Topics in Logic and Complexity Part 1

1

3

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Computational Complexity

Complexity is usually defined in terms of *running time* or *space* asymptotically required by an algorithm. *E.g.*

- Merge Sort runs in time $O(n \log n)$.
- Any sorting algorithm that can sort an arbitrary list of n numbers requires time $\Omega(n \log n)$.

Complexity theory is concerned with the hardness of *problems* rather than specific algorithms.

We will mostly be concerned with *broad* classification of complexity: *logarithmic* vs. *polynomial* vs. *exponential*.

What is This Course About?

Complexity Theory is the study of what makes some algorithmic problems inherently difficult to solve.

Difficult in the sense that there is no *efficient* algorithm.

Mathematical Logic is the study of formal mathematical reasoning.

It gives a *mathematical* account of meta-mathematical notions such as *structure*, *language* and *proof*.

In this course we will see how logic can be used to study complexity theory. In particular, we will look at how complexity relates to *definability*.

Graph Properties

4

For simplicity, we often focus on decision problems.

As an example, consider the following three decision problems on *graphs*.

- 1. Given a graph G = (V, E) does it contain a *triangle*?
- 2. Given a directed graph G = (V, E) and two of its vertices $s, t \in V$, does G contain a path from s to t?
- 3. Given a graph G = (V, E) is it 3-colourable? That is, is there a function $\chi : V \to \{1, 2, 3\}$ so that whenever $(u, v) \in E, \chi(u) \neq \chi(v)$.

Graph Properties

5

7

- 1. Checking if G contains a triangle can be solved in *polynomial* time and *logarithmic space*.
- 2. Checking if G contains a path from s to t can be done in polynomial time.

Can it be done in *logarithmic space*?

Unlikely. It is NL-complete.

3. Checking if G is 3-colourable can be done in *exponential time* and *polynomial space*.

Can it be done in *polynomial time*?

Unlikely. It is NP-complete.

Second-Order Quantifiers

3-Colourability and reachability can be defined with quantification over sets of vertices.

$$\exists R \subseteq V \, \exists B \subseteq V \, \exists G \subseteq V$$

$$\forall x (Rx \vee Bx \vee Gx) \wedge$$

$$\forall x (\neg (Rx \wedge Bx) \wedge \neg (Bx \wedge Gx) \wedge \neg (Rx \wedge Gx)) \wedge$$

$$\forall x \forall y (Exy \rightarrow (\neg (Rx \wedge Ry) \wedge$$

$$\neg (Bx \wedge By) \wedge$$

$$\neg (Gx \wedge Gy)))$$

$$\forall S \subseteq V(s \in S \wedge \forall x \forall y ((x \in S \wedge E(x, y)) \rightarrow y \in S) \rightarrow t \in S)$$

Logical Definability

In what kind of formal language can these decision problems be *specified* or *defined*?

The graph G = (V, E) contains a triangle.

$$\exists x \in V \,\exists y \in V \,\exists z \in V (x \neq y \land y \neq z \land x \neq z \land E(x,y) \land E(x,z) \land E(y,z))$$

The other two properties are *provably* not definable with only first-order quantification over vertices.

Course Outline

8

This course is concerned with the questions of (1) how definability relates to computational complexity and (2) how to analyse definability.

- 1. Complexity Theory—a review of the major complexity classes and their interrelationships (3L).
- 2. First-order and second-order logic—their expressive power and computational complexity (3L).
- 3. Lower bounds on expressive power—the use of games and locality (3L).
- 4. Fixed-point logics and descriptive complexity (3L)
- 5. Finite-variable logics; Random structures; (4L)

Useful Information

Some useful books:

- C.H. Papadimitriou. Computational Complexity. Addison-Wesley. 1994.
- H.-D. Ebbinghaus and J. Flum. Finite Model Theory (2nd ed.) 1999.
- N. Immerman. Descriptive Complexity. Springer. 1999.
- L. Libkin. Elements of Finite Model Theory. Springer. 2004.
- E. Grädel et al. Finite Model Theory and its Applications. Springer. 2007.

Course website: http://www.cl.cam.ac.uk/teaching/1011/L15/

Turing Machines

For our purposes, a Turing Machine consists of:

- *K* a finite set of states;
- Σ a finite set of symbols, including \sqcup .
- $s \in K$ an initial state;
- $\delta: (K \times \Sigma) \to (K \cup \{a, r\}) \times \Sigma \times \{L, R, S\}$

A transition function that specifies, for each state and symbol a next state (or accept acc or reject rej), a symbol to overwrite the current symbol, and a direction for the tape head to move (L - left, R - right, or S - stationary)

Decision Problems and Algorithms

10

12

Formally, a *decision problem* is a set of strings $L \subseteq \Sigma^*$ over a finite alphabet Σ .

The problem is *decidable* if there is an *algorithm* which given any input $x \in \Sigma^*$ will determine whether $x \in L$ or not.

The notion of an *algorithm* is formally defined by a *machine model*: A *Turing Machine*; *Random Access Machine* or even a *Java program*.

The choice of machine model doesn't affect what is or is not decidable.

Similarly, we say a function $f: \Sigma^* \to \Delta^*$ is *computable* if there is an algorithm which takes input $x \in \Sigma^*$ and gives output f(x).

Configurations

A complete description of the configuration of a machine can be given if we know what state it is in, what are the contents of its tape, and what is the position of its head. This can be summed up in a simple triple:

Definition

11

A configuration is a triple (q, w, u), where $q \in K$ and $w, u \in \Sigma^*$

The intuition is that (q, w, u) represents a machine in state q with the string wu on its tape, and the head pointing at the last symbol in w.

The configuration of a machine completely determines the future behaviour of the machine.

Computations

13

15

Given a machine $M = (K, \Sigma, s, \delta)$ we say that a configuration (q, w, u) yields in one step (q', w', u'), written

$$(q, w, u) \rightarrow_M (q', w', u')$$

if

- w = va;
- $\delta(q, a) = (q', b, D)$; and
- either D = L and w' = v u' = buor D = S and w' = vb and u' = uor D = R and w' = vbc and u' = x, where u = cx. If u is empty, then $w' = vb \sqcup$ and u' is empty.

Complexity

For any function $f: \mathbb{N} \to \mathbb{N}$, we say that a language L is in $\mathsf{TIME}(f(n))$ if there is a machine $M = (K, \Sigma, s, \delta)$, such that:

- L = L(M); and
- The running time of M is O(f(n)).

Similarly, we define $\mathsf{SPACE}(f(n))$ to be the languages accepted by a machine which uses O(f(n)) tape cells on inputs of length n.

In defining space complexity, we assume a machine M, which has a read-only input tape, and a separate work tape. We only count cells on the work tape towards the complexity.

Computations

The relation \to_M^* is the reflexive and transitive closure of \to_M .

A sequence of configurations c_1, \ldots, c_n , where for each i, $c_i \to_M c_{i+1}$, is called a *computation* of M.

The language $L(M) \subseteq \Sigma^*$ accepted by the machine M is the set of strings

$$\{x \mid (s, \triangleright, x) \to_M^{\star} (\mathrm{acc}, w, u) \text{ for some } w \text{ and } u\}$$

A machine M is said to *halt on input* x if for some w and u, either $(s, \triangleright, x) \to_M^{\star} (\operatorname{acc}, w, u)$ or $(s, \triangleright, x) \to_M^{\star} (\operatorname{rej}, w, u)$

Nondeterminism

If, in the definition of a Turing machine, we relax the condition on δ being a function and instead allow an arbitrary relation, we obtain a *nondeterministic Turing machine*.

$$\delta \subseteq (K \times \Sigma) \times (K \cup \{a, r\} \times \Sigma \times \{R, L, S\}).$$

The yields relation \rightarrow_M is also no longer functional.

We still define the language accepted by M by:

$$L(M) = \{x \mid (s, \triangleright, x) \to_M^{\star} (\mathrm{acc}, w, u) \text{ for some } w \text{ and } u\}$$

though, for some x, there may be computations leading to accepting as well as rejecting states.

16

19

For any function $f: \mathbb{N} \to \mathbb{N}$, we say that a language L is in $\mathsf{NTIME}(f(n))$ if there is a *nondeterministic* machine $M = (K, \Sigma, s, \delta)$, such that:

- L = L(M); and
- The running time of M is O(f(n)).

The last statement means that for each $x \in L(M)$, there is a computation of M that accepts x and whose length is bounded by O(f(|x|)).

Similarly, we define $\mathsf{NSPACE}(f(n))$ to be the languages accepted by a *nondeterminstic* machine which uses O(f(n)) tape cells on inputs of length n.

As before, in reckoning space complexity, we only count work space.

Complexity Classes

A complexity class is a collection of languages determined by three things:

- A model of computation (such as a deterministic Turing machine, or a nondeterministic TM, or a parallel Random Access Machine).
- A resource (such as time, space or number of processors).
- A set of bounds. This is a set of functions that are used to bound the amount of resource we can use.

Computation Trees

With a nondeterministic machine, each configuration gives rise to a tree of successive configurations.

20

18

Polynomial Bounds

By making the bounds broad enough, we can make our definitions fairly independent of the model of computation.

The collection of languages recognised in *polynomial time* is the same whether we consider Turing machines, register machines, or any other deterministic model of computation.

The collection of languages recognised in *linear time*, on the other hand, is different on a one-tape and a two-tape Turing machine.

We can say that being recognisable in polynomial time is a property of the language, while being recognisable in linear time is sensitive to the model of computation.

24

Reading List for this Part

- 1. Papadimitriou. Chapters 1 and 2.
- 2. Grädel et al. Chapter 1 (Weinstein).

Polynomial Time Computation

$$\mathsf{P} = \bigcup_{k=1}^\infty \mathsf{TIME}(n^k)$$

The class of languages decidable in polynomial time.

The complexity class ${\sf P}$ plays an important role in complexity theory.

- It is robust, as explained.
- It serves as our formal definition of what is *feasibly computable*

Topics in Logic and Complexity Part 2

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Nondeterministic Polynomial Time

$$\mathsf{NP} = \bigcup_{k=1}^{\infty} \mathsf{NTIME}(n^k)$$

That is, NP is the class of languages accepted by a nondeterministic machine running in polynomial time.

Since a deterministic machine is just a nondeterministic machine in which the transition relation is *functional*, $P \subseteq NP$.

