Topics in Logic and Complexity Handout 2

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Complexity of First-Order Logic

The problem of deciding whether $\mathbb{A} \models \phi$ for first-order ϕ is in time $O(ln^m)$ and $O(m \log n)$ space.

where *n* is the size of A, *l* is the length of ϕ and *m* is the quantifier rank of ϕ .

We have seen that the problem is $\mathsf{PSPACE}\text{-}\mathrm{complete},$ even for fixed $\mathbb{A}.$

For each fixed ϕ , the problem is in L.

3

Is FO contained in an initial segment of P?

Is there a fixed c such that for every first-order ϕ , $Mod(\phi)$ is decidable in time $O(n^c)$?

If P = PSPACE, then the answer is yes, as the satisfaction relation is then itself decidable in time $O(n^c)$.

Thus, though we expect the answer is no, this would be difficult to prove.

A more uniform version of the question is:

Is there a constant c and a computable function f so that the satisfaction relation for first-order logic is decidable in time $O(f(l)n^c)$?

In this case we say that the satisfaction problem is *fixed-parameter tractable* (FPT) with the formula length as parameter.

Parameterized Problems

Some problems are given a graph G and a positive integer k

Independent Set: does G contain k vertices that are pairwise distinct and non-adjacent?

Dominating Set: does G contain k vertices such that every vertex is among them or adjacent to one of them?

Vertex Cover: does G contain k vertices such that every edge is incident on one of them?

For each fixed value of k, there is a first-order sentence ϕ_k such that $G \models \phi_k$ if, and only if, G contains an independent set of k vertices.

Similarly for dominating set and vertex cover.

5

7

FPT—the class of problems of input size n and *parameter* l which can be solved in time $O(f(l)n^c)$ for some computable function f and constant c.

There is a hierarchy of *intractable* classes.

 $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq \mathsf{AW}[\star]$

Vertex Cover is FPT. Independent Set is W[1]-complete. Dominating Set is W[2]-complete.

Restricted Classes

One way to get a handle on the complexity of first-order satisfaction is to consider restricted classes of structures.

Given: a first-order formula ϕ and a structure $\mathbb{A} \in \mathcal{C}$ Decide: if $\mathbb{A} \models \phi$

For many interesting classes C, this problem has been shown to be FPT, even for formulas of MSO.

We say that satisfaction of FO (or MSO) is *fixed-paramter tractable* on C.

8

Parameterized Complexity of First-Order Satisfaction

Writing Π_t for those formulas which, in prenex normal form have t alternating blocks of quantifiers starting with a universal block:

The satisfaction problem restricted to Π_t formulas (parameterized by the length of the formula) is hard for the class W[t].

The satisfaction relation for first-order logic $(\mathbb{A} \models \phi)$, parameterized by the length of ϕ is $\mathsf{AW}[\star]$ -complete.

Thus, if the satisfaction problem for first-order logic were FPT, this would collapse the edifice of parameterized complexity theory.

Words as Relational Structures

For an alphabet $\Sigma = \{a_1, \ldots, a_s\}$ let

 $\sigma_{\Sigma} = (\langle, P_{a_1}, \dots, P_{a_s})$

where

< is binary; and P_{a_1}, \ldots, P_{a_s} are unary.

With each $w \in \Sigma^*$ we associate the canonical structure

$$S_w = (\{1, \dots, n\}, <, P_{a_1}, \dots, P_{a_s})$$

where

- n is the length of w
- < is the natural linear order on $\{1, \ldots, n\}$.
- $i \in P_a$ if, and only if, the *i*th symbol in *w* is *a*.

11

Languages Defined by Formulas

The formula ϕ in the signature σ_{Σ} defines:

 $\{w \mid S_w \models \phi\}.$

The class of structures isomorphic to word models is given by:

 $lo(<) \land \forall x \bigvee_{a \in A} P_a(x) \land \forall x \bigwedge_{a, b \in A, a \neq b} (P_a(x) \to \neg P_b(x)),$

where

lo(<) is the formula that states that < is a linear order

The set of strings of length 3 or more:

 $\exists x \exists y \exists z (x \neq y \land y \neq z \land z \neq z).$

The set of strings which begin with an *a*:

 $\exists x (P_a(x) \land \forall yy \ge x)$

The set of strings of even length:

 $\begin{aligned} \exists X \ \forall x (\forall y \quad y \leq x) \to X(x) \wedge \\ \forall x \forall y \quad (x < y \land \forall z (z \leq x \lor y \leq z)) \\ & \to (X(x) \leftrightarrow \neg X(y)) \wedge \\ \forall x (\forall y \quad x \leq y) \to \neg X(x). \end{aligned}$

12

MSO on Words

Theorem (Büchi-Elgot-Trakhtenbrot)

A language L is defined by a sentence of MSO if, and only if, L is regular.

Recall that a language L is *regular* if:

- it is the set of words matching a *regular expression*; or equivalently
- it is the set of words accepted by some *nondeterministic finite automaton*; or equivalently
- it is the set of words accepted by some *deterministic finite automaton*.

