited to
situations where the signal is relatively smooth and is not of limited
extent.
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Properties of naturally arising data
Much naturally arising data has been found to be better represented
using wavelets which are better able to cope with discontinuities and
where the signal is of local extent. Generally, the efficiency of the
representation depends on the types of signal involved. If your signal
contains
I discontinuities (in both the signal and its derivatives), or
I varying frequency behaviour

then wavelets are likely to represent the signal more efficiently than is
possible with Fourier analysis.
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Other classes of wavelets
I One of the most useful features of wavelets is the ease with

which a scientist can select the wavelet functions adapted for the
given problem.

I In fact, the Haar mother wavelet is perhaps the simplest of a very
wide class of possible wavelet systems used in practice today.

I Many applied fields have started to make use of wavelets
including astronomy, acoustics, signal and image processing,
neurophysiology, music, magnetic resonance imaging, speach
discrimination, optics, fractals, turbulence, earthquake prediction,
radar, human vision, etc.
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Part II: Probability methods
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Some notation
RV random variable
IID independent, identically distributed

PGF probability generating function GX (z)
mgf moment generating function MX (t)

X ∼ U(0,1) RV X has the distribution U(0,1), etc
I(A) indicator function of the event A
P(A) probability that event A occurs, e.g. A = {X = n}
E(X ) expected value of RV X
E(X n) nth moment of RV X , for n = 1,2, . . .
FX (x) distribution function, FX (x) = P(X ≤ x)
fX (x) density of RV X given, when it exists, by F ′X (x)
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Limits and inequalities
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Limits and inequalities
We are familiar with limits of real numbers. If xn = 1/n for n = 1,2, . . .
then limn→∞ xn = 0 whereas if xn = (−1)n no such limit exists.
Behaviour in the long-run or on average is an important characteristic
of everyday life.
In this section we will be concerned with these notions of limiting
behaviour when the real numbers xn are replaced by random
variables Xn. As we shall see there are several distinct notions of
convergence that can be considered.
To study these forms of convergence and the limiting theorems that
emerge we shall on the way also gather a potent collection of
concepts and tools for the probabilistic analysis of models and
systems.

104



Probabilistic inequalities
To help assess how close RVs are to each other it is useful to have
methods that provide upper bounds on probabilities of the form

P(X > a)

for fixed constants a, and where, for example, X = |X1−X2|.
We shall consider several such bounds and related inequalities.

I Markov’s inequality
I Chebychev’s inequality
I Lyapunov’s inequality
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Theorem (Markov’s inequality)
If E(X ) < ∞ then for any a > 0,

P(|X | ≥ a)≤ E(|X |)
a

.

Proof.
We have that

I(|X | ≥ a) =

{
1 |X | ≥ a
0 otherwise .

Clearly,
|X | ≥ aI(|X | ≥ a)

hence
E(|X |)≥ E(aI(|X | ≥ a)) = aP(|X | ≥ a)

which yields the result.
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Theorem (Chebychev’s inequality)
Let X be a RV with mean µ and finite variance σ2 then for all a > 0

P(|X −µ| ≥ a)≤ σ2

a2 .

Proof.
Consider, for example, the case of a continuous RV X and
put Y = |X −µ| then

σ
2 = E(Y 2) =

∫
y2fY (y)dy =

∫
0≤y<a

y2fY (y)dy +
∫

y≥a
y2fY (y)dy

so that
σ

2 ≥ 0 + a2P(Y ≥ a) .
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Theorem (Lyapunov’s inequality)
If r ≥ s > 0 then E(|X |r )1/r ≥ E(|X |s)1/s.

Proof.
Omitted.
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Moment generating function

Definition
The moment generating function (mgf) of a RV X is given by

MX (t) = E(etX )

and is defined for those values of t ∈ R for which this expectation
exists.
Using the power series ex = 1 + x + x2/2! + x3/3! + · · · we see that

MX (t) = E(etX ) = 1 +E(X )t +E(X 2)t2/2! +E(X 3)t3/3! + · · ·

and so the nth moment of X , E(X n), is given by the coefficient of tn/n!
in the power series expansion of the mgf MX (t).
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Elementary properties of the mgf
1. If X has mgf MX (t) then Y = aX + b has mgf MY (t) = ebtMX (at).
2. If X and Y are independent then X + Y has

mgf MX+Y (t) = MX (t)MY (t).

3. E(X n) = M(n)
X (0) where M(n)

X is the nth derivative of MX .
4. If X is a discrete RV taking values 0,1,2, . . . with probability

generating function GX (z) = E(zX ) then MX (t) = GX (et ).
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Fundamental properties of the mgf
1. Uniqueness: to each mgf there corresponds a unique distribution

function having that mgf.
In fact, if X and Y are RVs with the same mgf in some
region −a < t < a where a > 0 then X and Y have the same
distribution.