The complexity class NP can be characterised as the collection of languages of the form:

$$L = \{x \mid \exists y R(x, y)\}\$$

Where R is a relation on strings satisfying two key conditions

- 1. R is decidable in polynomial time.
- 2. R is polynomially balanced. That is, there is a polynomial p such that if R(x, y) and the length of x is n, then the length of y is no more than p(n).

Equivalence of Definitions

For y a string over the alphabet $\{1, \ldots, k\}$, we define the relation R(x, y) by:

- $|y| \le p(|x|)$; and
- the computation of M on input x which, at step i takes the "y[i]th transition" is an accepting computation.

Then, $L(M) = \{x \mid \exists y \ R(x,y)\}\$

Equivalence of Definitions

If $L = \{x \mid \exists y \ R(x, y)\}$ we can define a nondeterministic machine M that accepts L.

The machine first uses nondeterministic branching to *guess* a value for y, and then checks whether R(x, y) holds.

In the other direction, suppose we are given a nondeterministic machine M which runs in time p(n).

Suppose that for each $(q, \sigma) \in K \times \Sigma$ (i.e. each state, symbol pair) there are at most k elements in $\delta(q, \sigma)$.

Space Complexity Classes

 $L = \mathsf{SPACE}(\log n)$

27

The class of languages decidable in logarithmic space.

 $NL = NSPACE(\log n)$

The class of languages decidable by a nondeterministic machine in logarithmic space.

 $\mathsf{PSPACE} = \bigcup_{k=1}^{\infty} \mathsf{SPACE}(n^k)$

The class of languages decidable in polynomial space.

 $\mathsf{NPSPACE} = \bigcup_{k=1}^{\infty} \mathsf{NSPACE}(n^k)$

31

$$\mathsf{L}\subseteq\mathsf{NL}\subseteq\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{PSPACE}\subseteq\mathsf{NPSPACE}\subseteq\mathsf{EXP}$$

where
$$\mathsf{EXP} = \bigcup_{k=1}^{\infty} \mathsf{TIME}(2^{n^k})$$

Of these, the following are direct from the definitions:

$$L\subseteq NL$$

$$P\subseteq NP$$

$$\mathsf{PSPACE} \subseteq \mathsf{NPSPACE}$$

 $NL \subseteq P$

Given a nondeterministic machine M that works with work space bounded by s(n) and an input x of length n, there is some constant c such that

the total number of possible configurations of M within space bounds s(n) is bounded by $n \cdot c^{s(n)}$.

Define the *configuration graph* of M, x to be the graph whose nodes are the possible configurations, and there is an edge from i to j if, and only if, $i \to_M j$.

NP \subseteq **PSPACE**

To simulate a nondeterministic machine M running in time t(n) by a deterministic one, it suffices to carry out a *depth-first* search of the computation tree.

We keep a counter to cut off branches that exceed t(n) steps.

The space required is:

- a *counter* to count up to t(n); and
- a *stack* of configurations, each of size at most O(t(n)).

The depth of the stack is at most t(n).

Thus, if t is a polynomial, the total space required is polynomial.

Reachability in the Configuration Graph

M accepts x if, and only if, some accepting configuration is reachable from the starting configuration in the configuration graph of M, x.

Using the $O(n^2)$ algorithm for Reachability, we get that M can be simulated by a deterministic machine operating in time

$$c'(nc^{s(n)})^2 \sim c'c^{2(\log n + s(n))} \sim d^{(\log n + s(n))}$$

for some constant d.

When $s(n) = O(\log n)$, this is polynomial and so $NL \subseteq P$.

When s(n) is polynomial this is exponential in n and so NPSPACE \subseteq EXP.

32

Nondeterministic Space Classes

If *Reachability* were solvable by a *deterministic* machine with logarithmic space, then

L = NL.

In fact, *Reachability* is solvable by a deterministic machine with space $O((\log n)^2)$.

This implies

$$\mathsf{NSPACE}(s(n)) \subseteq \mathsf{SPACE}((s(n)^2)).$$

In particular PSPACE = NPSPACE.

Inclusions between Classes

This leaves us with the following:

$$L \subset NL \subset P \subset NP \subset PSPACE \subset EXP$$

Hierarchy Theorems proved by *diagonalization* can show that:

$$L \neq PSPACE$$
 $NL \neq NPSPACE$ $P \neq EXP$

For other inclusions above, it remains an open question whether they are strict.

Reachability in $O((\log n)^2)$

 $O((\log n)^2)$ space Reachability algorithm:

Path(a, b, i)

if i = 1 and (a, b) is not an edge reject else if (a, b) is an edge or a = b accept else, for each node x, check:

- 1. is there a path a-x of length i/2; and
- 2. is there a path x b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is $\log n$, and the number of bits of information kept at each stage is $3 \log n$.

Complement Classes

If we interchange accepting and rejecting states in a deterministic machine that accepts the language L, we get one that accepts \overline{L} .

If a language $L \in P$, then also $\overline{L} \in P$.

Complexity classes defined in terms of nondeterministic machine models are not necessarily closed under complementation of languages.

Define,

co-NP – the languages whose complements are in NP.

co-NL – the languages whose complements are in NL.

 $P \subseteq NP \cap co-NP$ and any of the situations is consistent with our

A reduction of L_1 to L_2 is a computable function

• P = NP = co-NP

$$f:\Sigma_1^\star o \Sigma_2^\star$$

• $P = NP \cap co-NP \neq NP \neq co-NP$

such that for every string $x \in \Sigma_1^{\star}$,

• $P \neq NP \cap co-NP = NP = co-NP$ • $P \neq NP \cap co-NP \neq NP \neq co-NP$

 $f(x) \in L_2$ if, and only if, $x \in L_1$

It follows from the fact that PSPACE = NPSPACE that NPSPACE is closed under complementation.

Also, Immerman and Szelepcsényi showed that NL = co-NL.

39

Reductions 2

Resource Bounded Reductions

If $L_1 \leq L_2$ we understand that L_1 is no more difficult to solve than L_2 .

If f is computable by a polynomial time algorithm, we say that L_1 is polynomial time reducible to L_2 .

That is to say, for any of the complexity classes \mathcal{C} we consider,

$$L_1 \leq_P L_2$$

If $L_1 \leq L_2$ and $L_2 \in \mathcal{C}$, then $L_1 \in \mathcal{C}$

If f is also computable in $SPACE(\log n)$, we write

We can get an algorithm to decide L_1 by first computing f, and then using the \mathcal{C} -algorithm for L_2 .

$$L_1 \leq_L L_2$$

Provided that \mathcal{C} is *closed* under such reductions.

Completeness

The usefulness of reductions is that they allow us to establish the *relative* complexity of problems, even when we cannot prove absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are maximally difficult.

For any complexity class C, a language L is said to be C-hard if for every language $A \in C$, $A \leq L$.

A language L is \mathcal{C} -complete if it is in \mathcal{C} and it is \mathcal{C} -hard.

Reading List for this Part

- 1. Papadimitriou. Chapters 7, 8 and 16.
- 2. Immerman Chapter 2.

Complete Problems

42

44

Examples of complete problems for various complexity classes.

NL

Reachability

Ρ

Game, Circuit Value Problem

NP Satisfiability of Boolean Formulas, Graph 3-Colourability, Hamiltonian Cycle

co-NP

Validity of Boolean Formulas, Non 3-colourability

PSPACE

43

Geography, The game of HEX

Topics in Logic and Complexity
Part 3

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

48

P-complete Problems

Game

Input: A directed graph G = (V, E) with a partition $V = V_1 \cup V_2$ of the vertices and two distinguished vertices $s, t \in V$.

Decide: whether Player 1 can force a token from s to t in the game where when the token is on $v \in V_1$, Player 1 moves it along an edge leaving v and when it is on $v \in V_2$, Player 2 moves it along an edge leaving v.

NP-complete Problems

SAT

Input: A Boolean formula ϕ

Decide: if there is an assignment of truth values to the variables of ϕ that makes ϕ true.

Hamiltonicity

Input: A graph G = (V, E)

Decide: if there is a cycle in G that visits every vertex exactly once.

Circuit Value Problem

A Circuit is a directed acyclic graph G = (V, E) where each node has in-degree 0, 1 or 2 and there is exactly one vertex t with no outgoing edges, along with a labelling which assigns:

- to each node of indegree 0 a value of 0 or 1
- to each node of indegree 1 a label \neg
- to each node of indegree 2 a label \land or \lor

The problem CVP is, given a circuit, decide if the target node t evaluates to 1.

co-NP-complete Problems

VAL

Input: A Boolean formula ϕ

Decide: if every assignment of truth values to the variables of ϕ makes ϕ true.

Non-3-colourability

Input: A graph G = (V, E)

Decide: if there is no function $\chi: V \to \{1, 2, 3\}$ such that the two endpoints of every edge are differently coloured.

PSPACE-complete Problems

Geography is very much like Game but now players are not allowed to visit a vertex that has been previously visitied.

HEX is a game played by two players on a graph G = (V, E) with a source and target $s, t \in V$.

The two players take turns selecting vertices from V—neither player can choose a vertex that has been previously selected. Player 1 wins if, at any point, the vertices she has selected include a path from s to t. Player 2 wins if all vertices have been selected and no such path is formed.

The problem is to decide which player has a winning strategy.

Signature and Structure

In general a *signature* (or *vocabulary*) σ is a finite sequence of relation, function and constant symbols:

$$\sigma = (R_1, \dots, R_m, f_1, \dots, f_n, c_1, \dots, c_p)$$

where, associated with each relation and function symbol is an arity.

Descriptive Complexity

Descriptive Complexity provides an alternative perspective on Computational Complexity.

Computational Complexity

- Measure use of resources (space, time, etc.) on a machine model of computation;
- Complexity of a language—i.e. a set of strings.

Descriptive Complexity

- Complexity of a class of structures—e.g. a collection of graphs.
- Measure the complexity of describing the collection in a formal logic, using resources such as variables, quantifiers, higher-order operators, etc.

There is a fascinating interplay between the views.

Structure

A structure \mathbb{A} over the signature σ is a tuple:

$$\mathbb{A} = (A, R_1^{\mathbb{A}}, \dots, R_m^{\mathbb{A}}, f_1^{\mathbb{A}}, \dots, f_n^{\mathbb{A}}, c_1^{\mathbb{A}}, \dots, c_n^{\mathbb{A}}),$$

where.

