Topics in Logic and Complexity

 Part 1Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Computational Complexity

Complexity is usually defined in terms of running time or space asymptotically required by an algorithm. E.g.

- Merge Sort runs in time $O(n \log n)$.
- Any sorting algorithm that can sort an arbitrary list of n numbers requires time $\Omega(n \log n)$.

Complexity theory is concerned with the hardness of problems rather than specific algorithms.

We will mostly be concerned with broad classification of complexity: logarithmic vs. polynomial vs. exponential.

What is This Course About?

Complexity Theory is the study of what makes some algorithmic problems inherently difficult to solve.

Difficult in the sense that there is no efficient algorithm.

Mathematical Logic is the study of formal mathematical reasoning.
It gives a mathematical account of meta-mathematical notions such as structure, language and proof.

In this course we will see how logic can be used to study complexity theory. In particular, we will look at how complexity relates to definability.

Graph Properties

For simplicity, we often focus on decision problems.

As an example, consider the following three decision problems on graphs.

1. Given a graph $G=(V, E)$ does it contain a triangle?
2. Given a directed graph $G=(V, E)$ and two of its vertices $s, t \in V$, does G contain a path from s to t ?
3. Given a graph $G=(V, E)$ is it 3-colourable? That is, is there a function $\chi: V \rightarrow\{1,2,3\}$ so that whenever $(u, v) \in E, \chi(u) \neq \chi(v)$.

Graph Properties

1. Checking if G contains a triangle can be solved in polynomial time and logarithmic space.
2. Checking if G contains a path from s to t can be done in polynomial time.

Can it be done in logarithmic space?
Unlikely. It is NL-complete.
3. Checking if G is 3 -colourable can be done in exponential time and polynomial space.
Can it be done in polynomial time?
Unlikely. It is NP-complete.

Second-Order Quantifiers

3-Colourability and reachability can be defined with quantification over sets of vertices.

$$
\begin{aligned}
& \exists R \subseteq V \exists B \subseteq V \exists G \subseteq V \\
& \forall x(R x \vee B x \vee G x) \wedge \\
& \forall x(\neg(R x \wedge B x) \wedge \neg(B x \wedge G x) \wedge \neg(R x \wedge G x)) \wedge \\
& \forall x \forall y(E x y \rightarrow(\neg(R x \wedge R y) \wedge \\
& \neg(B x \wedge B y) \wedge \\
&\neg(G x \wedge G y)))
\end{aligned}
$$

$$
\forall S \subseteq V(s \in S \wedge \forall x \forall y((x \in S \wedge E(x, y)) \rightarrow y \in S) \rightarrow t \in S)
$$

Logical Definability

In what kind of formal language can these decision problems be specified or defined?

The graph $G=(V, E)$ contains a triangle.
$\exists x \in V \exists y \in V \exists z \in V(x \neq y \wedge y \neq z \wedge x \neq z \wedge E(x, y) \wedge E(x, z) \wedge E(y, z))$

The other two properties are provably not definable with only first-order quantification over vertices.

Course Outline

This course is concerned with the questions of (1) how definability relates to computational complexity and (2) how to analyse definability.

1. Complexity Theory-a review of the major complexity classes and their interrelationships (3L).
2. First-order and second-order logic-their expressive power and computational complexity (3L).
3. Lower bounds on expressive power - the use of games and locality (3L).
4. Fixed-point logics and descriptive complexity (3L)
5. Finite-variable logics; Random structures; (4L)

Useful Information

Some useful books:

- C.H. Papadimitriou. Computational Complexity. Addison-Wesley. 1994.
- H.-D. Ebbinghaus and J. Flum. Finite Model Theory (2nd ed.) 1999.
- N. Immerman. Descriptive Complexity. Springer. 1999.
- L. Libkin. Elements of Finite Model Theory. Springer. 2004.
- E. Grädel et al. Finite Model Theory and its Applications. Springer. 2007.

Course website: http://www.cl.cam.ac.uk/teaching/1011/L15/

Turing Machines

For our purposes, a Turing Machine consists of:

- K - a finite set of states;
- Σ - a finite set of symbols, including \sqcup.
- $s \in K$ - an initial state;
- $\delta:(K \times \Sigma) \rightarrow(K \cup\{a, r\}) \times \Sigma \times\{L, R, S\}$

A transition function that specifies, for each state and symbol a next state (or accept acc or reject rej), a symbol to overwrite the current symbol, and a direction for the tape head to move (L - left, R - right, or S - stationary)

Decision Problems and Algorithms

Formally, a decision problem is a set of strings $L \subseteq \Sigma^{*}$ over a finite alphabet Σ.