2. Continuity: if distribution functions Fn(x) converge pointwise to a
distribution function F (x), the corresponding mgf’s (where they
exist) converge to the mgf of F (x). Conversely, if a sequence of
mgf’s Mn(t) converge to M(t) which is continuous at t = 0,
then M(t) is a mgf, and the corresponding distribution
functions Fn(x) converge to the distribution function determined
by M(t).
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Example: exponential distribution
If X has an exponential distribution with parameter λ > 0
then fX (x) = λe−λx for 0 < x < ∞. Hence, for t < λ ,

MX (t) =
∫

∞

0
etx

λe−λxdx =
∫

∞

0
λe−(λ−t)xdx

=

[
− λ

(λ − t)
e−(λ−t)x

]∞

0
=

λ

λ − t
.

For t < λ

λ

(λ − t)
=

(
1− t

λ

)−1

= 1 +
t
λ

+
t2

λ 2 + · · ·

and hence E(X ) = 1/λ and E(X 2) = 2/λ 2 so that

Var(X ) = E(X 2)− (E(X ))2 = 1/λ
2 .
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Example: normal distribution
Consider a normal RV X ∼ N(µ,σ2) then fX (x) = 1

σ
√

2π
e−(x−µ)2/2σ2

so that

MX (t) =
∫

∞

−∞

etx 1
σ
√

2π
e−(x−µ)2/2σ2

dx

=
1

σ
√

2π

∫
∞

−∞

e−(−2txσ2+(x−µ)2)/2σ2
dx .

So, by completing the square,

MX (t) = eµt+σ2t2/2
{

1
σ
√

2π

∫
∞

−∞

e−(x−(µ+tσ2))2/2σ2
}

dx

= eµt+σ2t2/2 .
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Example: uniform distribution
Consider a uniform RV X ∼ U(a,b). Then

fX (x) =

{
1

b−a a < x < b
0 otherwise .

Hence,

MX (t) =
∫ b

a

etx

b−a
dx

=

[
etx

(b−a)t

]b

a

=
ebt −eat

(b−a)t
.
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Theorem (Chernoff’s bound)
Suppose that X has mgf MX (t) and a ∈ R then for all t ≥ 0

P(X ≥ a)≤ e−taMX (t) .

Proof.
Using Markov’s inequality, we have that

P(X ≥ a) = P(etX ≥ eta)

≤ E(etX )

eta

= e−taMX (t)

Note that the above bound holds for all t > 0 so we can select the
best such bound by choosing t to minimize e−taMX (t).
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Notions of convergence: Xn→ X as n→ ∞

For a sequence of RVs (Xn)n≥1, we shall define several distinct
notions of convergence to some RV X as n→ ∞.

Definition (Convergence in distribution)
Xn

D−→ X if FXn (x)→ FX (x) for all points x at which FX is continuous.

Definition (Convergence in probability)
Xn

P−→ X if P(|Xn−X |> ε)→ 0 for all ε > 0.

Definition (Convergence almost surely)
Xn

a.s.−−→ X if P(Xn→ X ) = 1.

Definition (Convergence in r th mean)
Xn

r−→ X if E(|Xn−X |r )→ 0.
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Convergence theorems

Theorem
If Xn

a.s.−−→ X then Xn
P−→ X.

Theorem
If Xn

P−→ X then Xn
D−→ X.

Theorem
If r > s ≥ 1 and Xn

r−→ X then Xn
s−→ X.

Theorem
If r ≥ 1 and Xn

r−→ X then Xn
P−→ X.
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Theorem
If Xn

a.s.−−→ X then Xn
P−→ X.

Proof.
Omitted.
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Theorem
If Xn

P−→ X then Xn
D−→ X.

Proof

We prove this theorem as follows. Fix, ε > 0 then

FXn (x) = P(Xn ≤ x ∩X > x + ε) +P(Xn ≤ x ∩X ≤ x + ε)

since X > x + ε and X ≤ x + ε form a partition. But if Xn ≤ x
and X > x + ε then |Xn−X |> ε

and {Xn ≤ x ∩X ≤ x + ε} ⊂ {X ≤ x + ε}. Therefore,

FXn (x)≤ P(|Xn−X |> ε) + FX (x + ε) .

Similarly,

FX (x − ε) = P(X ≤ x − ε ∩Xn > x) +P(X ≤ x − ε ∩Xn ≤ x)

≤ P(|Xn−X |> ε) + FXn (x) .
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The proof is completed by noting that together these inequalities
show that

FX (x − ε)−P(|Xn−X |> ε)≤ FXn (x)≤ P(|Xn−X |> ε) + FX (x + ε) .

But Xn
P−→ X implies that P(|Xn−X |> ε)→ 0. So, as n→ ∞, FXn (x) is

squeezed between FX (x − ε) and FX (x + ε).
Hence, if FX is continuous at x , FXn (x)→ FX (x) and so Xn

D−→ X .
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Theorem
If r > s ≥ 1 and Xn

r−→ X then Xn
s−→ X.

Proof.
Set Yn = |Xn−X | ≥ 0 then by Lyapunov’s inequality

E(Y r
n)1/r ≥ E(Y s

n )1/s .

Hence, if E(Y r
n)→ 0 then E(Y s

n )→ 0.
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Theorem
If r ≥ 1 and Xn

r−→ X then Xn
P−→ X.

Proof.
By Markov’s inequality, for all ε > 0

P(|Xn−X |> ε)≤ E(|Xn−X |)
ε

.