51

- A is a non-empty set, the *universe* of the strucure \mathbb{A} ,
- each $R_i^{\mathbb{A}}$ is a relation over A of the appropriate arity.
- each $f_i^{\mathbb{A}}$ is a function over A of the appropriate arity.
- each $c_i^{\mathbb{A}}$ is an element of A.

52

55

Formulas of *first-order logic* are formed from the signature σ and an infinite collection X of variables as follows.

$$terms - c, x, f(t_1, \ldots, t_a)$$

Formulas are defined by induction:

- atomic formulas $R(t_1, \ldots, t_n)$, $t_1 = t_2$
- Boolean operations $-\phi \wedge \psi, \phi \vee \psi, \neg \phi$
- first-order quantifiers $\exists x \phi, \forall x \phi$

Graphs

For example, take the signature (E), where E is a binary relation symbol.

Finite structures (V, E) of this signature are directed graphs.

Moreover, the class of such finite structures satisfying the sentence

$$\forall x \neg Exx \wedge \forall x \forall y (Exy \rightarrow Eyx)$$

can be identified with the class of (loop-free, undirected) graphs.

Queries

A formula ϕ with free variables among x_1, \ldots, x_n defines a map Qfrom structures to relations:

$$Q(\mathbb{A}) = \{ \mathbf{a} \mid \mathbb{A} \models \phi[\mathbf{a}] \}.$$

Any such map Q which associates to every structure A a (n-ary)relation on A, and is isomorphism invariant, is called a (n-ary)query.

Q is isomorphism invariant if, whenever $f: A \to B$ is an isomorphism between \mathbb{A} and \mathbb{B} , it is also an isomorphism between $(A, Q(\mathbb{A}))$ and $(B, Q(\mathbb{B}))$.

If n=0, we can regard the query as a map from structures to $\{0,1\}$ —a Boolean query.

Complexity

For a first-order sentence ϕ , we ask what is the *computational complexity* of the problem:

```
Input: a structure \mathbb{A}
Decide: if \mathbb{A} \models \phi
```

In other words, how complex can the collection of finite models of ϕ be?

In order to talk of the complexity of a class of finite structures, we need to fix some way of representing finite structures as strings.

56

We use an alphabet $\Sigma = \{0, 1, \#, -\}.$

For a structure $\mathbb{A} = (A, R_1, \dots, R_m, f_1, \dots, f_l)$, fix a linear order < on $A = \{a_1, \dots, a_n\}$.

 R_i (of arity k) is encoded by a string $[R_i]_{<}$ of 0s and 1s of length n^k .

 f_i is encoded by a string $[f_i]_{<}$ of 0s, 1s and -s of length $n^k \log n$.

$$[\mathbb{A}]_{<} = \underbrace{1 \cdots 1}_{n} \# [R_{1}]_{<} \# \cdots \# [R_{m}]_{<} \# [f_{1}]_{<} \# \cdots \# [f_{l}]_{<}$$

The exact string obtained depends on the choice of order.

Reading List for this Part

- 1. Papadimitriou. Chapters 8
- 2. Libkin Chapter 2.
- 3. Grädel et al. Sections 2.1–2.4 (Kolaitis).

Naïve Algorithm

The straightforward algorithm proceeds recursively on the structure of ϕ :

- Atomic formulas by direct lookup.
- Boolean connectives are easy.
- If $\phi \equiv \exists x \psi$ then for each $a \in \mathbb{A}$ check whether

$$(\mathbb{A}, c \mapsto a) \models \psi[c/x],$$

where c is a new constant symbol.

This runs in time $O(\ln m)$ and $O(m \log n)$ space, where m is the nesting depth of quantifiers in ϕ .

$$Mod(\phi) = \{ \mathbb{A} \mid \mathbb{A} \models \phi \}$$

is in *logarithmic space* and *polynomial time*.

Topics in Logic and Complexity
Part 4

60

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

63

FO satisfaction

Input: a structure A and a first-order sentence ϕ *Decide*: if $\mathbb{A} \models \phi$

is **PSPACE**-complete.

It follows from the $O(\ln m)$ and $O(m \log n)$ space algorithm that the problem is in PSPACE.

How do we prove completeness?

QBF

Given a quantified Boolean formula ϕ and an assignment of truth *values* to its free variables, we can ask whether ϕ evaluates to *true* or false.

In particular, if ϕ has no free variables, then it is equivalent to either *true* or *false*.

QBF is the following decision problem:

Input: a quantified Boolean formula ϕ with no free variables.

Decide: whether ϕ evaluates to *true*.

We define *quantified Boolean formulas* inductively as follows, from a set \mathcal{X} of propositional variables.

QBF

- A propositional constant T or F is a formula
- A propositional variable $X \in \mathcal{X}$ is a formula
- If ϕ and ψ are formulas then so are: $\neg \phi$, $\phi \wedge \psi$ and $\phi \vee \psi$
- If ϕ is a formula and X is a variable then $\exists X \phi$ and $\forall X \phi$ are formulas.

Say that an occurrence of a variable X is free in a formula ϕ if it is not within the scope of a quantifier of the form $\exists X$ or $\forall X$.

Complexity of QBF

Note that a Boolean formula ϕ without quantifiers and with variables X_1, \ldots, X_n is *satisfiable* if, and only if, the formula

$$\exists X_1 \cdots \exists X_n \ \phi$$
 is *true*.

Similarly, ϕ is *valid* if, and only if, the formula

$$\forall X_1 \cdots \forall X_n \ \phi$$
 is *true*.

Thus, $SAT \leq_L QBF$ and $VAL \leq_L QBF$ and so QBF is NP-hard and co-NP-hard.

In fact, QBF is PSPACE-complete.

To see that QBF is in PSPACE, consider the algorithm that maintains a 1-bit register X for each Boolean variable appearing in the input formula ϕ and evaluates ϕ in the natural fashion.

The crucial cases are:

- If ϕ is $\exists X \ \psi$ then return T if *either* $(X \leftarrow \mathsf{T} \ ;$ evaluate $\psi)$ *or* $(X \leftarrow \mathsf{F} \ ;$ evaluate $\psi)$ returns T.
- If ϕ is $\forall X \ \psi$ then return T if $both \ (X \leftarrow \mathsf{T} \ ; \ evaluate \ \psi)$ and $(X \leftarrow \mathsf{F} \ ; \ evaluate \ \psi)$ return T.

Constructing ϕ_x^M

67

We use tuples \mathbf{A}, \mathbf{B} of n^k Boolean variables each to encode configurations of M.

Inductively, we define a formula $\psi_i(\mathbf{A}, \mathbf{B})$ which is *true* if the configuration coded by \mathbf{B} is reachable from that coded by \mathbf{A} in at most 2^i steps.

$$\begin{array}{rcl} \psi_0(\mathbf{A},\mathbf{B}) & \equiv & \text{``}\mathbf{A} = \mathbf{B''} \lor \text{``}\mathbf{A} \to_M \mathbf{B''} \\ \\ \psi_{i+1}(\mathbf{A},\mathbf{B}) & \equiv & \exists \mathbf{Z} \forall \mathbf{X} \forall \mathbf{Y} \ [(\mathbf{X} = \mathbf{A} \land \mathbf{Y} = \mathbf{Z}) \lor (\mathbf{X} = \mathbf{Z} \land \mathbf{Y} = \mathbf{B}) \\ \\ & \Rightarrow \psi_i(\mathbf{X},\mathbf{Y})] \\ \\ \phi & \equiv & \psi_{n^k}(\mathbf{A},\mathbf{B}) \land \text{``}\mathbf{A} = \mathsf{start''} \land \text{``}\mathbf{B} = \mathsf{accept''} \end{array}$$

PSPACE-completeness

To prove that QBF is PSPACE-complete, we want to show:

Given a machine M with a polynomial space bound and an input x, we can define a quantified Boolean formula ϕ_x^M which evaluates to true if, and only if, M accepts x.

Moreover, ϕ_x^M can be computed from x in *polynomial time* (or even *logarithmic space*).

The number of distinct configurations of M on input x is bounded by 2^{n^k} for some k (n = |x|).

Each configuration can be represented by n^k bits.

Reducing QBF to FO satisfaction

We have seen that *FO satisfaction* is in PSPACE.

To show that it is PSPACE-complete, it suffices to show that $QBF \leq_L FO$ sat.

The reduction maps a quantified Boolean formula ϕ to a pair (\mathbb{A}, ϕ^*) where \mathbb{A} is a structure with two elements: 0 and 1 interpreting two constants f and t respectively.

 ϕ^* is obtained from ϕ by a simple inductive definition.

Expressive Power of FO

For any *fixed* sentence ϕ of first-order logic, the class of structures $\text{Mod}(\phi)$ is in L.

There are computationally easy properties that are not definable in first-order logic.

- There is no sentence ϕ of first-order logic such that $\mathbb{A} \models \phi$ if, and only if, |A| is even.
- There is no formula $\phi(E, x, y)$ that defines the transitive closure of a binary relation E.

We will see proofs of these facts later on.

Existential Second-Order Logic

ESO—existential second-order logic consists of those formulas of second-order logic of the form:

$$\exists X_1 \cdots \exists X_k \phi$$

where ϕ is a first-order formula.

Second-Order Logic

We extend first-order logic by a set of *relational variables*.

For each $m \in \mathbb{N}$ there is an infinite collection of variables $\mathcal{V}^m = \{V_1^m, V_2^m, \ldots\}$ of arity m.

Second-order logic extends first-order logic by allowing *second-order* quantifiers

$$\exists X \phi \quad \text{for } X \in \mathcal{V}^m$$

A structure \mathbb{A} satisfies $\exists X \phi$ if there is an m-ary relation R on the universe of \mathbb{A} such that $(\mathbb{A}, X \to R)$ satisfies ϕ .

