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Complexity of First-Order Logic

The problem of deciding whether A |= φ for first-order φ is in time

O(lnm) and O(m logn) space.

where n is the size of A, l is the length of φ and m is the quantifier

rank of φ.

We have seen that the problem is PSPACE-complete, even for fixed

A.

For each fixed φ, the problem is in L.
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Is FO contained in an initial segment of P?

Is there a fixed c such that for every first-order φ, Mod(φ)

is decidable in time O(nc)?

If P = PSPACE, then the answer is yes, as the satisfaction relation

is then itself decidable in time O(nc).

Thus, though we expect the answer is no, this would be

difficult to prove.

A more uniform version of the question is:

Is there a constant c and a computable function f so that

the satisfaction relation for first-order logic is decidable in

time O(f(l)nc)?

In this case we say that the satisfaction problem is fixed-parameter

tractable (FPT) with the formula length as parameter.
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Parameterized Problems

Some problems are given a graph G and a positive integer k

Independent Set: does G contain k vertices that are pairwise

distinct and non-adjacent?

Dominating Set: does G contain k vertices such that every

vertex is among them or adjacent to one of them?

Vertex Cover: does G contain k vertices such that every edge

is incident on one of them?

For each fixed value of k, there is a first-order sentence φk such that

G |= φk if, and only if, G contains an independent set of k vertices.

Similarly for dominating set and vertex cover.



5

Parameterized Complexity

FPT—the class of problems of input size n and parameter l which

can be solved in time O(f(l)nc) for some computable function f

and constant c.

There is a hierarchy of intractable classes.

FPT ⊆W [1] ⊆W [2] ⊆ · · · ⊆ AW[⋆]

Vertex Cover is FPT.

Independent Set is W [1]-complete.

Dominating Set is W [2]-complete.
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Parameterized Complexity of First-Order Satisfaction

Writing Πt for those formulas which, in prenex normal form have t

alternating blocks of quantifiers starting with a universal block:

The satisfaction problem restricted to Πt formulas

(parameterized by the length of the formula) is hard for

the class W [t].

The satisfaction relation for first-order logic (A |= φ),

parameterized by the length of φ is AW[⋆]-complete.

Thus, if the satisfaction problem for first-order logic were FPT, this

would collapse the edifice of parameterized complexity theory.
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Restricted Classes

One way to get a handle on the complexity of first-order

satisfaction is to consider restricted classes of structures.

Given: a first-order formula φ and a structure A ∈ C

Decide: if A |= φ

For many interesting classes C, this problem has been shown to be

FPT, even for formulas of MSO.

We say that satisfaction of FO (or MSO) is fixed-paramter tractable

on C.
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Words as Relational Structures

For an alphabet Σ = {a1, . . . , as} let

σΣ = (<,Pa1
, . . . , Pas

)

where

< is binary; and Pa1
, . . . , Pas

are unary.

With each w ∈ Σ∗ we associate the canonical structure

Sw = ({1, . . . , n}, <, Pa1
, . . . , Pas

)

where

• n is the length of w

• < is the natural linear order on {1, . . . , n}.

• i ∈ Pa if, and only if, the ith symbol in w is a.
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Languages Defined by Formulas

The formula φ in the signature σΣ defines:

{w | Sw |= φ}.

The class of structures isomorphic to word models is given by:

lo(<) ∧ ∀x
∨

a∈A

Pa(x) ∧ ∀x
∧

a,b∈A,a 6=b

(Pa(x) → ¬Pb(x)),

where

lo(<) is the formula that states that < is a linear order
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Examples

The set of strings of length 3 or more:

∃x∃y∃z(x 6= y ∧ y 6= z ∧ z 6= z).

The set of strings which begin with an a:

∃x(Pa(x) ∧ ∀yy ≥ x)

The set of strings of even length:

∃X ∀x(∀y y ≤ x) → X(x)∧

∀x∀y (x < y ∧ ∀z(z ≤ x ∨ y ≤ z))

→ (X(x) ↔ ¬X(y))∧

∀x(∀y x ≤ y) → ¬X(x).
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Examples

(ab)∗:

∀x(∀y y ≤ x) → Pa(x)∧

∀x∀y (x < y ∧ ∀z(z ≤ x ∨ y ≤ z))

→ (Pa(x) ↔ Pb(y))∧

∀x(∀y x ≤ y) → Pb(x).
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MSO on Words

Theorem (Büchi-Elgot-Trakhtenbrot)

A language L is defined by a sentence of MSO if, and only if, L is

regular.