But Xn
r−→ X implies Xn

1−→ X and so the right hand side tends to zero
and as required Xn

P−→ X .
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Limit theorems
Given a sequence of RVs (Xn)n≥1, let

Sn = X1 + X2 + · · ·+ Xn and X n = Sn/n .

What happens to X n for large n?

Theorem (Weak Law of Large Numbers/WLLN)
Suppose (Xn)n≥1 are IID RVs with finite mean µ (and finite

variance σ2) then X n
P−→ µ.

Theorem (Strong Law of Large Numbers/SLLN)
Suppose (Xn)n≥1 are IID RVs with finite mean µ (and finite fourth
moment) then X n

a.s.−−→ µ.
Note that convergence to µ in the WLLN and SLLN actually means
convergence to a degenerate RV, X , with P(X = µ) = 1.
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WLLN

Theorem (Weak Law of Large Numbers/WLLN)
Suppose (Xn)n≥1 are IID RVs with finite mean µ and finite

variance σ2 then X n
P−→ µ.

Proof.
Recall that E(X n) = µ and Var(X n) = σ2/n. Hence, by Chebychev’s
inequality, for all ε > 0

P(|X n−µ|> ε)≤ σ2/n
ε2 =

σ2

nε2

and so, letting n→ ∞,

P(|X n−µ|> ε)→ 0

hence X n
P−→ µ as required.
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SLLN

Theorem (Strong Law of Large Numbers/SLLN)
Suppose (Xn)n≥1 are IID RVs with finite mean µ (and finite fourth
moment) then X n

a.s.−−→ µ.

Proof.
Omitted.
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Applications: estimating probabilities
Suppose we wish to estimate the probability, p, that we succeed
when we play some game. For i = 1, . . . ,n, let

Xi = I({i thgame is success}) .

So X n = m/n if we succeed m times in n attempts.
We have that µ = E(Xi ) = P(Xi = 1) = p so then

m/n a.s.−−→ p

by the SLLN.
Thus we have shown the important result that the empirical estimate
of the probability of some event by its observed sample frequency
converges to the correct value as the number of samples grows.
This result forms the basis of all simulation methods.
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Applications: Shannon’s entropy

Theorem (Asymptotic Equipartition Property/AEP)
If Xn is a sequence of IID discrete RV with probability distribution
given by P(Xi = x) = p(x) for each x ∈ I then

−1
n

log2 p(X1,X2, . . . ,Xn)
P−→ H(X )

where Shannon’s entropy is defined by

H(X ) = H(X1) = · · ·= H(Xn) =−∑
x∈I

p(x) log2 p(x)

and

p(x1,x2, . . . ,xn) =
n

∏
i=1

p(xi )

is the joint probability distribution of the n IID RVs X1,X2, . . . ,Xn.
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Proof.
Observe that p(Xi ) is a RV taking the value p(x) with probabilty p(x)
and similarly p(X1,X2, . . . ,Xn) is a RV taking a value p(x1,x2, . . . ,xn)
with probability p(x1,x2, . . . ,xn). Therefore,

−1
n

log2 p(X1,X2, . . . ,Xn) =−1
n

log2

n

∏
i=1

p(Xi )

=−1
n

n

∑
i=1

log2 p(Xi )

=
1
n

n

∑
i=1

(− log2 p(Xi ))

P−→ E(− log2 p(Xi )) by WLLN

=−
n

∑
x∈I

p(x) log2 p(x)

= H(X )
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AEP implications
By the AEP, for all ε > 0,

lim
n→∞

P(|− 1
n

log2 p(X1,X2, . . . ,Xn)−H(X )| ≤ ε) = 1

lim
n→∞

P(H(X )− ε ≤−1
n

log2 p(X1,X2, . . . ,Xn)≤ H(X ) + ε) = 1

lim
n→∞

P(−n(H(X )− ε)≥ log2 p(X1,X2, . . . ,Xn)≥−n(H(X ) + ε)) = 1

lim
n→∞

P(2−n(H(X )+ε) ≤ p(X1,X2, . . . ,Xn)≤ 2−n(H(X )−ε)) = 1

Thus, the sequences of outcomes (x1,x2, . . . ,xn) for which

2−n(H(X )+ε) ≤ p(x1,x2, . . . ,xn)≤ 2−n(H(X )−ε)

have a high probability and are refered to as typical sequences. An
efficient (optimal) coding is to assign short codewords to such
sequences leaving longer codewords for any non-typical sequence.
Such long codewords must arise only rarely in the limit.

129



Central limit theorem

Theorem (Central limit theorem/CLT)
Let (Xn)n≥1 be a sequence of IID RVs with mean µ, variance σ2 and
whose moment generating function converges in some
interval −a < t < a with a > 0. Then

Zn =
X n−µ

σ/
√

n
D−→ Z ∼ N(0,1) .
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Proof of CLT
Set Yi = (Xi −µ)/σ then E(Yi ) = 0 and E(Y 2

i ) = Var(Yi ) = 1 so

MYi (t) = 1 +
t2

2
+ o(t2)

where o(t2) refers to terms of higher order than t2 which will therefore
tend to 0 as t → 0. Also,

Zn =
X n−µ

σ/
√

n
=

1√
n

n

∑
i=1

Yi .