The problem is decidable if there is an algorithm which given any input $x \in \Sigma^{*}$ will determine whether $x \in L$ or not.

The notion of an algorithm is formally defined by a machine model: A Turing Machine; Random Access Machine or even a Java program.

The choice of machine model doesn't affect what is or is not decidable.

Similarly, we say a function $f: \Sigma^{*} \rightarrow \Delta^{*}$ is computable if there is an algorithm which takes input $x \in \Sigma^{*}$ and gives output $f(x)$.

Configurations

A complete description of the configuration of a machine can be given if we know what state it is in, what are the contents of its tape, and what is the position of its head. This can be summed up in a simple triple:

Definition

A configuration is a triple (q, w, u), where $q \in K$ and $w, u \in \Sigma^{\star}$

The intuition is that (q, w, u) represents a machine in state q with the string $w u$ on its tape, and the head pointing at the last symbol in w.

The configuration of a machine completely determines the future behaviour of the machine.

Computations

Given a machine $M=(K, \Sigma, s, \delta)$ we say that a configuration (q, w, u) yields in one step $\left(q^{\prime}, w^{\prime}, u^{\prime}\right)$, written

$$
(q, w, u) \rightarrow_{M}\left(q^{\prime}, w^{\prime}, u^{\prime}\right)
$$

if

- $w=v a ;$
- $\delta(q, a)=\left(q^{\prime}, b, D\right)$; and
- either $D=L$ and $w^{\prime}=v u^{\prime}=b u$
or $D=S$ and $w^{\prime}=v b$ and $u^{\prime}=u$
or $D=R$ and $w^{\prime}=v b c$ and $u^{\prime}=x$, where $u=c x$. If u is empty, then $w^{\prime}=v b \sqcup$ and u^{\prime} is empty.

Complexity

For any function $f: \mathbb{N} \rightarrow \mathbb{N}$, we say that a language L is in $\operatorname{TIME}(f(n))$ if there is a machine $M=(K, \Sigma, s, \delta)$, such that:

- $L=L(M)$; and
- The running time of M is $O(f(n))$.

Similarly, we define $\operatorname{SPACE}(f(n))$ to be the languages accepted by a machine which uses $O(f(n))$ tape cells on inputs of length n.

In defining space complexity, we assume a machine M, which has a read-only input tape, and a separate work tape. We only count cells on the work tape towards the complexity.

Computations

The relation \rightarrow_{M}^{\star} is the reflexive and transitive closure of \rightarrow_{M}.
A sequence of configurations c_{1}, \ldots, c_{n}, where for each i,
$c_{i} \rightarrow_{M} c_{i+1}$, is called a computation of M.
The language $L(M) \subseteq \Sigma^{\star}$ accepted by the machine M is the set of strings

$$
\left\{x \mid(s, \triangleright, x) \rightarrow_{M}^{\star}(\operatorname{acc}, w, u) \text { for some } w \text { and } u\right\}
$$

A machine M is said to halt on input x if for some w and u, either

 $(s, \triangleright, x) \rightarrow{ }_{M}^{\star}(\operatorname{acc}, w, u)$ or $(s, \triangleright, x) \rightarrow{ }_{M}^{\star}(\mathrm{rej}, w, u)$
Nondeterminism

If, in the definition of a Turing machine, we relax the condition on δ being a function and instead allow an arbitrary relation, we obtain a nondeterministic Turing machine.

$$
\delta \subseteq(K \times \Sigma) \times(K \cup\{a, r\} \times \Sigma \times\{R, L, S\})
$$

The yields relation \rightarrow_{M} is also no longer functional.

We still define the language accepted by M by:

$$
L(M)=\left\{x \mid(s, \triangleright, x) \rightarrow_{M}^{\star}(\operatorname{acc}, w, u) \text { for some } w \text { and } u\right\}
$$

though, for some x, there may be computations leading to accepting as well as rejecting states.