Examples

Evennness

71

This formula is true in a structure if, and only if, the size of the domain is even.

$$\exists B \exists S \quad \forall x \exists y B(x,y) \land \forall x \forall y \forall z B(x,y) \land B(x,z) \to y = z$$
$$\forall x \forall y \forall z B(x,z) \land B(y,z) \to x = y$$
$$\forall x \forall y S(x) \land B(x,y) \to \neg S(y)$$
$$\forall x \forall y \neg S(x) \land B(x,y) \to S(y)$$

72

75

3-Colourability

Transitive Closure

This formula is true of a pair of elements a, b in a structure if, and only if, there is an E-path from a to b.

$$\exists P \quad \forall x \forall y \, P(x,y) \to E(x,y)$$

$$\exists x P(a,x) \land \exists x P(x,b) \land \neg \exists x P(x,a) \land \neg \exists x P(b,x)$$

$$\forall x \forall y (P(x,y) \to \forall z (P(x,z) \to y = z))$$

$$\forall x \forall y (P(x,y) \to \forall z (P(z,x) \to y = z))$$

$$\forall x ((x \neq a \land \exists y P(x,y)) \to \exists z P(z,x))$$

$$\forall x ((x \neq b \land \exists y P(y,x)) \to \exists z P(x,z))$$

The following formula is true in a graph (V, E) if, and only if, it is 3-colourable.

Examples

74

76

$$\exists R \exists B \exists G \quad \forall x (Rx \lor Bx \lor Gx) \land \\ \forall x (\neg (Rx \land Bx) \land \neg (Bx \land Gx) \land \neg (Rx \land Gx)) \land \\ \forall x \forall y (Exy \rightarrow (\neg (Rx \land Ry) \land \\ \neg (Bx \land By) \land \\ \neg (Gx \land Gy)))$$

Reading List for this Part

- 1. Papadimitriou. Chapter 5. Section 19.1.
- 2. Grädel et al. Section 3.1

Topics in Logic and Complexity
Part 5

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Fagin's Theorem

77

79

Theorem (Fagin)

A class \mathcal{C} of finite structures is definable by a sentence of *existential* second-order logic if, and only if, it is decidable by a nondeterministic machine running in polynomial time.

$$ESO = NP$$

One direction is easy: Given \mathbb{A} and $\exists P_1 \dots \exists P_m \phi$.

a nondeterministic machine can guess an interpretation for P_1, \ldots, P_m and then verify ϕ .

Order

The formula $\phi_{M,k}$ is built up as the *conjunction* of a number of formulas. The first of these simply says that < is a *linear order*

$$\begin{aligned} &\forall x (\neg x < x) \land \\ &\forall x \forall y (x < y \rightarrow \neg y < x) \land \\ &\forall x \forall y (x < y \lor y < x \lor x = y) \\ &\forall x \forall y \forall z (x < y \land y < z \rightarrow x < z) \end{aligned}$$

We can use a linear order on the elements of \mathbb{A} to define a lexicographic order on k-tuples.

Fagin's Theorem

Given a machine M and an integer k, there is an ESO sentence ϕ such that $\mathbb{A} \models \phi$ if, and only if, M accepts $[\mathbb{A}]_{<}$, for some order < in n^k steps.

We construct a *first-order* formula $\phi_{M,k}$ such that

 $(\mathbb{A}, <, \mathbf{X}) \models \phi_{M,k} \Leftrightarrow \mathbf{X} \text{ codes an accepting computation of } M$ of length at most n^k on input $[\mathbb{A}]_{<}$

So, $\mathbb{A} \models \exists < \exists \mathbf{X} \phi_{M,k}$ if, and only if, there is some order < on \mathbb{A} so that M accepts $[\mathbb{A}]_<$ in time n^k .

Ordering Tuples

If $\mathbf{x} = x_1, \dots, x_k$ and $\mathbf{y} = y_1, \dots, y_k$ are k-tuples of variables, we use $\mathbf{x} = \mathbf{y}$ as shorthand for the formula $\bigwedge_{1 \leq i \leq k} x_i = y_i$ and $\mathbf{x} < \mathbf{y}$ as shorthand for the formula

$$\bigvee_{1 \le i \le k} \left(\left(\bigwedge_{j < i} x_j = y_j \right) \land x_i < y_i \right)$$

We also write $\mathbf{y} = \mathbf{x} + 1$ for the following formula:

$$\mathbf{x} < \mathbf{y} \land \forall \mathbf{z} (\mathbf{x} < \mathbf{z} \rightarrow (\mathbf{y} = \mathbf{z} \lor \mathbf{y} < \mathbf{z}))$$

83

Constructing the Formula

Let $M = (K, \Sigma, s, \delta)$.

The tuple **X** of second-order variables appearing in $\phi_{M,k}$ contains the following:

 S_q a k-ary relation symbol for each $q \in K$

 T_{σ} a 2k-ary relation symbol for each $\sigma \in \Sigma$

H a 2k-ary relation symbol

Initial state is s and the head is initially at the beginning of the tape.

$$\forall \mathbf{x} ((\forall \mathbf{y} \ \mathbf{x} < \mathbf{y}) \rightarrow S_s(\mathbf{x}) \land H(\mathbf{x}, \mathbf{x}))$$

The head is never in two places at once

$$\forall \mathbf{x} \forall \mathbf{y} \big(H(\mathbf{x}, \mathbf{y}) \to (\forall \mathbf{z} (\mathbf{y} \neq \mathbf{z}) \to (\neg H(\mathbf{x}, \mathbf{z}))) \big)$$

The machine is never in two states at once

$$\forall \mathbf{x} \bigwedge_{q} (S_q(\mathbf{x}) \to \bigwedge_{q' \neq q} (\neg S_{q'}(\mathbf{x})))$$

Each tape cell contains only one symbol

$$\forall \mathbf{x} \forall \mathbf{y} \bigwedge_{\sigma} (T_{\sigma}(\mathbf{x}, \mathbf{y}) \to \bigwedge_{\sigma' \neq \sigma} (\neg T_{\sigma'}(\mathbf{x}, \mathbf{y})))$$

Intuitively, these relations are intended to capture the following:

- $S_q(\mathbf{x})$ the state of the machine at time \mathbf{x} is q.
- $T_{\sigma}(\mathbf{x}, \mathbf{y})$ at time x, the symbol at position j of the tape is σ .
- $H(\mathbf{x}, \mathbf{y})$ at time \mathbf{x} , the tape head is pointing at tape cell \mathbf{y} .

We now have to see how to write the formula $\phi_{M,k}$, so that it enforces these meanings.

Initial Tape Contents

The initial contents of the tape are $[A]_{<}$.

$$\forall \mathbf{x} \quad \mathbf{x} \leq n \to T_1(\mathbf{1}, \mathbf{x}) \wedge$$

$$\mathbf{x} \leq n^a \to (T_1(\mathbf{1}, \mathbf{x} + n + 1) \leftrightarrow R_1(\mathbf{x}|_a))$$

where,

$$\mathbf{x} < n^a \quad : \quad \bigwedge_{i \le (k-a)} x_i = 0$$

$$\forall \mathbf{x} \forall \mathbf{y} \forall \mathbf{z} (\mathbf{y} \neq \mathbf{z} \to (\bigwedge_{\sigma} (H(\mathbf{x}, \mathbf{y}) \land T_{\sigma}(\mathbf{x}, \mathbf{z}) \to T_{\sigma}(\mathbf{x} + 1, \mathbf{z})))$$

Each step is according to δ .

$$\forall \mathbf{x} \forall \mathbf{y} \bigwedge_{\sigma} \bigwedge_{q} (H(\mathbf{x}, \mathbf{y}) \wedge S_{q}(\mathbf{x}) \wedge T_{\sigma}(\mathbf{x}, \mathbf{y}))$$

$$\rightarrow \bigvee_{\Delta} (H(\mathbf{x} + 1, \mathbf{y}') \wedge S_{q'}(\mathbf{x} + 1) \wedge T_{\sigma'}(\mathbf{x} + 1, \mathbf{y}))$$

87

Recall that a language L is in NP if, and only if,

$$L = \{x \mid \exists y R(x, y)\}$$

NP

where R is polynomial-time decidable and polynomially-balanced.

Fagin's theorem tells us that polynomial-time decidability can, in some sense, be replaced by *first-order definability*.

where Δ is the set of all triples (q', σ', D) such that $((q, \sigma), (q', \sigma', D)) \in \delta$ and

$$\mathbf{y}' = \begin{cases} \mathbf{y} & \text{if } D = S \\ \mathbf{y} - 1 & \text{if } D = L \\ \mathbf{y} + 1 & \text{if } D = R \end{cases}$$

Finally, some accepting state is reached

$$\exists \mathbf{x} \ S_{\mathrm{acc}}(\mathbf{x})$$

co-NP

USO—*universal second-order logic* consists of those formulas of second-order logic of the form:

$$\forall X_1 \cdots \forall X_k \phi$$

where ϕ is a first-order formula.

A corollary of Fagin's theorem is that a class \mathcal{C} of finite structures is definable by a sentence of *existential second-order logic* if, and only if, it is decidable by a *nondeterministic machine* running in polynomial time.

$$USO = co-NP$$

$$\Sigma_1^1 = \mathsf{ESO}$$

$$\Pi^1_1 = \mathsf{USO}$$

 Σ_{n+1}^1 is the collection of properties definable by a sentence of the form: $\exists X_1 \cdots \exists X_k \phi$ where ϕ is a Π_n^1 formula.

 Π_{n+1}^1 is the collection of properties definable by a sentence of the form: $\forall X_1 \cdots \forall X_k \phi$ where ϕ is a Σ_n^1 formula.

Note: every formula of second-order logic is Σ_n^1 and Π_n^1 for some n.

Reading List for this Part

- 1. Grädel et al. Section 3.2
- 2. Libkin. Chapter 9.
- 3. Ebbinghaus and Flum. Chapter 7.

Polynomial Hierarchy

We have, for each n:

$$\Sigma_n^1 \cup \Pi_n^1 \subseteq \Sigma_{n+1}^1 \cap \Pi_{n+1}^1$$

The classes together form the *polynomial hierarchy* or PH.

$$NP \subseteq PH \subseteq PSPACE$$

$$P = NP$$
 if, and only if, $P = PH$

Topics in Logic and Complexity
Part 6

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Expressive Power of First-Order Logic

We noted that there are computationally easy properties that are not definable in first-order logic.

- There is no sentence ϕ of first-order logic such that $\mathbb{A} \models \phi$ if, and only if, |A| is even.
- There is no sentence ϕ that defines exactly the *connected* graphs.

How do we *prove* these facts?

Our next aim is to develop the tools that enable such proofs.

Formulas of Bounded Quantifier Rank

95

Note: For the rest of this lecture, we assume that our signature consists only of relation and constant symbols. That is, there are no function symbols of non-zero arity.