Examples

$(ab)^*$:

 $\begin{aligned} \forall x (\forall y \quad y \leq x) &\to P_a(x) \wedge \\ \forall x \forall y \quad (x < y \wedge \forall z (z \leq x \lor y \leq z)) \\ &\to (P_a(x) \leftrightarrow P_b(y)) \wedge \\ \forall x (\forall y \quad x \leq y) \to P_b(x). \end{aligned}$

Myhill-Nerode Theorem

Let \sim be an equivalence relation on Σ^* .

We say \sim is *right invariant* if, for all $u, v \in \Sigma^*$,

if $u \sim v$, then for all $w \in \Sigma^*$, $uw \sim vw$.

Theorem (Myhill-Nerode)

The following are equivalent for any language $L \subseteq \Sigma^*$:

- L is regular;
- L is the union of equivalence classes of a right invariant equivalence relation of finite index on Σ^* .

14

MSO Equivalence

We write $\mathbb{A} \equiv_m^{\mathsf{MSO}} \mathbb{B}$ to denote that, for all MSO sentences ϕ with $\operatorname{qr}(\phi) \leq m$,

 $\mathbb{A} \models \phi \quad \text{if, and only if,} \quad \mathbb{B} \models \phi.$

We count both first and second order quantifiers towards the rank.

The relation \equiv_m^{MSO} has finite index for every m.

For any m, there are up to logical equivalence, only finitely many formulas with quantifier rank at most m, with at most k free variables.

15

13

Invariance

Suppose u_1, u_2, v_1, v_2 are words over an alphabet Σ such that

$$u_1 \equiv_m^{\mathsf{MSO}} u_2 \quad \text{and} \quad v_1 \equiv_m^{\mathsf{MSO}} v_2$$

then $u_1 \cdot v_1 \equiv_m^{\mathsf{MSO}} u_2 \cdot v_2$.

Dulpicator has a winning strategy on the game played on the pair of words $u_1 \cdot v_1, u_2 \cdot v_2$ that is obtained as a composition of its strategies in the games on u_1, u_2 and v_1, v_2 .

It follows that \equiv_m^{MSO} is *right invariant*.

For any MSO sentence ϕ , the language defiend by ϕ is the union of equivalence classes of \equiv_m^{MSO} where m is the quantifier rank of ϕ .

Regular Expressions to MSO

For the converse, we translate a regular expression r to an MSO sentence ϕ_r .

$$\begin{aligned} \varphi &= \emptyset: \ \phi_r = \exists x (x \neq x). \\ \varphi &= \varepsilon: \ \phi_r = \neg \exists x (x = x). \\ \varphi &= a: \ \phi_r = \exists x \forall y (y = x \land P_a(x)). \\ \varphi &= s + t: \ \phi_r = \phi_s \lor \psi_t. \end{aligned}$$
$$\begin{aligned} \varphi &= st: \ \phi_r = \exists x (\phi_s^{< x} \land \phi_t^{\geq x}), \end{aligned}$$

where $\phi_s^{<x}$ and $\phi_t^{\geq x}$ are obtained from ϕ_s and ϕ_t by relativising the first order quantifiers.

That is, every subformula of ϕ_s of the form $\exists y\psi$ is replaced by $\exists y(y < x \land \psi^{< x})$,

and similarly every subformula $\exists y\psi$ of ϕ_t by $\exists y(y \ge x \land \psi^{\ge x})$

Kleene Star

$$r = s^*$$
:

$$\begin{split} \phi_r &= \phi_{\varepsilon} \lor \\ &\exists X \ \forall x (X(x) \land \forall y (y < x \to \neg X(y)) \to \phi_s^{<x}) \land \\ &\forall x (X(x) \land \forall y (y \ge x \to \neg X(y)) \to \phi_s^{\ge x}) \land \\ &\forall x \forall y \ (X < y \land X(x) \land X(y) \land \\ &\forall z (x < z \land z < y \to \neg X(z)) \\ &\to \phi_s^{\ge x, < y}), \end{split}$$

where $\phi_s^{\geq x, \leq y}$ is obtained from ϕ_s by relativising all first order quantifiers simultaneously with $\langle y \rangle$ and $\geq x$.

First-Order Languages

The class of $\underline{star-free}$ regular expressions is defined by:

- the strings \emptyset and ε are star-free regular expressions;
- for any element $a \in A$, the string a is a star-free regular expression;
- if r and s are star-free regular expressions, then so are (rs), (r+s) and (\bar{r}) .

A language is defined by a first order sentence *if, and only if,* it is denoted by a star-free regular expression.

19

17

Applications

A class of linear orders is definable by a sentence of MSO if, and only if, its set of cardinalities is *eventually periodic*.

Some results on graphs:

The class of balanced bipartite graphs is not definable in $\ensuremath{\mathsf{MSO}}.$

The class of Hamiltonian graphs is not definable by a sentence of $\mathsf{MSO}.$

Reading List for this Handout

- 1. Libkin. Sections 7.4 and 7.5
- 2. Ebbinghaus, Flum Chapter 6