
University of Cambridge
Computer Laboratory
Dr Tjark Weber

Easter Term 2010/11
Exercises 2: Solutions

May 6, 2011

Interactive Formal Verification (L21)

1 Power, Sum

Power

� Define a (primitive recursive) function pow x n that computes xn on natural numbers.

fun pow :: "nat ⇒ nat ⇒ nat" where
"pow x 0 = Suc 0"

| "pow x (Suc n) = x * pow x n"

� Prove the well known equation xm·n = (xm)n:

theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity and commutativity
of multiplication: the corresponding simplification rules are named mult_ac.

lemma pow_add: "pow x (m + n) = pow x m * pow x n"

apply (induct n)

apply auto

done

theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

apply (induct n)

apply (auto simp add: pow_add)

done

Summation

� Define a (primitive recursive) function sum ns that sums a list of natural numbers:
sum [n1, . . . , nk] = n1 + · · ·+ nk.

fun sum :: "nat list ⇒ nat" where
"sum [] = 0"



| "sum (x#xs) = x + sum xs"

� Show that sum is compatible with rev. You may need a lemma.

lemma sum_append: "sum (xs @ ys) = sum xs + sum ys"

apply (induct xs)

apply auto

done

theorem sum_rev: "sum (rev ns) = sum ns"

apply (induct ns)

apply (auto simp add: sum_append)

done

� Define a function Sum f k that sums f from 0 up to k−1: Sum f k = f 0+· · ·+f(k−1).

fun Sum :: "(nat ⇒ nat) ⇒ nat ⇒ nat" where
"Sum f 0 = 0"

| "Sum f (Suc n) = Sum f n + f n"

� Show the following equations for the pointwise summation of functions. Determine first
what the expression whatever should be.

theorem "Sum (λi. f i + g i) k = Sum f k + Sum g k"

apply (induct k)

apply auto

done

theorem "Sum f (k + l) = Sum f k + Sum (λi. f (k + i)) l"

apply (induct l)

apply auto

done

� What is the relationship between sum and Sum? Prove the following equation, suitably
instantiated.

theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j] on lists in theory
List.

theorem "Sum f k = sum (map f [0..<k])"

apply (induct k)

apply (auto simp add: sum_append)

done

2


	Power, Sum