With this proviso, it is easily proved that in a finite vocabulary, for each q, there are (up to logical equivalence) only finitely many sentences ϕ with $\operatorname{qr}(\phi) \leq q$.

To be precise, we prove by induction on q that for all m, there are only finitely many formulas of quantifier rank q with at most m free variables.

Quantifier Rank

The *quantifier rank* of a formula ϕ , written $qr(\phi)$ is defined inductively as follows:

- 1. if ϕ is atomic then $qr(\phi) = 0$,
- 2. if $\phi = \neg \psi$ then $qr(\phi) = qr(\psi)$,
- 3. if $\phi = \psi_1 \vee \psi_2$ or $\phi = \psi_1 \wedge \psi_2$ then $qr(\phi) = max(qr(\psi_1), qr(\psi_2))$.
- 4. if $\phi = \exists x \psi$ or $\phi = \forall x \psi$ then $qr(\phi) = qr(\psi) + 1$

More informally, $qr(\phi)$ is the maximum depth of nesting of quantifiers inside ϕ .

Formulas of Bounded Quantifier Rank

If $qr(\phi) = 0$ then ϕ is a Boolean combination of atomic formulas. If it is has m variables, it is equivalent to a formula using the variables x_1, \ldots, x_m . There are finitely many formulas, up to logical equivalence.

Suppose $qr(\phi) = q + 1$ and the *free variables* of ϕ are among x_1, \ldots, x_m . Then ϕ is a Boolean combination of formulas of the form

$$\exists x_{m+1}\psi$$

where ψ is a formula with $qr(\psi) = q$ and free variables $x_1, \ldots, x_m, x_{m+1}$.

By induction hypothesis, there are only finitely many such formulas, and therefore finitely many Boolean combinations.

$$\mathbb{A} \models \phi$$
 if, and only if, $\mathbb{B} \models \phi$.

More generally, if **a** and **b** are m-tuples of elements from \mathbb{A} and \mathbb{B} respectively, then we write $(\mathbb{A}, \mathbf{a}) \equiv_q (\mathbb{B}, \mathbf{b})$ if for any formula ϕ with m free variables $\operatorname{qr}(\phi) \leq q$,

$$\mathbb{A} \models \phi[\mathbf{a}] \text{ if, and only if, } \mathbb{B} \models \phi[\mathbf{b}].$$

Ehrenfeucht-Fraïssé Games

99

The q-round Ehrenfeucht game on structures $\mathbb A$ and $\mathbb B$ proceeds as follows:

- There are two players called Spoiler and Duplicator.
- At the *i*th round, Spoiler chooses one of the structures (say \mathbb{B}) and one of the elements of that structure (say b_i).
- Duplicator must respond with an element of the other structure (say a_i).
- If, after q rounds, the map $a_i \mapsto b_i$ is a partial isomorphism, then Duplicator has won the game, otherwise Spoiler has won.

Partial Isomorphisms

A map f is a partial isomorphism between structures \mathbb{A} and \mathbb{B} , if

- the domain of $f = \{a_1, \ldots, a_l\} \subseteq A$, including the interpretation of all constants;
- the range of $f = \{b_1, \ldots, b_l\} \subseteq B$, including the interpretation of all constants; and
- f is an isomorphism between its domain and range.

Note that if f is a partial isomorphism taking a tuple \mathbf{a} to a tuple \mathbf{b} , then for any quantifier-free formula θ

```
\mathbb{A} \models \theta[\mathbf{a}] \text{ if, and only if, } \mathbb{B} \models \theta[\mathbf{b}].
```

100

Equivalence and Games

Write $\mathbb{A} \sim_q \mathbb{B}$ to denote the fact that *Duplicator* has a *winning* strategy in the g-round Ehrenfeucht game on \mathbb{A} and \mathbb{B} .

The relation \sim_q is, in fact, an equivalence relation.

```
Theorem (Fraïssé 1954; Ehrenfeucht 1961) \mathbb{A} \sim_q \mathbb{B} if, and only if, \mathbb{A} \equiv_q \mathbb{B}
```

While one direction $\mathbb{A} \sim_q \mathbb{B} \Rightarrow \mathbb{A} \equiv_q \mathbb{B}$ is true for an arbitrary vocabulary, the other direction assumes that the vocabulary is *finite* and has *no function symbols*.

Proof

To prove $\mathbb{A} \sim_q \mathbb{B} \Rightarrow \mathbb{A} \equiv_q \mathbb{B}$, it suffices to show that if there is a sentence ϕ with $\operatorname{qr}(\phi) \leq q$ such that

$$\mathbb{A} \models \phi \quad \text{and} \quad \mathbb{B} \not\models \phi$$

then *Spoiler* has a winning strategy in the q-round Ehrenfeucht game on \mathbb{A} and \mathbb{B} .

Assume that ϕ is in *negation normal form*, i.e. all negations are in front of atomic formulas.

103

Proof

When $q=0, \phi$ is a quantifier-free formula. Thus, if

$$\mathbb{A} \models \phi[\mathbf{a}] \quad \text{and} \quad \mathbb{B} \not\models \phi[\mathbf{b}]$$

there is an *atomic* formula θ that distinguishes the two tuples and therefore the map taking **a** to **b** is not a *partial isomorphism*.

When q = p + 1, there is a subformula θ of ϕ of the form $\exists x \psi$ or $\forall x \psi$ such that $\operatorname{qr}(\psi) \leq p$ and

$$\mathbb{A} \models \theta[\mathbf{a}] \text{ and } \mathbb{B} \not\models \theta[\mathbf{b}]$$

If $\theta = \exists x \psi$, *Spoiler* chooses a witness for x in A.

If $\theta = \forall x \psi$, $\mathbb{B} \models \exists x \neg \psi$ and *Spoiler* chooses a witness for x in \mathbb{B} .

Proof

We prove by induction on q the stronger statement that if ϕ is a formula with $\operatorname{qr}(\phi) \leq q$ and $\mathbf{a} = (a_1, \dots, a_m)$ and $\mathbf{b} = (b_1, \dots, b_m)$ are tuples of elements from $\mathbb A$ and $\mathbb B$ respectively such that

$$\mathbb{A} \models \phi[\mathbf{a}] \text{ and } \mathbb{B} \not\models \phi[\mathbf{b}]$$

then *Spoiler* has a winning strategy in the q-round Ehrenfeucht game which starts from a position in which a_1, \ldots, a_m and b_1, \ldots, b_m have *already been selected*.

104

Using Games

To show that a class of structures S is not definable in FO, we find for every q, a pair of structures \mathbb{A}_q and \mathbb{B}_q such that

- $\mathbb{A}_q \in S$, $\mathbb{B}_q \in \overline{S}$; and
- Duplicator wins a q-round game on \mathbb{A}_q and \mathbb{B}_q .

This shows that S is not closed under the relation \equiv_q for any q.

Fact:

S is definable by a first order sentence if, and only if, S is closed under the relation \equiv_q for some q.

The direction from right to left requires a *finite*, *function-free* vocabulary.

Evenness

Let A be a structure in the *empty vocabulary* with q elements and \mathbb{B} be a structure with q+1 elements.

Then, it is easy to see that $\mathbb{A} \sim_q \mathbb{B}$.

It follows that there is no first-order sentence that defines the structures with an even number of elements.

If $S \subseteq \mathbb{N}$ is a set such that

$$\{\mathbb{A} \mid |\mathbb{A}| \in S\}$$

is definable by a first-order sentence then S is finite or co-finite.

107

Reading List for this Part

- 1. Ebbinghaus and Flum. Chapter 2.
- 2. Libkin. Chapter 3.
- 3. Grädel et al. Section 2.3.

Linear Orders

Let L_n denote the structure in one binary relation \leq which is a linear order of n elements. Then $L_6 \not\equiv_3 L_7$ but $L_7 \equiv_3 L_8$.

In general, for $m, n \geq 2^p - 1$,

$$L_m \equiv_p L_n$$

Duplicator's strategy is to maintain the following condition after rrounds of the game:

for $1 \le i < j \le r$,

- either length $(a_i, a_j) = length(b_i, b_j)$
- or length (a_i, a_j) , length $(b_i, b_j) \ge 2^{p-r} 1$

Evenness is not first order definable, even on linear orders.

Topics in Logic and Complexity Part 7

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Connectivity

Consider the signature (E, <).

Consider structures G = (V, E, <) in which E is a graph relation and < is a linear order.

There is no first order sentence γ in this signature such that

 $G \models \gamma$ if, and only if, (V, E) is connected.

111

Proof

We obtain two *disjoint* cycles on linear orders of even length, and a *single* cycle on linear orders of odd length.

Proof

Suppose there was such a formula γ .

Let γ' be the formula obtained by replacing every occurrence of E(x, y) in γ by the following formula

$$y = x + 2 \lor$$
$$(x = \max \land y = \min + 1) \lor$$
$$(y = \min \land x = \max - 1).$$

Then, $\neg \gamma'$ defines evenness on linear orders!

Reduction

The above is, in fact, a *first-order definable reduction* from the problem of evenness of linear orders to the problem of connectivity of ordered graphs.

It follows from the above that there is no first order formula that can express the *transitive closure* query on graphs.

Any such formula would also work on ordered graphs.

Gaifman Graphs and Neighbourhoods

On a structure \mathbb{A} , define the binary relation:

 $E(a_1, a_2)$ if, and only if, there is some relation R and some tuple **a** containing both a_1 and a_2 with $R(\mathbf{a})$.

The graph GA = (A, E) is called the Gaifman graph of A.

dist(a, b) — the distance between a and b in the graph (A, E).

 $\operatorname{Nbd}_r^{\mathbb{A}}(a)$ — the substructure of \mathbb{A} given by the set:

$$\{b \mid dist(a,b) \leq r\}$$

Hanf Locality

Duplicator's strategy is to maintain the following condition:

After k moves, if a_1, \ldots, a_k and b_1, \ldots, b_k have been selected, then

$$\bigcup_{i} \operatorname{Nbd}_{3^{p-k}}^{\mathbb{A}}(a_i) \cong \bigcup_{i} \operatorname{Nbd}_{3^{p-k}}^{\mathbb{B}}(b_i)$$

If *Spoiler* plays on a within distance $2 \cdot 3^{p-k-1}$ of a previously chosen point, play according to the isomorphism, otherwise, find b such that

$$Nbd_{3^{p-k-1}}(a) \cong Nbd_{3^{p-k-1}}(b)$$

and b is not within distance $2 \cdot 3^{p-k-1}$ of a previously chosen point.