Hence,

MZn (t) =

(
MYi

(
t√
n

))n

=

(
1 +

t2

2n
+ o

(
t2

n

))n

→ et2/2 as n→ ∞ .

But et2/2 is the mgf of the N(0,1) distribution so, together with the
continuity property, the CLT now follows as required.
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CLT example
Suppose X1,X2, . . . ,Xn are the IID RVs showing the n sample
outcomes of a 6-sided die with common distribution

P(Xi = j) = pj , j = 1,2, . . . ,6

Set Sn = X1 + X2 + · · ·+ Xn, the total score obtained, and consider the
two cases
I symmetric: (pj ) = (1/6,1/6,1/6,1/6,1/6,1/6) so

that µ = E(Xi ) = 3.5 and σ2 = Var(Xi )≈ 2.9
I asymmetric: (pj ) = (0.2,0.1,0.0,0.0,0.3,0.4) so

that µ = E(Xi ) = 4.3 and σ2 = Var(Xi )≈ 4.0
for varying sample sizes n = 5,10,15 and 20.
The CLT tells us that for large n, Sn is approximately distributed
as N(nµ,nσ2) where µ and σ2 are the mean and variance,
respectively, of Xi .

132



CLT example: symmetric
10,000 replications

score

D
en
sit
y

0.00
0.02
0.04
0.06
0.08
0.10

0 20 40 60 80 100 120

n=5
0.00
0.02
0.04
0.06
0.08
0.10

n=10
0.00
0.02
0.04
0.06
0.08
0.10

n=15
0.00
0.02
0.04
0.06
0.08
0.10

n=20
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CLT example: asymmetric
10,000 replications

score

D
en
sit
y

0.00
0.05
0.10

0 20 40 60 80 100 120

n=5
0.00
0.05
0.10

n=10
0.00
0.05
0.10

n=15
0.00
0.05
0.10

n=20
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Confidence intervals I
One of the major statistical applications of the CLT is to the
construction of confidence intervals. The CLT shows that

Zn =
X n−µ

σ/
√

n

is asymptotically distributed as N(0,1). If, the true value of σ2 is
unknown we may estimate it by the sample variance given by

S2 =
1

n−1

n

∑
i=1

(Xi −X n)2 .

For instance, it can be shown that E(S2) = σ2 and then

X n−µ

S/
√

n

is approximately distributed as N(0,1) for large n.
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Confidence intervals II
Define zα so that P(Z > zα ) = α where Z ∼ N(0,1) and so

P(−zα/2 < Z < zα/2) = 1−α .

Hence,

P

(
−zα/2 <

X n−µ

S/
√

n
< zα/2

)
≈ 1−α

P
(

X n−zα/2
S√
n
< µ < X n + zα/2

S√
n

)
≈ 1−α .

The interval X n±zα/2S/
√

n is thus an (approximate) 100(1−α)
percent confidence interval for the unknown parameter µ.
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Confidence intervals: example
Consider a collection of n IID RVs, Xi , with common
distribution Xi ∼ Pois(λ ). Hence,

P(Xi = j) =
λ je−λ

j!
j = 0,1, . . .

with mean E(Xi ) = λ .
Then a 95% confidence interval for the (unknown) mean value λ is
given by

X n±1.96S/
√

n

where z0.025 = 1.96.
Alternatively, to obtain 99% confidence intervals replace 1.96
by z0.005 = 2.58.
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95% confidence intervals: illustration with λ = 25
and α = 5%

100 runs, n= 10

confidence interval

15 20 25 30 35

100 runs, n= 40

confidence interval

15 20 25 30 35

138



Monte Carlo simulation
Suppose we wish to estimate the value of π. One way to proceed is
to perform the following experiment. Select a
point (X ,Y ) ∈ [−1,1]× [−1,1], the square of side 2 and area 4 units,
with X and Y chosen independently and uniformly in [−1,1]. Now
consider those points within unit distance of the origin then

P((X ,Y ) lies in unit circle) = P(X 2 + Y 2 ≤ 1) =
area of circle

area of square
=

π

4
.

Suppose we have access to a stream of random
variables Ui ∼ U(0,1) then 2Ui −1∼ U(−1,1). Now
set Xi = 2U2i−1−1, Yi = 2U2i −1 and Hi = I({X 2

i + Y 2
i ≤ 1}) so that

E(Hi ) = P(X 2
i + Y 2

i ≤ 1) =
π

4
.

Then by the SLLN the proportion of points (Xi ,Yi ) falling within the
unit circle converges almost surely to π/4.
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Markov Chains
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Markov chains

Definition (Markov chain)
Suppose that (Xn) n ≥ 0 is a sequence of discrete random variables
taking values in some countable state space S. The sequence (Xn) is
a Markov chain if

P(Xn = xn|X0 = x0,X1 = x1, . . . ,Xn−1 = xn−1) = P(Xn = xn|Xn−1 = xn−1)

for all n ≥ 1 and for all x0,x1, . . . ,xn ∈ S.
Since, S is countable we can always choose to label the possible
values of Xn by integers and say that when Xn = i the Markov chain is
in the “i th state at the nth step” or “visits i at time n”.
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Transition probabilities
The dynamics of the Markov chain are governed by the transition
probabilites P(Xn = j |Xn−1 = i).

