Categorical Logic Exercise Sheet 1

Sam Staton

sam.staton@cl.cam.ac.uk

Revised: February 15, 2010, 09:25.

An initial object 0 in a category is *strict* if, for every object X, every morphism $X \to 0$ is an isomorphism.

1. To our language with products, add a type 0 and an expression former $\mathsf{absurd}(e)$. There is a typing rule

	$\frac{\Gamma \vdash e: 0}{\Gamma \vdash absurd(e): T}$	
and an equation		
	$\Gamma \vdash e: 0$	$\Gamma \vdash e' : T$
	$\overline{\Gamma \vdash absurd(e) = e': T}$	
for every type T and expression	e.	

Define a semantics of this language in a category with finite products and an initial object. Is the semantics sound? i.e., if $\Gamma \vdash e = e' : T$ is derivable, can you conclude that the morphism $[\Gamma \vdash e : T]$ is equal to the morphism $[\Gamma \vdash e' : T]$?

- 2. Complete the Agda examples at http://www.cl.cam.ac.uk/teaching/0910/L20/
- 3. On strict initial objects:
 - (a) Which of the following categories are have strict initial objects?
 - i. The one object category;
 - ii. The category $\Sigma = (\bullet \rightarrow \bullet)$.
 - iii. The category of sets;
 - iv. The category of arrows;
 - (b) For any set X, we write Sub(X) for the poset of subsets of X ordered by inclusion. Considered as a category, does Sub(X) have a strict initial object? Is it cartesian closed?
 - (c) Let \mathcal{C} and \mathcal{D} be categories, and consider a functor $F: \mathcal{C} \to \mathcal{D}$. Prove that if F has a right adjoint and 0 is an initial object of \mathcal{C} then F(0) is an initial object of \mathcal{D} .
 - (d) Consider a category with binary products and an initial object. Show that if the projection $X \times 0 \to 0$ is an isomorphism for every object X, then 0 is a strict initial object. You could use the internal language for products.
 - (e) Prove that an initial object in a cartesian closed category is strict.
 - (f) A pointed set is a set X together with an element $x \in X$. We write (X, x) for a pointed set. A pointed function $(X, x) \to (Y, y)$ is a function $f: X \to Y$ such that f(x) = y. Pointed sets and pointed functions form a category. Prove that it has finite products and an initial object, but that it is not cartesian closed.
 - (g) Prove that the category of monoids is not cartesian closed.