Nondeterministic Complexity

For any function $f: \mathbb{N} \rightarrow \mathbb{N}$, we say that a language L is in $\operatorname{NTIME}(f(n))$ if there is a nondeterministic machine
$M=(K, \Sigma, s, \delta)$, such that:

- $L=L(M)$; and
- The running time of M is $O(f(n))$.

The last statement means that for each $x \in L(M)$, there is a computation of M that accepts x and whose length is bounded by $O(f(|x|))$.

Similarly, we define $\operatorname{NSPACE}(f(n))$ to be the languages accepted by a nondeterminstic machine which uses $O(f(n))$ tape cells on inputs of length n.

As before, in reckoning space complexity, we only count work space.

Complexity Classes

A complexity class is a collection of languages determined by three things:

- A model of computation (such as a deterministic Turing machine, or a nondeterministic TM, or a parallel Random Access Machine).
- A resource (such as time, space or number of processors).
- A set of bounds. This is a set of functions that are used to bound the amount of resource we can use.

Computation Trees

With a nondeterministic machine, each configuration gives rise to a tree of successive configurations.

$$
(\mathrm{acc}, \ldots)
$$

Polynomial Bounds

By making the bounds broad enough, we can make our definitions fairly independent of the model of computation.

The collection of languages recognised in polynomial time is the same whether we consider Turing machines, register machines, or any other deterministic model of computation.
The collection of languages recognised in linear time, on the other hand, is different on a one-tape and a two-tape Turing machine.

We can say that being recognisable in polynomial time is a property of the language, while being recognisable in linear time is sensitive to the model of computation.

Reading List for this Part

1. Papadimitriou. Chapters 1 and 2.
2. Grädel et al. Chapter 1 (Weinstein).

Topics in Logic and Complexity
Part 2

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Polynomial Time Computation

$$
\mathrm{P}=\bigcup_{k=1}^{\infty} \operatorname{TIME}\left(n^{k}\right)
$$

The class of languages decidable in polynomial time.
The complexity class P plays an important role in complexity theory.

- It is robust, as explained.
- It serves as our formal definition of what is feasibly computable

Nondeterministic Polynomial Time

$$
\mathrm{NP}=\bigcup_{k=1}^{\infty} \operatorname{NTIME}\left(n^{k}\right)
$$

That is, NP is the class of languages accepted by a nondeterministic machine running in polynomial time.

Since a deterministic machine is just a nondeterministic machine in which the transition relation is functional, $\mathrm{P} \subseteq \mathrm{NP}$.

Succinct Certificates

The complexity class NP can be characterised as the collection of languages of the form:

$$
L=\{x \mid \exists y R(x, y)\}
$$

Where R is a relation on strings satisfying two key conditions

1. R is decidable in polynomial time.
2. R is polynomially balanced. That is, there is a polynomial p such that if $R(x, y)$ and the length of x is n, then the length of y is no more than $p(n)$.

Equivalence of Definitions

For y a string over the alphabet $\{1, \ldots, k\}$, we define the relation $R(x, y)$ by:

- $|y| \leq p(|x|)$; and
- the computation of M on input x which, at step i takes the " $y[i]$ th transition" is an accepting computation.

Then, $L(M)=\{x \mid \exists y R(x, y)\}$

Equivalence of Definitions

If $L=\{x \mid \exists y R(x, y)\}$ we can define a nondeterministic machine M that accepts L.

The machine first uses nondeterministic branching to guess a value for y, and then checks whether $R(x, y)$ holds.

In the other direction, suppose we are given a nondeterministic machine M which runs in time $p(n)$.
Suppose that for each $(q, \sigma) \in K \times \Sigma$ (i.e. each state, symbol pair) there are at most k elements in $\delta(q, \sigma)$.

Space Complexity Classes

$\mathrm{L}=\operatorname{SPACE}(\log n)$
The class of languages decidable in logarithmic space.
$\mathrm{NL}=\operatorname{NSPACE}(\log n)$
The class of languages decidable by a nondeterministic machine in logarithmic space.

