1

Topics in Logic and Complexity Handout 3

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

2

MSO is FPT on Words

There is a computable function f such that the problem of deciding, given a word w and an MSO sentence ϕ whether,

 $S_w \models \phi$

can be decided in time O(f(l)n) where l is the length of ϕ and n is the length of w.

The algorithm proceeds by constructing, from ϕ an *automaton* \mathcal{A}_{ϕ} such that the language recognized by \mathcal{A}_{ϕ} is

$\{w \mid S_w \models \phi\}$

then running \mathcal{A}_{ϕ} on w.

3

The automaton \mathcal{A}_{ϕ}

The states of \mathcal{A}_{ϕ} are the equivalence classes of $\equiv_{m}^{\mathsf{MSO}}$ where m is the quantifier rank of ϕ .

We write $\mathsf{Type}_m^{\mathsf{MSO}}(\mathbb{A})$ for the set of all formulas ϕ with $qr(\phi) \leq m$ such that $\mathbb{A} \models \phi$.

 $\mathbb{A} \equiv_{m}^{\mathsf{MSO}} \mathbb{B} \text{ is equivalent to}$

$$\mathsf{Type}_m^{\mathsf{MSO}}(\mathbb{A}) = \mathsf{Type}_m^{\mathsf{MSO}}(\mathbb{B})$$

There is a single formula $\theta_{\mathbb{A}}$ that characterizes $\mathsf{Type}_{m}^{\mathsf{MSO}}(\mathbb{A})$.

It turns out that we can compute $\theta_{S_{w,a}}$ from θ_{S_w} .

Trees

An (undirected) *forest* is an *acyclic* graph and a *tree* is a connected forest.

We next aim to show that there is an algorithm that decides, given a tree T and an MSO sentence ϕ whether

$T \models \phi$

and runs in time O(f(l)n where l is the length of ϕ and n is the size of T.

Rooted Directed Trees

A rooted, directed tree (T, a) is a directed graph with a distinguished vertex a such that for every vertex v there is a *unique* directed path from a to v.

We will actually see that MSO satisfaction is FPT for rooted, directed trees.

The result for undirected trees follows, as any undirected tree can be turned into a rooted directed one by choosing any vertex as a root and directing edges away from it.

Sums of Rooted Trees

Given rooted, directed trees (T, a) and (S, b) we define the sum

 $(T,a)\oplus(S,b)$

to be the rooted directed tree which is obtained by taking the *disjoint union* of the two trees while *identifying* the roots.

That is,

- the set of vertices of $(T, a) \oplus (S, b)$ is $V(T) \uplus V(S) \setminus \{b\}$.
- the set of edges is $E(T) \cup E(S) \cup \{(a, v) \mid (b, v) \in E(S)\}.$

7

5

Add Root

For any rooted, directed tree (T, a) define r(T, a) to be rooted directed tree obtained by adding to (T, a) a new vertex, which is the root and whose only child is a.

That is,

- the vertices of r(T, a) are $V(T) \cup \{a'\}$ where a' is not in V(T);
- the root of r(T, a) is a'; and
- the edges of r(T, a) are $E(T) \cup \{(a', a)\}$.

Again, $\mathsf{Type}_m^{\mathsf{MSO}}(r(T, a))$ can be computed from $\mathsf{Type}_m^{\mathsf{MSO}}(T, a)$.

Congruence

If $(T_1, a_1) \equiv_m^{\mathsf{MSO}} (T_2, a_2)$ and $(S_1, b_1) \equiv_m^{\mathsf{MSO}} (S_2, b_2)$, then $(T_1, a_1) \oplus (S_1, b_1) \equiv_m^{\mathsf{MSO}} (T_2, a_2) \oplus (S_2, b_2).$

This can be proved by an application of Ehrenfeucht games.

Moreover (though we skip the proof), $\mathsf{Type}_m^{\mathsf{MSO}}((T, a) \oplus (S, b))$ can be computed from $\mathsf{Type}_m^{\mathsf{MSO}}((T, a))$ and $\mathsf{Type}_m^{\mathsf{MSO}}((S, b))$.