Such a *b* is guaranteed by \simeq_r .

Hanf Locality Theorem

We say \mathbb{A} and \mathbb{B} are *Hanf equivalent* with radius r ($\mathbb{A} \simeq_r \mathbb{B}$) if, for every $a \in A$ the two sets

$$\{a' \in A \mid \mathrm{Nbd}_r^{\mathbb{A}}(a) \cong \mathrm{Nbd}_r^{\mathbb{A}}(a')\}$$
 and $\{b \in B \mid \mathrm{Nbd}_r^{\mathbb{A}}(a) \cong \mathrm{Nbd}_r^{\mathbb{B}}(b)\}$

have the same cardinality

and, similarly for every $b \in B$.

Theorem (Hanf)

For every vocabulary σ and every p there is $r \leq 3^p$ such that for any σ -structures \mathbb{A} and \mathbb{B} : if $\mathbb{A} \simeq_r \mathbb{B}$ then $\mathbb{A} \equiv_p \mathbb{B}$.

In other words, if $r \geq 3^p$, the equivalence relation \simeq_r is a refinement of \equiv_p .

Uses of Hanf locality

The Hanf locality theorem immediately yields, as special cases, the proofs of undefinability of:

- connectivity;
- 2-colourability
- acyclicity
- planarity

A simple illustration can suffice.

Connectivity

To illustrate the undefinability of *connectivity* and 2-colourability, consider on the one hand the graph consisting of a single cycle of length 4r + 6 and, on the other hand, a graph consisting of two disjoint cycles of length 2r + 3.

119

Planarity

A figure illustrating that *planarity* is not first-order definable.

Acyclicity

A figure illustrating that *acyclicity* is not first-order definable.

120

Monadic Second Order Logic

MSO consists of those second order formulas in which all relational variables are *unary*.

That is, we allow quantification over sets of elements, but not other relations.

Any MSO formula can be put in prenex normal form with second-order quantifiers preceding first order ones.

 $\mathsf{Mon}.\Sigma^1_1$ — MSO formulas with only *existential* second-order quantifiers in prenex normal form.

 $\mathsf{Mon}.\Pi^1_1$ — MSO formulas with only *universal* second-order quantifiers in prenex normal form.

Undefinability in MSO

The method of games and *locality* can also be used to show *inexpressibility* results in MSO.

In particular,

There is a Mon. Σ_1^1 query that is not definable in Mon. Π_1^1 (Fagin 1974)

Note: A similar result without the *monadic* restriction would imply that $NP \neq \text{co-NP}$ and therefore that $P \neq NP$.

123

MSO Game

The m-round monadic Ehrenfeucht game on structures \mathbb{A} and \mathbb{B} proceeds as follows:

• At the *i*th round, *Spoiler* chooses one of the structures (say \mathbb{B}) and plays either a point move or a set move.

In a point move, he chooses one of the elements of the chosen structure (say b_i) – *Duplicator* must respond with an element of the other structure (say a_i).

In a set move, he chooses a subset of the universe of the chosen structure (say S_i) – Duplicator must respond with a subset of the other structure (say R_i).

Connectivity

Recall that *connectivity* of graphs can be defined by a Mon. Π_1^1 sentence.

$$\forall S(\exists x \, Sx \land (\forall x \forall y \, (Sx \land Exy) \rightarrow Sy)) \rightarrow \forall x \, Sx$$

and by a Σ_1^1 sentence (simply because it is in NP).

We now aim to show that *connectivity* is not definable by a $\mathsf{Mon}.\Sigma^1_1$ sentence.

MSO Game

• If, after m rounds, the map

$$a_i \mapsto b_i$$

is a partial isomorphism between

$$(\mathbb{A}, R_1, \dots, R_q)$$
 and $(\mathbb{B}, S_1, \dots, S_q)$

then *Duplicator* has won the game, otherwise *Spoiler* has won.

MSO Game

If we define the *quantifier rank* of an MSO formula by adding the following inductive rule to those for a formula of FO:

if
$$\phi = \exists S \psi$$
 or $\phi = \forall S \psi$ then $gr(\phi) = gr(\psi) + 1$

then, we have

Duplicator has a winning strategy in the m-round monadic Ehrenfeucht game on structures \mathbb{A} and \mathbb{B} if, and only if, for every sentence ϕ of MSO with $\operatorname{qr}(\phi) \leq m$

$$\mathbb{A} \models \phi$$
 if, and only if, $\mathbb{B} \models \phi$

127

Variation

To show that a Boolean query Q is not $\operatorname{\mathsf{Mon}}.\Sigma^1_1$ definable, find for each m and p

- $\mathbb{A} \in Q$; and
- $\mathbb{B} \notin P$; such that
- *Duplicator* wins the m, p move game on (\mathbb{A}, \mathbb{B}) .

Or,

- *Duplicator* chooses A.
- Spoiler colours \mathbb{A} (with 2^m colours).
- Duplicator chooses \mathbb{B} and colours it.
- They play a p-round Ehrenfeucht game.

Existential Game

The m, p-move existential game on (\mathbb{A}, \mathbb{B}) :

- First *Spoiler* makes m set moves on \mathbb{A} , and *Duplicator* replies on \mathbb{B} .
- This is followed by an Ehrenfeucht game with p point moves.

If $\underline{Duplicator}$ has a winning strategy, then for every $\mathsf{Mon}.\Sigma_1^1$ sentence:

$$\phi \equiv \exists R_1 \dots \exists R_m \psi$$

with $qr(\psi) = p$,

if $\mathbb{A} \models \phi$ then $\mathbb{B} \models \phi$

Application

Write C_n for the graph that is a simple *cycle* of length n.

For n sufficiently large, and any *colouring* of C_n , we can find an n' < n and a colouring of

 $C_{n'} \oplus C_{n-n'}$ the disjoint union of two cycles—one of length n', the other of length n-n'

So that the graphs C_n and $C_{n'} \oplus C_{n-n'}$ are \simeq_r equivalent.

Taking $n > (2r+1)^{2^m+2}$ suffices.

Reading List for this Part

- 1. Ebbinghaus and Flum. Section 2.4.
- 2. Libkin. Chapter 4.
- 3. Grädel et al. Section 2.3 and 2.5

131

Expressive Power of Logics

We have seen that the expressive power of *first-order logic*, in terms of computational complexity is *weak*.

Second-order logic allows us to express all properties in the polynomial hierarchy.

Are there interesting logics intermediate between these two?

We have seen one—monadic second-order logic.

We now examine another—*LFP*—the logic of *least fixed points*.

Topics in Logic and Complexity Part 8

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Inductive Definitions

LFP is a logic that formalises *inductive definitions*.

Unlike in second-order logic, we cannot quantify over *arbitrary* relations, but we can build new relations *inductively*.

Inductive definitions are pervasive in mathematics and computer science.

The *syntax* and *semantics* of various formal languages are typically defined inductively.

viz. the definitions of the syntax and semantics of first-order logic seen earlier.

Transitive Closure

The *transitive closure* of a binary relation E is the *smallest* relation T satisfying:

- $E \subseteq T$; and
- if $(x, y) \in T$ and $(y, z) \in E$ then $(x, z) \in T$.

This constitutes an *inductive definition* of T and, as we have already seen, there is no *first-order* formula that can define T in terms of E.

135

Least and Greatest Fixed Points

A fixed point of F is any set $S \subseteq A$ such that F(S) = S.

S is the *least fixed point* of F, if for all fixed points T of F, $S \subseteq T$.

S is the greatest fixed point of F, if for all fixed points T of F, $T \subseteq S$.

Monotone Operators

In order to introduce LFP, we briefly look at the theory of *monotone operators*, in our restricted context.

We write Pow(A) for the powerset of A.

An operator in A is a function

$$F: \mathsf{Pow}(A) \to \mathsf{Pow}(A)$$
.

F is monotone if

if $S \subseteq T$, then $F(S) \subseteq F(T)$.

Least and Greatest Fixed Points

For any monotone operator F, define the collection of its pre-fixed points as:

$$Pre = \{ S \subseteq A \mid F(S) \subseteq S \}.$$

Note: $A \in Pre$.

Taking

$$L = \bigcap Pre,$$

we can show that L is a fixed point of F.

Fixed Points

For any set $S \in Pre$,

 $L \subseteq S$ $F(L) \subseteq F(S)$ $F(L) \subseteq S$ $F(L) \subseteq L$ $F(F(L)) \subseteq F(L)$ $F(L) \in Pre$ $L \subseteq F(L)$

by definition of L.

by monotonicity of F.

by definition of Pre.

by definition of L.

by monotonicity of Fby definition of Pre.

by definition of L.

139

Iteration

Let A be a *finite* set and F be a *monotone* operator on A.

Define for $i \in \mathbb{N}$:

$$F^0 = \emptyset$$

$$F^{i+1} = F(F^i).$$

For each $i, F^i \subseteq F^{i+1}$ (proved by induction).

Least and Greatest Fixed Points

L is a *fixed point* of F.

Every fixed point P of F is in Pre, and therefore $L \subseteq P$.

Thus, L is the least fixed point of F

Similarly, the greatest fixed point is given by:

$$G = \bigcup \{ S \subseteq A \mid S \subseteq F(S) \}.$$

Iteration

Proof by induction.

$$\emptyset = F^0 \subseteq F^1$$
.

If $F^i \subseteq F^{i+1}$ then, by monotonicity

$$F(F^i) \subseteq F(F^{i+1})$$

and so $F^{i+1} \subset F^{i+2}$.

Fixed-Point by Iteration

If A has n elements, then

$$F^n = F^{n+1} = F^m$$
 for all $m > n$

Thus, F^n is a fixed point of F.

Let P be any fixed point of F. We can show induction on i, that $F^i \subseteq P$.

$$F^0 = \emptyset \subseteq P$$

If $F^i \subseteq P$ then

$$F^{i+1} = F(F^i) \subset F(P) = P.$$

Thus F^n is the *least fixed point* of F.

143

Positive Formulas

Definition

A formula ϕ is *positive* in the relation symbol R, if every occurrence of R in ϕ is within the scope of an even number of negation signs.