$\operatorname{PSPACE}=\bigcup_{k=1}^{\infty} \operatorname{SPACE}\left(n^{k}\right)$

The class of languages decidable in polynomial space.
$\operatorname{NPSPACE}=\bigcup_{k=1}^{\infty} \operatorname{NSPACE}\left(n^{k}\right)$

Inclusions between Classes

We have the following inclusions:

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{NPSPACE} \subseteq \mathrm{EXP}
$$

where EXP $=\bigcup_{k=1}^{\infty} \operatorname{TIME}\left(2^{n^{k}}\right)$

Of these, the following are direct from the definitions:

$$
\begin{aligned}
\mathrm{L} & \subseteq \mathrm{NL} \\
\mathrm{P} & \subseteq \mathrm{NP} \\
\mathrm{PSPACE} & \subseteq \mathrm{NPSPACE}
\end{aligned}
$$

$$
\mathbf{N L} \subseteq \mathbf{P}
$$

Given a nondeterministic machine M that works with work space bounded by $s(n)$ and an input x of length n, there is some constant c such that
the total number of possible configurations of M within space bounds $s(n)$ is bounded by $n \cdot c^{s(n)}$.

Define the configuration graph of M, x to be the graph whose nodes are the possible configurations, and there is an edge from i to j if, and only if, $i \rightarrow_{M} j$.

To simulate a nondeterministic machine M running in time $t(n)$ by a deterministic one, it suffices to carry out a depth-first search of the computation tree.

We keep a counter to cut off branches that exceed $t(n)$ steps.
The space required is:

- a counter to count up to $t(n)$; and
- a stack of configurations, each of size at most $O(t(n))$.

The depth of the stack is at most $t(n)$.
Thus, if t is a polynomial, the total space required is polynomial.

Reachability in the Configuration Graph

M accepts x if, and only if, some accepting configuration is reachable from the starting configuration in the configuration graph of M, x.

Using the $O\left(n^{2}\right)$ algorithm for Reachability, we get that M can be simulated by a deterministic machine operating in time

$$
c^{\prime}\left(n c^{s(n)}\right)^{2} \sim c^{\prime} c^{2(\log n+s(n))} \sim d^{(\log n+s(n))}
$$

for some constant d.

When $s(n)=O(\log n)$, this is polynomial and so $\mathrm{NL} \subseteq \mathrm{P}$.
When $s(n)$ is polynomial this is exponential in n and so NPSPACE \subseteq EXP.

Nondeterministic Space Classes

If Reachability were solvable by a deterministic machine with logarithmic space, then

$$
\mathrm{L}=\mathrm{NL}
$$

In fact, Reachability is solvable by a deterministic machine with space $O\left((\log n)^{2}\right)$.
This implies

$$
\operatorname{NSPACE}(s(n)) \subseteq \operatorname{SPACE}\left(\left(s(n)^{2}\right)\right)
$$

In particular PSPACE $=$ NPSPACE.

Inclusions between Classes

This leaves us with the following:

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXP}
$$

Hierarchy Theorems proved by diagonalization can show that:

$$
L \neq \text { PSPACE } \quad N L \neq \text { NPSPACE } \quad P \neq E X P
$$

For other inclusions above, it remains an open question whether they are strict.

Reachability in $O\left((\log n)^{2}\right)$

$O\left((\log n)^{2}\right)$ space Reachability algorithm:
$\operatorname{Path}(a, b, i)$
if $i=1$ and (a, b) is not an edge reject
else if (a, b) is an edge or $a=b$ accept
else, for each node x, check:

1. is there a path $a-x$ of length $i / 2$; and
2. is there a path $x-b$ of length $i / 2$?
if such an x is found, then accept, else reject.
The maximum depth of recursion is $\log n$, and the number of bits of information kept at each stage is $3 \log n$.

Complement Classes

If we interchange accepting and rejecting states in a deterministic machine that accepts the language L, we get one that accepts \bar{L}.

$$
\text { If a language } L \in \mathrm{P} \text {, then also } \bar{L} \in \mathrm{P} \text {. }
$$

Complexity classes defined in terms of nondeterministic machine models are not necessarily closed under complementation of languages.

Define,
co-NP - the languages whose complements are in NP.
co-NL - the languages whose complements are in NL.

Relationships

$\mathrm{P} \subseteq \mathrm{NP} \cap$ co-NP and any of the situations is consistent with our present state of knowledge:

- $P=N P=c o-N P$
- $P=N P \cap$ co-NP $\neq N P \neq$ co-NP
- $P \neq N P \cap$ co- $N P=N P=$ co-NP
- $P \neq N P \cap$ co-NP $\neq N P \neq$ co-NP

It follows from the fact that PSPACE $=$ NPSPACE that NPSPACE is closed under complementation.