8

MSO satisfaction is FPT on Trees

Any rooted, directed tree (T, a) can be obtained from singleton trees by a sequence of applications of \oplus and r.

The length of the sequence is linear in the size of T.

We can compute $\mathsf{Type}_{m}^{\mathsf{MSO}}(T, a)$ in linear time.

The Method of Decompositions

Suppose C is a class of graphs such that there is a finite class \mathcal{B} and a finite collection Op of operations such that:

- \mathcal{C} is contained in the closure of \mathcal{B} under the operations in Op ;
- there is a polynomial-time algorithm which computes, for any $G \in \mathcal{C}$, an Op-decomposition of G over \mathcal{B} ; and
- for each *m*, the equivalence class ≡^{MSO}_m is an *effective* congruence with respect to to all operations *o* ∈ Op (i.e., the ≡^{MSO}_m-type of *o*(*G*₁,...,*G*_s) can be computed from the ≡^{MSO}_m-types of *G*₁,...,*G*_s).

Then, MSO satisfaction is fixed-parameter tractable on \mathcal{C} .

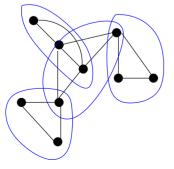
11

9

Treewidth

The *treewidth* of an undirected graph is a measure of how tree-like the graph is.

A graph has treewidth k if it can be covered by subgraphs of at most k + 1 nodes in a tree-like fashion.



Treewidth

Treewidth is a measure of how tree-like a graph is.

For a graph G = (V, E), a *tree decomposition* of G is a relation $D \subset V \times T$ with a tree T such that:

- for each $v \in V$, the set $\{t \mid (v, t) \in D\}$ forms a connected subtree of T; and
- for each edge $(u, v) \in E$, there is a $t \in T$ such that $(u, t), (v, t) \in D$.

The *treewidth* of G is the least k such that there is a tree T and a tree decomposition $D \subset V \times T$ such that for each $t \in T$,

 $|\{v \in V \mid (v,t) \in D\}| \le k+1.$

This gives a *tree decomposition* of the graph.

Dynamic Programming

It has long been known that graphs of small treewidth admit efficient *dynamic programming* algorithms for intractable problems.

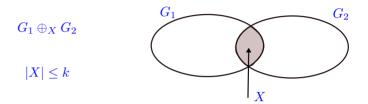
In general, these algorithms proceed bottom-up along a tree decomposition of G.

At any stage, a small set of vertices form the "*interface*" to the rest of the graph.

This allows a recursive decomposition of the problem.

Treewidth

Looking at the decomposition *bottom-up*, a graph of treewidth k is obtained from graphs with at most k + 1 nodes through a finite sequence of applications of the operation of taking *sums over sets* of at most k elements.



We let \mathcal{T}_k denote the class of graphs G such that $\operatorname{tw}(G) \leq k$.

15

Treewidth

More formally,

Consider graphs with up to k + 1 distinguished vertices $C = \{c_0, \ldots, c_k\}.$

Define a *merge* operation $(G \oplus_C H)$ that forms the union of G and H disjointly apart from C.

Also define $erase_i(G)$ that erases the name c_i .

Then a graph G is in \mathcal{T}_k if it can be formed from graphs with at most k + 1 vertices through a sequence of such operations.

Congruence

- Any $G \in \mathcal{T}_k$ is obtained from \mathcal{B}_k by finitely many applications of the operations erase_i and \oplus_C .
- If $G_1, \rho_1 \equiv_m^{\mathsf{MSO}} G_2, \rho_2$, then

$$\mathsf{erase}_i(G_1,\rho_1) \equiv^{\mathsf{MSO}}_m \mathsf{erase}_i(G_2,\rho_2)$$

• If
$$G_1, \rho_1 \equiv_m^{\mathsf{MSO}} G_2, \rho_2$$
, and $H_1, \sigma_1 \equiv_m^{\mathsf{MSO}} H_2, \sigma_2$ then
 $(G_1, \rho_1) \oplus_C (H_1, \sigma_1) \equiv_m^{\mathsf{MSO}} (G_2, \rho_2) \oplus_C (H_2, \sigma_2)$

Note: a special case of this is that \equiv_m^{MSO} is a congruence for *disjoint union* of graphs.