Definition (time-homogeneous MC)
A Markov chain (Xn) is time-homogeneous if

P(Xn = j |Xn−1 = i) = P(X1 = j |X0 = i)

for all n ≥ 1 and states i , j ∈ S.

I We shall assume that our MCs are time-homogeneous unless
explicitly stated otherwise.
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Transition matrix

Definition (Transition matrix)
The transition matrix, P, of a MC (Xn) is given by P = (pij ) where for
all i , j ∈ S

pij = P(Xn = j |Xn−1 = i) .

I Note that P is a stochastic matrix, that is, it has non-negative
entries (pij ≥ 0) and the row sums all equal one (∑j pij = 1).

I The transition matrix completely characterizes the dynamics of
the MC.
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Example
Suppose the states of the MC are S = {1,2,3} and that the transition
matrix is given by

P =

1/3 1/3 1/3
1/2 0 1/2
2/3 0 1/3

 .

I Thus, in state 1 we are equally likely to be in any of the three
states at the next step.

I In state 2, we can move with equal probabilities to 1 or 3 at the
next step.

I Finally in state 3, we either move to state 1 with probability 2/3 or
remain in state 3 at the next step.
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n-step transition matrix

Definition (n-step transition matrix)
The n-step transition matrix is P(n) = (p(n)

ij ) where

p(n)
ij = P(Xn = j |X0 = i) .

Thus P(1) = P and we also set P(0) = I, the identity matrix.
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Chapman-Kolmogorov equations

Theorem (Chapman-Kolmogorov)
For all states i , j and for all steps m,n

p(m+n)
ij = ∑

k
p(m)

ik p(n)
kj .

Hence, P(m+n) = P(m)P(n) and P(n) = Pn, the nth power of P.

Proof.

p(m+n)
ij = P(Xm+n = j |X0 = i) = ∑

k
P(Xm+n = j ,Xm = k |X0 = i)

= ∑
k
P(Xm+n = j |Xm = k ,X0 = i)P(Xm = k |X0 = i)

= ∑
k
P(Xm+n = j |Xm = k)P(Xm = k |X0 = i)

= ∑
k

p(n)
kj p(m)

ik
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The Chapman-Kolmorgorov equations tell us how the long-term
evolution of the MC depends on the short-term evolution specified by
the transition matrix.
If we let λ

(n)
i = P(Xn = i) be the elements of a row vector λ (n)

specifying the distribution of the MC at the nth time step then the
follow holds.

Lemma

λ
(m+n) = λ

(m)P(n)

and so,
λ
(n) = λ

(0)P(n)

where λ (0) is the initial distribution λ
(0)
i = P(X0 = i).

Proof.

λ
(m+n)
j = P(Xm+n = j) = ∑

i
P(Xm+n = j |Xm = i)P(Xm = i)

= ∑
i

λ
(m)
i p(n)

ij =
(

λ
(m)P(n)

)
j
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Classification of states

Definition (Accessibility)
If, for some n ≥ 0, p(n)

ij > 0 then we say that state j is accessible from
state i , written i  j .
If i  j and j  i then we say that i and j communicate, written i! j .
Observe that the relation communicates! is
I reflexive
I symmetric
I transitive

and hence is an equivalence relation. The corresponding equivalence
classes partition the state space into subsets of states, called
communicating classes, that communicate with each other.
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Irreducibility
I A communicating class, C, that once entered can not be left is

called closed, that is pij = 0 for all i ∈ C, j 6∈ C.
I A closed communicating class consisting of a single state is

called absorbing.
I When the state space forms a single communicating class, the

MC is called irreducible and is called reducible otherwise.
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Recurrence and transience
Write for n ≥ 1

f (n)ij = P(X1 6= j , . . . ,Xn−1 6= j ,Xn = j |X0 = i)

so that f (n)ij is the probability starting in state i that we visit state j for
the first time at time n. Also, let

fij = ∑
n≥1

f (n)ij

the probability that we ever visit state j , starting in state i .

Definition
I If fii < 1 then state i is transient
I If fii = 1 then state i is recurrent.
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Recurrence and transience, ctd
I Observe that if we return to a state i at some time n then the

evolution of the MC is independent of the path before time n.
Hence, the probability that we will return at least N times is f N

ii .
I Now, if i is recurrent f N

ii = 1 for all N and we are sure to return to
state i infinitely often.

I Conversely, if state i is transient then f N
ii → 0 as N→ ∞ and so

there is zero probability of returning infinitely often.
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Theorem
I i is transient⇔ ∑n≥1 p(n)

ii converges

I i is recurrent⇔ ∑n≥1 p(n)
ii diverges

If i and j belong to the same communicating class then they are
either both recurrent or both transient — the solidarity property.

Proof

First, define generating functions

Pii (z) =
∞

∑
n=0

p(n)
ii zn and Fii (z) =

∞

∑
n=0

f (n)ii zn

where we take p(0)
ii = 1 and f (0)ii = 0.
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By examining the first time, r , that we return to i , we have
for m = 1,2, . . . that

p(m)
ii =

m

∑
r=1

f (r)ii p(m−r)
ii .