Lemma

For any structure \mathbb{A} not interpreting the symbol R, any formula ϕ which is positive in R, and any tuple \mathbf{b} of elements of A, the operator $F_{\phi,\mathbf{b}}: \mathsf{Pow}(A^k) \to \mathsf{Pow}(A^k)$ is monotone.

Defined Operators

Suppose ϕ contains a relation symbol R (of arity k) not interpreted in the structure \mathbb{A} and let \mathbf{x} be a tuple of k free variables of ϕ .

For any relation $P \subseteq A^k$, ϕ defines a new relation:

$$F_P = \{ \mathbf{a} \mid (\mathbb{A}, P) \models \phi[\mathbf{a}] \}.$$

The operator $F_{\phi}: \mathsf{Pow}(A^k) \to \mathsf{Pow}(A^k)$ defined by ϕ is given by the map

$$P \mapsto F_P$$
.

Or, $F_{\phi,\mathbf{b}}$ if we fix parameters **b**.

Reading List for this Part

- 1. Ebbinghaus and Flum. Section 8.1.
- 2. Libkin. Sections 10.1 and 10.2.
- 3. Grädel et al. Section 3.3.

Topics in Logic and Complexity Part 9

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

147

Syntax of LFP

- If t_1 and t_2 are terms, then $t_1 = t_2$ is a formula of LFP.
- If P is a predicate expression of LFP of arity k and t is a tuple of terms of length k, then P(t) is a formula of LFP.
- If ϕ and ψ are formulas of LFP, then so are $\phi \wedge \psi$, and $\neg \phi$.
- If ϕ is a formula of LFP and x is a variable then, $\exists x \phi$ is a formula of LFP.

Syntax of LFP

- Any relation symbol of arity k is a predicate expression of arity k;
- If R is a relation symbol of arity k, \mathbf{x} is a tuple of variables of length k and ϕ is a formula of LFP in which the symbol R only occurs positively, then

$$\mathbf{lfp}_{R} \mathbf{v} \phi$$

is a predicate expression of LFP of arity k.

All occurrences of R and variables in x in $lfp_{R,x}\phi$ are bound

Semantics of LFP

Let $\mathbb{A} = (A, \mathcal{I})$ be a structure with universe A, and an interpretation \mathcal{I} of a fixed vocabulary σ .

Let ϕ be a formula of LFP, and ι an interpretation in A of all the free variables (*first or second* order) of ϕ .

To each individual variable x, i associates an element of A, and to each k-ary relation symbol R in ϕ that is not in σ , i associates a relation $i(R) \subseteq A^k$.

i is extended to terms t in the usual way.

For constants
$$c$$
, $i(c) = \mathcal{I}(c)$.

$$i(f(t_1,\ldots,t_n)) = \mathcal{I}(f)(i(t_1),\ldots,i(t_n))$$

- If R is a relation symbol in σ , then $\iota(R) = \mathcal{I}(R)$.
- If P is a predicate expression of the form $\mathbf{lfp}_{R,\mathbf{x}}\psi$, then $\iota(P)$ is the relation that is the least fixed point of the monotone operator F on A^k defined by:

$$F(X) = \{ \mathbf{a} \in A^k \mid \mathbb{A} \models \phi[i\langle X/R, \mathbf{x}/\mathbf{a} \rangle],$$

where $i\langle X/R, \mathbf{x/a} \rangle$ denotes the interpretation if which is just like i except that i'(R) = X, and $i'(\mathbf{x}) = \mathbf{a}$.

151

149

Transitive Closure

The formula (with free variables u and v)

$$[\theta \quad \equiv \quad \mathbf{lfp}_{T,xy}(x = y \lor \exists z (E(x,z) \land T(z,y)))](u,v)$$

defines the *transitive closure* of the relation E.

Thus $\forall u \forall v \theta$ defines connectedness.

The expressive power of LFP properly extends that of first-order logic.

- If ϕ is of the form $t_1 = t_2$, then $\mathbb{A} \models \phi[i]$ if, $i(t_1) = i(t_2)$.
- If ϕ is of the form $R(t_1,\ldots,t_k)$, then $\mathbb{A} \models \phi[i]$ if,

$$(i(t_1),\ldots,i(t_k))\in i(R).$$

- If ϕ is of the form $\psi_1 \wedge \psi_2$, then $\mathbb{A} \models \phi[i]$ if, $\mathbb{A} \models \psi_1[i]$ and $\mathbb{A} \models \psi_2[\imath].$
- If ϕ is of the form $\neg \psi$ then, $\mathbb{A} \models \phi[i]$ if, $\mathbb{A} \not\models \psi[i]$.
- If ϕ is of the form $\exists x \psi$, then $\mathbb{A} \models \phi[i]$ if there is an $a \in A$ such that $\mathbb{A} \models \psi[\imath \langle x/a \rangle]$.

Greatest Fixed Points

If ϕ is a formula in which the relation symbol R occurs positively, then the greatest fixed point of the monotone operator F_{ϕ} defined by ϕ can be defined by the formula:

$$\neg [\mathbf{lfp}_{R,\mathbf{x}} \neg \phi(R/\neg R)](\mathbf{x})$$

where $\phi(R/\neg R)$ denotes the result of replacing all occurrences of R in ϕ by $\neg R$.

Exercise: Verify!.

150

156

Simultaneous Inductions

We are given two formulas $\phi_1(S, T, \mathbf{x})$ and $\phi_2(S, T, \mathbf{y})$, S is k-arv, T is l-arv.

The pair (ϕ_1, ϕ_2) can be seen as defining a map:

$$F: \mathsf{Pow}(A^k) \times \mathsf{Pow}(A^l) \to \mathsf{Pow}(A^k) \times \mathsf{Pow}(A^l)$$

If both formulas are positive in both S and T, then there is a least fixed point.

$$(P_1, P_2)$$

defined by *simultaneous induction* on A.

Proof

Assume $k \leq l$.

We define P, of arity l+2 such that:

$$(c, d, a_1, \dots, a_l) \in P$$
 if, and only if, either $c = d$ and $(a_1, \dots, a_k) \in P_1$ or $c \neq d$ and $(a_1, \dots, a_l) \in P_2$

For new variables x_1 and x_2 and a new l+2-ary symbol R, define ϕ'_1 and ϕ'_2 by replacing all occurrences of $S(t_1, \ldots, t_k)$ by:

$$x_1 = x_2 \land \exists y_{k+1}, \dots, \exists y_l R(x_1, x_2, t_1, \dots, t_k, y_{k+1}, \dots, y_l),$$

and replacing all occurrences of $T(t_1, \ldots, t_l)$ by:

$$x_1 \neq x_2 \wedge R(x_1, x_2, t_1, \dots, t_l).$$

Simultaneous Inductions

Theorem

For any pair of formulas $\phi_1(S,T)$ and $\phi_2(S,T)$ of LFP, in which the symbols S and T appear only positively, there are formulas ϕ_S and ϕ_T of LFP which, on any structure \mathbb{A} containing at least two elements, define the two relations that are defined on \mathbb{A} by ϕ_1 and ϕ_2 by simultaneous induction.

Proof

Define ϕ as

$$(x_1 = x_2 \wedge \phi_1') \vee (x_1 \neq x_2 \wedge \phi_2').$$

Then,

$$[\mathbf{lfp}_{R,x_1x_2\mathbf{v}}\phi](x,x,\mathbf{y})$$

defines P, so

$$\phi_S \equiv \exists x \exists y_{k+1}, \dots, \exists y_l [\mathbf{lfp}_{R,x_1x_2\mathbf{v}}\phi](x,x,\mathbf{v});$$

and

$$\phi_T \equiv \exists x_1 \exists x_2 (x_1 \neq x_2 \land [\mathbf{lfp}_{R_{T_1 T_2 \mathbf{y}}} \phi](x_1, x_2, \mathbf{y})).$$

Inflationary Fixed Points

We can associtate with any formula $\phi(R, \mathbf{x})$ (even one that is not monotone in R) an inflationary operator

$$IF_{\phi}(P) = P \cup F_{\phi}(P),$$

On any *finite* structure A the sequence

$$IF^0 = \emptyset$$

 $IF^{n+1} = IF_{\phi}(IF^n)$

converges to a limit IF^{∞} .

If F_{ϕ} is monotone, then this fixed point is, in fact, the least fixed point of F_{ϕ} .

159

IFP

If ϕ defines a monotone operator, the relation defined by

$$\mathbf{ifp}_{R} \mathbf{v} \phi$$

is the least fixed point of ϕ .

Thus, the *expressive power* of IFP is at least as great as that of LFP.

In fact, it is no greater:

Theorem (Gurevich-Shelah)

For every formula of ϕ of LFP, there is a predicate expression ψ of LFP such that, on any finite structure \mathbb{A} , ψ defines the same relation as $\mathbf{ifp}_{R,\mathbf{x}}\phi$.

IFP

We define the logic IFP with a syntax similar to LFP except, instead of the lfp rule, we have

If R is a relation symbol of arity k, \mathbf{x} is a tuple of variables of length k and ϕ is any formula of IFP, then

$$\mathbf{ifp}_{R,\mathbf{x}}\phi$$

is a predicate expression of IFP of arity k.

Semantics: we say that the predicate expression $\mathbf{ifp}_{R,\mathbf{x}}\phi$ denotes the relation that is the limit reached by the iteration of the inflationary operator IF_{ϕ} .

160

Ranks

Let $\phi(R, \mathbf{x})$ be a formula defining an operator F_{ϕ} and IF_{ϕ} be the associated *inflationary* operator given by

$$IF_{\phi}(S) = S \cup F_{\phi}(S)$$

In a structure \mathbb{A} , we define for each $\mathbf{a} \in A^k$ a $rank |\mathbf{a}|_{\phi}$.

The least n such that $\mathbf{a} \in IF^{\alpha}$, if there is such an n and ∞ otherwise.

Stage Comparison

We define the two *stage comparison* relations \prec and \prec by:

$$\mathbf{a} \leq \mathbf{b} \Leftrightarrow \mathbf{a} \in IF_{\phi}^{\infty} \wedge |\mathbf{a}|_{\phi} \leq |\mathbf{b}|_{\phi};$$

$$\mathbf{a} \prec \mathbf{b} \Leftrightarrow |\mathbf{a}|_{\phi} < |\mathbf{b}|_{\phi}$$
.

These two relations can themselves be defined in IFP.