Courcelle's Theorem

Theorem (Courcelle)

For any MSO sentence ϕ and any k there is a linear time algorithm that decides, given $G \in \mathcal{T}_k$ whether $G \models \phi$.

Given $G \in \mathcal{T}_k$ and ϕ , compute:

- from G a labelled tree T; and
- from ϕ a bottom-up tree automaton \mathcal{A}

such that \mathcal{A} accepts T if, and only if, $G \models \phi$.

20

Bounded Degree Graphs

In a graph G = (V, E) the *degree* of a vertex $v \in V$ is the number of neighbours of v, i.e.

 $|\{u \in V \mid (u, v) \in E\}|.$

We write $\delta(G)$ for the *smallest* degree of any vertex in G.

We write $\Delta(G)$ for the *largest* degree of any vertex in G.

 \mathcal{D}_k —the class of graphs G with $\Delta(G) \leq k$.

19

17

Bounded Degree Graphs

Theorem (Seese)

For every sentence ϕ of FO and every k there is a linear time algorithm which, given a graph $G \in \mathcal{D}_k$ determines whether $G \models \phi$.

A proof is based on *locality* of first-order logic.

To be precise a strengthening of *Hanf's theorem*.

Note: this is not true for MSO unless P = NP. Construct, for any graph G, a graph G' such that $\Delta(G') \leq 5$ and G' is 3-colourable iff G is, and the map $G \mapsto G'$ is polynomial-time computable.

Hanf Types

For an element a in a structure \mathbb{A} , define

 $N_r^{\mathbb{A}}(a)$ —the substructure of \mathbb{A} generated by the elements whose distance from a (in $G\mathbb{A}$) is at most r.

We say \mathbb{A} and \mathbb{B} are *Hanf equivalent* with radius r and threshold q $(\mathbb{A} \simeq_{r,q} \mathbb{B})$ if, for every $a \in A$ the two sets

 $\{a' \in a \mid N_r^{\mathbb{A}}(a) \cong N_r^{\mathbb{A}}(a')\} \quad \text{and} \quad \{b \in B \mid N_r^{\mathbb{A}}(a) \cong N_r^{\mathbb{B}}(b)\}$

either have the same size or both have size greater than q; and, similarly for every $b \in B$.

Hanf Locality Theorem

Theorem (Hanf)

For every vocabulary σ and every m there are $r \leq 3^m$ and $q \leq m$ such that for any σ -structures \mathbb{A} and \mathbb{B} : if $\mathbb{A} \simeq_{r,q} \mathbb{B}$ then $\mathbb{A} \equiv_m \mathbb{B}$.

In other words, if $r \geq 3^m$, the equivalence relation $\simeq_{r,m}$ is a refinement of \equiv_m .

For $\mathbb{A} \in \mathcal{D}_k$:

 $N_r^{\mathbb{A}}(a)$ has at most $k^r + 1$ elements

each $\simeq_{r,m}$ has finite index.

Each $\simeq_{r,m}$ -class t can be characterised by a finite table, I_t , giving isomorphism types of neighbourhoods and numbers of their occurrences up to threshold m.

Satisfaction on \mathcal{D}_k

For a sentence ϕ of FO, we can compute a set of tables $\{I_1, \ldots, I_s\}$ describing $\simeq_{r,m}$ -classes consistent with it. This computation is independent of any structure A.

Given a structure $\mathbb{A} \in \mathcal{D}_k$,

for each a, determine the isomorphism type of $N_r^{\mathbb{A}}(a)$ construct the table describing the $\simeq_{r,m}$ -class of \mathbb{A} . compare against $\{I_1, \ldots, I_s\}$ to determine whether $\mathbb{A} \models \phi$. For fixed k, r, m, this requires time *linear* in the size of \mathbb{A} .

Note: satisfaction for FO is in O(f(l, k)n).

23

21

Reading List for this Handout

1. Libkin. Sections 7.6 and 7.6