Now multiply by zm and summing over m we get

Pii (z) = 1 +
∞

∑
m=1

zmp(m)
ii

= 1 +
∞

∑
m=1

zm
m

∑
r=1

f (r)ii p(m−r)
ii

= 1 +
∞

∑
r=1

f (r)ii zr
∞

∑
m=r

p(m−r)
ii zm−r

= 1 + Fii (z)Pii (z)
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Thus, Pii (z) = 1/(1−Fii (z)). Now let z↗ 1 then Fii (z)→ Fii (1) = fii
and Pii (z)→ ∑n p(n)

ii .
If i is transient then fii < 1 so ∑n p(n)

ii converges. Conversely, if i is
recurrent then fii = 1 and ∑n p(n)

ii diverges.
Furthermore, if i and j are in the same class then there exist m and n
so that p(m)

ij > 0 and p(n)
ji > 0. Now, for all r ≥ 0

p(m+r+n)
ii ≥ p(m)

ij p(r)
jj p(n)

ji

so that ∑r p(r)
jj and ∑k p(k)

ii diverge or converge together.
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Mean recurrence time
First, let

Tj = min{n ≥ 1 : Xn = j}
be the time of the first visit to state j and set Tj = ∞ if no such visit
ever occurs.
Thus, P(Ti = ∞|X0 = i) > 0 if and only if i is transient in which
case E(Ti |X0 = i) = ∞.

Definition (Mean recurrence time)
The mean recurrent time, µi , of a state i is defined as

µi = E(Ti |X0 = i) =

{
∑n nf (n)ii if i is recurrent
∞ if i is transient .

I Note that µi may still be infinite when i is recurrent.
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Positive and null recurrence

Definition
A recurrent state i is
I positive recurrent if µi < ∞ and
I null recurrent if µi = ∞.

156



Example: simple random walk
Recall the simple random walk where Xn = ∑

n
i=1 Yi where (Yn) are IID

RVs with P(Yi = 1) = p = 1−P(Yi =−1). Thus Xn is the position
after n steps where we take unit steps up or down with probabilities p
and 1−p, respectively.
It is clear that return to the origin is only possible after an even
number of steps. Thus the sequence (p(n)

00 ) alternates between zero
and a positive value.
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Periodicity
Let di be the greatest common divisor of {n : p(n)

ii > 0}.
Definition
I If di = 1 then i is aperiodic.
I If di > 1 then i is periodic with period di .

I It may be shown that the period is a class property, that is,
if i , j ∈ C then di = dj .

We will now concentrate on irreducible and aperiodic Markov chains.
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Stationary distributions

Definition
The vector π = (πj ; j ∈ S) is a stationary distribution for the MC with
transition matrix P if

1. πj ≥ 0 for all j ∈ S and ∑j∈S πj = 1
2. π = πP, or equivalently, πj = ∑i∈S πipij .

Such a distribution is stationary in the sense
that πP2 = (πP)P = πP = π and for all n ≥ 0

πPn = π .

Thus if X0 has distribution π then Xn has distribution π for all n.
Moreover, π is the limiting distribution of Xn as n→ ∞.
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Markov’s example
Markov was lead to the notion of a Markov chain by study the
patterns of vowels and consonants in text. In his original example, he
found a transition matrix for the states {vowel,consonant) as

P =

(
0.128 0.872
0.663 0.337

)
.

Taking successive powers of P we find

P2 =

(
0.595 0.405
0.308 0.692

)
P3 =

(
0.345 0.655
0.498 0.502

)
P4 =

(
0.478 0.522
0.397 0.603

)
.

As n→ ∞,

Pn→
(

0.432 0.568
0.432 0.568

)
.

Check that π = (0.432,0.568) is a stationary distribution, that
is πP = π.
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Limiting behaviour as n→ ∞

Theorem (Erdös-Feller-Pollard)
For all states i and j in an irreducible, aperiodic MC,

1. if the chain is transient, p(n)
ij → 0

2. if the chain is recurrent, p(n)
ij → πj , where

2.1 (null recurrent) either, every πj = 0
2.2 (positive recurrent) or, every πj > 0, ∑j πj = 1 and π is the unique

probability distribution solving πP = π.

3. In case (2), let Ti be the time to return to i then µi = E(Ti ) = 1/πi
with µi = ∞ if πi = 0.

Proof.
Omitted.
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Remarks
I The limiting distribution, π, is seen to be a stationary one.

Suppose the current distribution is given by π and consider the
evolution of the MC for a further period of T steps. Since π is
stationary, the probability of being in any state i remains πi , so
we will make around T πi visits to i . Consequently, the mean time
between visits to i would be T/(T πi ) = 1/πi .

I Using λ
(n)
j = P(Xn = j) and since λ (n) = λ (0)Pn

1. for transient or null recurrent states λ (n)→ 0, that is, P(Xn = j)→ 0
for all states j

2. for a positive recurrent state, p(n)→ π > 0, that
is, P(Xn = j)→ πj > 0 for all j , where π is the unique probability
vector solving πP = π.