Recall that a language L is regular if:

• it is the set of words matching a regular expression; or

equivalently

• it is the set of words accepted by some nondeterministic finite

automaton; or equivalently

• it is the set of words accepted by some deterministic finite

automaton.
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Myhill-Nerode Theorem

Let ∼ be an equivalence relation on Σ∗.

We say ∼ is right invariant if, for all u, v ∈ Σ∗,

if u ∼ v, then for all w ∈ Σ∗, uw ∼ vw.

Theorem (Myhill-Nerode)

The following are equivalent for any language L ⊆ Σ∗:

• L is regular;

• L is the union of equivalence classes of a right invariant

equivalence relation of finite index on Σ∗.
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MSO Equivalence

We write A ≡MSO
m B to denote that, for all MSO sentences φ with

qr(φ) ≤ m,

A |= φ if, and only if, B |= φ.

We count both first and second order quantifiers towards the rank.

The relation ≡MSO
m has finite index for every m.

For any m, there are up to logical equivalence, only finitely

many formulas with quantifier rank at most m, with at

most k free variables.
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Invariance

Suppose u1, u2, v1, v2 are words over an alphabet Σ such that

u1 ≡MSO

m u2 and v1 ≡MSO

m v2

then u1 · v1 ≡MSO
m u2 · v2.

Dulpicator has a winning strategy on the game played on the pair

of words u1 · v1, u2 · v2 that is obtained as a composition of its

strategies in the games on u1, u2 and v1, v2.

It follows that ≡MSO
m is right invariant.

For any MSO sentence φ, the language defiend by φ is the union of

equivalence classes of ≡MSO
m where m is the quantifier rank of φ.
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Regular Expressions to MSO

For the converse, we translate a regular expression r to an MSO

sentence φr.

r = ∅: φr = ∃x(x 6= x).

r = ε: φr = ¬∃x(x = x).

r = a: φr = ∃x∀y(y = x ∧ Pa(x)).

r = s+ t: φr = φs ∨ ψt.

r = st: φr = ∃x(φ<x
s ∧ φ≥x

t ),

where φ<x
s and φ≥x

t are obtained from φs and φt by relativising

the first order quantifiers.

That is, every subformula of φs of the form ∃yψ is replaced by

∃y(y < x ∧ ψ<x),

and similarly every subformula ∃yψ of φt by ∃y(y ≥ x ∧ ψ≥x)
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Kleene Star

r = s∗:

φr = φε∨

∃X ∀x(X(x) ∧ ∀y(y < x→ ¬X(y)) → φ<x
s )∧

∀x(X(x) ∧ ∀y(y ≥ x→ ¬X(y)) → φ≥x
s )∧

∀x∀y (X < y ∧X(x) ∧X(y)∧

∀z(x < z ∧ z < y → ¬X(z))

→ φ≥x,<y
s ),

where φ≥x,<y
s is obtained from φs by relativising all first order

quantifiers simultaneously with < y and ≥ x.
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First-Order Languages

The class of star-free regular expressions is defined by:

• the strings ∅ and ε are star-free regular expressions;

• for any element a ∈ A, the string a is a star-free regular

expression;

• if r and s are star-free regular expressions, then so are (rs),

(r + s) and (r̄).

A language is defined by a first order sentence if, and only if, it is

denoted by a star-free regular expression.
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Applications

A class of linear orders is definable by a sentence of MSO if, and

only if, its set of cardinalities is eventually periodic.

Some results on graphs:

The class of balanced bipartite graphs is not definable in

MSO.

The class of Hamiltonian graphs is not definable by a

sentence of MSO.
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1. Libkin. Sections 7.4 and 7.5

2. Ebbinghaus, Flum Chapter 6