163

Stage Comparison in LFP

In the inductive definition of \leq :

$$\mathbf{a} \leq \mathbf{b} \Leftrightarrow \mathbf{a} \in IF_{\phi}(\{\mathbf{a}' \mid \mathbf{b} \notin IF_{\phi}(\{\mathbf{b}' \mid \neg(\mathbf{a}' \leq_{\phi} \mathbf{b}')\})$$

we can replace the *negative* occurrences of $\mathbf{a} \leq \mathbf{b}$ with $\neg(\mathbf{b} \prec \mathbf{a})$, and similarly, in the definition of \prec replace negative occurrences of \prec with positive occurrences of \leq

as long as we can define the maximal rank

Stage Comparison

$$\mathbf{a} \leq \mathbf{b} \Leftrightarrow \mathbf{a} \in IF_{\phi}(\{\mathbf{a}' \mid \mathbf{a} \prec \mathbf{b}\}).$$

$$\mathbf{a} \prec \mathbf{b} \Leftrightarrow \mathbf{b} \notin IF_{\phi}(\{\mathbf{b}' \mid \neg(\mathbf{a} \leq \mathbf{b}')\}).$$

Together, these give:

$$\mathbf{a} \leq \mathbf{b} \Leftrightarrow \mathbf{a} \in IF_{\phi}(\{\mathbf{a}' \mid \mathbf{b} \notin IF_{\phi}(\{\mathbf{b}' \mid \neg(\mathbf{a}' \leq \mathbf{b}')\})).$$

This is an inductive definition of \prec .

A similar inductive definition is obtained from \prec .

Maximal Rank

There is a formula $\mu(\mathbf{y})$, which defines the set of tuples of maximal rank.

$$IF_{\phi}(\{\mathbf{b} \mid \mathbf{b} \leq \mathbf{a}\}) \subseteq IF_{\phi}(\{\mathbf{b} \mid \mathbf{b} \prec \mathbf{a}\}).$$

Replace the negative occurrence of $\mathbf{b} \leq \mathbf{a}$ by $\neg (\mathbf{a} \prec \mathbf{b})$.

Reading List for this Part

- 1. Immerman. Chapter 4.
- 2. Libkin. Sections 10.2 and 10.3.
- 3. Grädel et al. Secton 2.6.

167

Complexity of LFP

Any query definable in LFP is decidable by a deterministic machine in polynomial time.

To be precise, we can show, by induction on the structure of the formula $\phi(\mathbf{x})$ that for each formula ϕ there is a t such that

$$\mathbb{A}\models\phi[\mathbf{a}]$$

is decidable in time $O(n^t)$ where n is the number of elements of A.

We prove this by induction on the structure of the formula.

Topics in Logic and Complexity Part 10

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Complexity of LFP

- Atomic formulas by direct lookup $(O(n^a))$ time, where a is the maximum arity of any predicate symbol in σ).
- Boolean connectives are easy. If $\mathbb{A} \models \phi_1$ can be decided in time $O(n^{t_1})$ and $\mathbb{A} \models \phi_2$ in time $O(n^{t_2})$, then $\mathbb{A} \models \phi_1 \wedge \phi_2$ can be decided in time $O(n^{\max(t_1,t_2)})$
- If $\phi \equiv \exists x \psi$ then for each $a \in \mathbb{A}$ check whether

$$(\mathbb{A}, c \mapsto a) \models \psi[c/x],$$

where c is a new constant symbol. If $\mathbb{A} \models \psi$ can be decided in time $O(n^t)$, then $\mathbb{A} \models \phi$ can be decided in time $O(n^{t+1})$.

Complexity of LFP

```
Suppose \phi \equiv \mathbf{lfp}_{R,\mathbf{x}}\psi(\mathbf{t}) (R is l-ary)

To decide \mathbb{A} \models \phi[\mathbf{a}]:

R := \emptyset

for i := 1 to n^l do

R := R \cup F_{\psi}(R)

end

if \mathbf{a} \in R then accept else reject
```

171

Capturing P

For any ϕ of LFP, the language $\{[A] < |A| \models \phi\}$ is in P.

Suppose ρ is a signature that contains a *binary relation symbol* <, possibly along with other symbols.

Let \mathcal{O}_{ρ} denote those structures \mathbb{A} in which < is a *linear order* of the universe.

For any language $L \in P$, there is a sentence ϕ of LFP that defines the class of structures

$$\{\mathbb{A}\in\mathcal{O}_{
ho}\mid [\mathbb{A}]_{<^{\mathbb{A}}}\in L\}$$
 (Immerman; Vardi 1982)

Complexity of LFP

To compute $F_{\psi}(R)$

For every tuple $\mathbf{a} \in A^l$, determine whether $(\mathbb{A}, R) \models \psi[\mathbf{a}]$.

If deciding $(\mathbb{A}, R) \models \psi$ takes time $O(n^t)$, then each assignment to R inside the loop requires time $O(n^{l+t})$. The total time taken to execute the loop is then $O(n^{2l+t})$. Finally, the last line can be done by a search through R in time $O(n^l)$. The total running time is, therefore, $O(n^{2l+t})$.

The *space* required is $O(n^l)$.

Capturing P

Recall the proof of *Fagin's Theorem*, that ESO captures NP.

Given a machine M and an integer k, there is a *first-order* formula $\phi_{M,k}$ such that

$$\mathbb{A} \models \exists < \exists T_{\sigma_1} \cdots T_{\sigma_s} \exists S_{q_1} \cdots S_{q_m} \exists H \phi_{M,k}$$

if, and only if, M accepts $[A]_{<}$ in time n^k , for some order <.

If we fix the order < as part of the structure \mathbb{A} , we do not need the outermost quantifier.

Moreover, for a *deterministic* machine M, the relations $T_{\sigma_1} \dots T_{\sigma_s}, S_{q_1} \dots S_{q_m}, H$ can be defined *inductively*.

176

Capturing P

$$T_{a}(\mathbf{x}, \mathbf{y}) \Leftrightarrow$$

$$(\mathbf{x} = \mathbf{1} \wedge \operatorname{Init}_{a}(\mathbf{y})) \vee$$

$$\exists \mathbf{t} \exists \mathbf{h} \bigvee_{q} \quad (\mathbf{x} = \mathbf{t} + 1 \wedge S_{q}(\mathbf{t}, \mathbf{h}) \wedge$$

$$[(\mathbf{h} = \mathbf{y} \wedge \bigvee_{\{b,d,q'|\Delta(q,b,q',a,d)\}} T_{b}(\mathbf{t}, \mathbf{y}) \vee$$

$$\mathbf{h} \neq \mathbf{y} \wedge T_{a}(\mathbf{t}, \mathbf{y})]);$$

where $\operatorname{Init}_a(\mathbf{y})$ is the formula that defines the positions in which the symbol a appears in the input.

Unordered Structures

In the absence of an *order relation*, there are properties in P that are not definable in LFP.

There is no sentence of LFP which defines the structures with an *even* number of elements.

Capturing P

$$S_{q}(\mathbf{x}, \mathbf{y}) \Leftrightarrow$$

$$(\mathbf{x} = \mathbf{1} \wedge \mathbf{y} = \mathbf{1} \wedge q = q_{0}) \vee$$

$$\exists \mathbf{t} \exists \mathbf{h} \quad \bigvee_{\{a,b,q'|\Delta(q',a,q,b,R)\}} \quad (\mathbf{x} = \mathbf{t} + 1 \wedge S_{q'}(\mathbf{t}, \mathbf{h}) \wedge$$

$$T_{a}(\mathbf{t}, \mathbf{h}) \wedge \mathbf{y} = \mathbf{h} + 1))$$

$$\bigvee_{\{a,b,q'|\Delta(q',a,q,b,L)\}} \quad (\mathbf{x} = \mathbf{t} + 1 \wedge S'_{q}(\mathbf{t}, \mathbf{h}) \wedge$$

$$T_{a}(\mathbf{t}, \mathbf{h}) \wedge \mathbf{h} = \mathbf{y} + 1).$$

Evenness

Let ${\mathcal E}$ be the collection of all structures in the empty signature.

In order to prove that *evenness* is not defined by any LFP sentence, we show the following.

Lemma

For every LFP formula ϕ there is a first order formula ψ , such that for all structures \mathbb{A} in \mathcal{E} , $\mathbb{A} \models (\phi \leftrightarrow \psi)$.

Unordered Structures

Let $\psi(\mathbf{x}, \mathbf{y})$ be a first order formula.

 $\mathbf{lfp}_{R,\mathbf{x}}\psi$ defines the relation

$$F_{\psi,\mathbf{b}}^{\infty} = \bigcup_{i \in \mathbb{N}} F_{\psi,\mathbf{b}}^{i}$$

for a fixed interpretation of the variables \mathbf{y} by the tuple of parameters \mathbf{b} .

For each i, there is a first order formula ψ^i such that on any structure \mathbb{A} ,

$$F_{\psi,\mathbf{b}}^i = \{\mathbf{a} \mid \mathbb{A} \models \psi^i[\mathbf{a}, \mathbf{b}]\}.$$

Let **b** be an l-tuple, and **a** and **c** two k-tuples in a structure \mathbb{A} such that

there is an automorphism \imath of $\mathbb A$ (i.e. an isomorphism from $\mathbb A$ to itself) such that

- $i(\mathbf{b}) = \mathbf{b}$
- $i(\mathbf{a}) = \mathbf{c}$

Then,

$$\mathbf{a} \in F_{\psi, \mathbf{b}}^i$$
 if, and only if, $\mathbf{c} \in F_{\psi, \mathbf{b}}^i$.

Defining the Stages

These formulas are obtained by *induction*.

 ψ^1 is obtained from ψ by replacing all occurrences of subformulas of the form $R(\mathbf{t})$ by $t \neq t$.

 ψ^{i+1} is obtained by replacing in ψ , all subformulas of the form $R(\mathbf{t})$ by $\psi^{i}(\mathbf{t}, \mathbf{y})$

Bounding the Induction

This defines an equivalence relation $\mathbf{a} \sim_{\mathbf{b}} \mathbf{c}$.

If there are p distinct equivalence classes, then

$$F_{\psi,\mathbf{b}}^{\infty} = F_{\psi,\mathbf{b}}^{p}$$

In \mathcal{E} there is a uniform bound p, that does not depend on the size of the structure.

Reading List for this Part

- 1. Libkin. Chapter 10.
- 2. Grädel et al. Section 3.3.