I Note the distinction between a transient and a null recurrent
chain is that in a transient chain we might never make a return
visit to some state i and there is zero probability that we will
return infinitely often. However, in a null recurrent chain we are
sure to make infinitely many return visits but the mean time
between consecutive visits is infinite.
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Time-reversibility
Suppose now that (Xn :−∞ < n < ∞) is an irreducible, postive
recurrent MC with transition matrix P and unique stationary
distribution π. Suppose also that Xn has the distribution π for
all −∞ < n < ∞. Now define the reversed chain by

Yn = X−n for −∞ < n < ∞

Then (Yn) is also a MC and where Yn has the distribution π.

Definition (Reversibility)
A MC (Xn) is reversible if the transition matrices of (Xn) and (Yn) are
equal.
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Theorem
A MC (Xn) is reversible if and only if

πipij = πjpji for all i , j ∈ S .

Proof.
Consider the transition probabilities qij ofthe MC (Yn) then

qij = P(Yn+1 = j |Yn = i)
= P(X−n−1 = j |X−n = i)
= P(Xm = i |Xm−1 = j)P(Xm−1 = j)/P(Xm = i) where m =−n
= pjiπj/πi .

Hence, pij = qij if and only if πipij = πjpji .
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Theorem
For an irreducible chain, if there exists a vector π such that

1. 0≤ πi ≤ 1 and ∑i π = 1
2. πipij = πjpji for all i , j ∈ S

then the chain is reversible and positive recurrent, with stationary
distribution π.

Proof.
Suppose that π satisfies the conditions of the theorem then

∑
i

πipij = ∑
i

πjpji = πj ∑
i

pji = πj

and so π = πP and the distribution is stationary.
The conditions πipij = πjpji for all i , j ∈ S are known as the local
balance conditions.
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Ehrenfest model
Suppose we have two containers A and B containing a total of m
balls. At each time step a ball is chosen uniformly at random and
switched between containers. Let Xn be the number of balls in
container A after n units of time. Thus, (Xn) is a MC with transition
matrix given by

pi ,i+1 = 1− i
m

, pi ,i−1 =
i
m

.

Instead of solving the equations π = πP we look for solutions to

πipij = πjpji

which yields πi =
(m

i

)
( 1

2 )m, a binomial distribution with parameters m
and 1

2 .
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Random walk on an undirected graph
Consider a graph G consisting of a countable collection of
vertices i ∈ N and a finite collection of edges (i , j) ∈ E joining
(unordered) pairs of vertices. Assume also that G is connected.
A natural way to construct a MC on G uses a random walk through
the vertices. Let vi be the number of edges incident at vertex i . The
random walk then moves from vertex i by selecting one of the vi
edges with equal probability 1/vi . So the transition matrix, P, is

pij =

{
1
vi

if (i , j) is an edge
0 otherwise .
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Since G is connected, P is irreducible. The local balance conditions
for (i , j) ∈ E are

πipij = πjpji

πi
1
vi

= πj
1
vj

πi

πj
=

vi

vj
.

Hence,
πi ∝ vi

and the normalization condition ∑i∈N πi = 1 gives

πi =
vi

∑j∈N vj

and P is reversible.
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Ergodic results
Ergodic results tell us about the limiting behaviour of averages taken
over time. In the case of Markov Chains we shall consider the
long-run proportion of time spent in a given state.
Let Vi (n) be the number of visits to i before time n then

Vi (n) =
n−1

∑
k=0

I({Xk = i}) .

Thus, Vi (n)/n is the proportion of time spent in state i before time n.

Theorem (Ergodic theorem)
Let (Xn) be a MC with irreducible transition matrix P then

P
(

Vi (n)

n
→ 1

µi
as n→ ∞

)
= 1

where µi = E(Ti |X0 = i) is the expected return time to state i.

169



Proof

If P is transient then the total number of visits, Vi , to i is finite with
probability one, so

Vi (n)

n
≤ Vi

n
→ 0 =

1
µi

n→ ∞ .

Alternatively, if P is recurrent let Y (r)
i be the r th duration between

visits to any given state i . Then Y (1)
i ,Y (2)

i , . . . are non-negative IID
RVs with E(Y (r)

i ) = µi .
But

Y (1)
i + · · ·+ Y (Vi (n)−1)

i ≤ n−1

since the time of the last visit to i before time n occurs no later than
time n−1 and

Y (1)
i + · · ·+ Y (Vi (n))

i ≥ n

since the time of the first visit to i after time n−1 occurs no earlier
than time n.
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Hence,

Y (1)
i + · · ·+ Y (Vi (n)−1)

i
Vi (n)

≤ n
Vi (n)

≤ Y (1)
i + · · ·+ Y (Vi (n))

i
Vi (n)

.

However, by the SLLN,

P

(
Y (1)

i + · · ·+ Y (n)
i

n
→ µi as n→ ∞

)
= 1

and for P recurrent we know that P(Vi (n)→ ∞ as n→ ∞) = 1. So,

P
(

n
Vi (n)

→ µi as n→ ∞

)
= 1

which implies

P
(

Vi (n)

n
→ 1

µi
as n→ ∞

)
= 1 .
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Example: random surfing on web graphs
Consider a web graph, G = (V ,E), with vertices given by a finite
collection of web pages i ∈ V and (directed) edges given by (i , j)
whenever there is a hyperlink from page i to page j .
Random walks through the web graph have received much attention
in the last few years.
Consider the following model, let Xn ∈ V be the location (that is, web
page visited) by the surfer at time n and suppose we choose Xn+1
uniformly from the, L(i), outgoing links from i , in the case
where L(i) > 0 and uniformly among all pages in V if L(i) = 0 (the
dangling page case).
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Hence, the transition matrix, P̂ij , say, is given by

p̂ij =


1

L(i) if (i , j) ∈ E
1
|V | if L(i) = 0

0 otherwise

where |V | is the number of pages (that is, vertices) in the web graph.
A potential problem remains in that P̂ may not be irreducible or may
be periodic.
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We make a further adjustment to ensure irreducibility and aperiodicity
as follows.
For 0≤ α ≤ 1 set

pij = (1−α)p̂ij +
α

|V | .

We can interpret this as an “easily bored web surfer” model and see
that the transitions take the form of a mixture of two distributions.
With probability 1−α we follow the randomly chosen outgoing link
(unless the page is dangling in which case we move to a randomly
chosen page) while with probability α we jump to a random page
selected uniformly from the entire set of pages V .
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PageRank
Brin et al (1999) used this approach to define PageRank through the
limiting distribution of this Markov Chain, that is πi where the vector π

satisfies
π = πP

They report typical values for α of between 0.1 and 0.2.
The ergodic theorem now tells us that the random surfer in this model
spends a proportion πi of the time visiting page i — a notion in some
sense of the importance of page i .
Thus, two pages i and j can be ranked according to the total order
defined by

i ≥ j if and only if πi ≥ πj .

See, “The PageRank Citation Ranking: Bring Order to the Web” Sergey Brin,
Lawrence Page, Rajeev Motwani and Terry Winograd (1999) Technical
Report, Computer Science Department, Stanford University.
http://dbpubs.stanford.edu:8090/pub/1999-66
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Computing PageRank: the power method
We seek a solution to the system of equations

π = πP

that is, we are looking for an eigenvector of P (with corresponding
eigenvalue of one). Google’s computation of PageRank is one of the
world’s largest matrix computations.
The power method starts from an initial distribution π(0),
updating π(k−1) by the iteration

π
(k) = π

(k−1)P = · · ·= π
(0)Pk

Advanced methods from linear algebra can be used to speed up
convergence of the power method and there has been much study of
related MCs, to include web browser back buttons and many other
properties and alternative notions of the “importance” of a web page.
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Hidden Markov Models
An extension of Markov Chains is provided by Hidden Markov Models
(HMM) where a statistical model of observed data is constructed from
an underlying but usually hidden Markov Chain.
Such models have proved very popular in a wide variety of fields
including
I speech and optical character recognition
I natural language processing
I bioinformatics and genomics.

We shall not consider these applications in any detail but simply
introduce the basic ideas and questions that Hidden Markov Models
address.
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A Markov model with hidden states
Suppose we have a MC with transition matrix P but that the states i of
the chain are not directly observable. Instead, we suppose that on
visiting any state i at time n there is a randomly chosen output value
or token, Yn, that is observable.
The probability of observing the output token t when in state i is given
by some distribution bi , depending on the state i that is visited.
Thus,

P(Yn = t |Xn = i) = (bi )t

where (bi )t is the t th component of the distribution bi .
For an excellent introduction to HMM, see “A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recognition” Lawence R.
Rabiner. Proceedings of the IEEE, Vol 77, No 2, February 1988.
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Three central questions
There are many variants of this basic setup but three central
problems are usually addressed.

Definition (Evaluation problem)
Given a sequence y1,y2, . . . ,yn of observed output tokens and the
parameters of the HMM (namely, P, bi and the distribution for the
initial state X0) how do we compute

P(Y1 = y1,Y2 = y2, . . . ,Yn = yn|HMM parameters)

that is, the probability of the observed sequence given the model?
Such problems are solved in practice by the forward algorithm.
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A second problem that may occur in an application is the decoding
problem.

Definition (Decoding problem)
Given an observed sequence of output tokens y1,y2, . . . ,yn and the
full description of the HMM parameters, how do we find the best fitting
corresponding sequence of (hidden) states i1, i2, . . . , in of the MC?
Such problems are solved in practice by a dynamic programming
approach called the Viterbi algorithm.
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The third important problem is the learning problem.

Definition (Learning problem)
Given an observed sequence of output tokens y1,y2, . . . ,yn, how do
we adjust the parameters of the HMM to maximize

P(Y1 = y1,Y2 = y2, . . . ,Yn = yn|HMM parameters)

The observed sequence used to adjust the model parameters is
called a training sequence. Learning problems are crucial in most
applications since they allow us to create the “best” models in real
observed processes.
Iterative procedures, known as the Baum-Welch method, are used to
solve this problem in practice.
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Applications of Markov Chains
These and other applications of Markov Chains are important topics
in a variety of Part II courses, including
I Artificial Intelligence II
I Bioinformatics
I Computer Systems Modelling
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