Also, Immerman and Szelepcsényi showed that NL = co-NL.

Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L_{1} is polynomial time reducible to L_{2}.

$$
L_{1} \leq_{P} L_{2}
$$

If f is also computable in $\operatorname{SPACE}(\log n)$, we write

$$
L_{1} \leq_{L} L_{2}
$$

Reductions

Given two languages $L_{1} \subseteq \Sigma_{1}^{\star}$, and $L_{2} \subseteq \Sigma_{2}^{\star}$,

A reduction of L_{1} to L_{2} is a computable function

$$
f: \Sigma_{1}^{\star} \rightarrow \Sigma_{2}^{\star}
$$

such that for every string $x \in \Sigma_{1}^{\star}$,

$$
f(x) \in L_{2} \text { if, and only if, } x \in L_{1}
$$

Reductions 2

If $L_{1} \leq L_{2}$ we understand that L_{1} is no more difficult to solve than L_{2}.

That is to say, for any of the complexity classes \mathcal{C} we consider,

$$
\text { If } L_{1} \leq L_{2} \text { and } L_{2} \in \mathcal{C} \text {, then } L_{1} \in \mathcal{C}
$$

We can get an algorithm to decide L_{1} by first computing f, and then using the \mathcal{C}-algorithm for L_{2}.

Provided that \mathcal{C} is closed under such reductions.

Completeness

The usefulness of reductions is that they allow us to establish the relative complexity of problems, even when we cannot prove absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are maximally difficult.

For any complexity class \mathcal{C}, a language L is said to be \mathcal{C}-hard if for every language $A \in \mathcal{C}, A \leq L$.

A language L is \mathcal{C}-complete if it is in \mathcal{C} and it is \mathcal{C}-hard.

Complete Problems

Examples of complete problems for various complexity classes.
NL Reachability

P

Game, Circuit Value Problem
NP Satisfiability of Boolean Formulas, Graph 3-Colourability, Hamiltonian Cycle
co-NP
Validity of Boolean Formulas, Non 3-colourability
PSPACE
Geography, The game of HEX

Reading List for this Part

1. Papadimitriou. Chapters 7,8 and 16 .
2. Immerman Chapter 2.

Topics in Logic and Complexity Part 3

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

P-complete Problems

Game

Input: A directed graph $G=(V, E)$ with a partition
$V=V_{1} \cup V_{2}$ of the vertices and two distinguished vertices $s, t \in V$.

Decide: whether Player 1 can force a token from s to t in the game where when the token is on $v \in V_{1}$, Player 1 moves it along an edge leaving v and when it is on $v \in V_{2}$, Player 2 moves it along an edge leaving v.

Circuit Value Problem

A Circuit is a directed acyclic graph $G=(V, E)$ where each node has in-degree 0,1 or 2 and there is exactly one vertex t with no outgoing edges, along with a labelling which assigns:

- to each node of indegree 0 a value of 0 or 1
- to each node of indegree 1 a label \neg
- to each node of indegree 2 a label \wedge or \vee

The problem CVP is, given a circuit, decide if the target node t evaluates to 1 .

NP-complete Problems

SAT

Input: A Boolean formula ϕ

Decide: if there is an assignment of truth values to the variables of ϕ that makes ϕ true.

Hamiltonicity

Input: A graph $G=(V, E)$
Decide: if there is a cycle in G that visits every vertex exactly once.

co-NP-complete Problems

VAL

Input: A Boolean formula ϕ
Decide: if every assignment of truth values to the variables of ϕ makes ϕ true.

Non-3-colourability
Input: A graph $G=(V, E)$
Decide: if there is no function $\chi: V \rightarrow\{1,2,3\}$ such that the two endpoints of every edge are differently coloured.

PSPACE-complete Problems

Geography is very much like Game but now players are not allowed to visit a vertex that has been previously visitied.
$H E X$ is a game played by two players on a graph $G=(V, E)$ with a source and target $s, t \in V$.
The two players take turns selecting vertices from V-neither player can choose a vertex that has been previously selected. Player 1 wins if, at any point, the vertices she has selected include a path from s to t. Player 2 wins if all vertices have been selected and no such path is formed.
The problem is to decide which player has a winning strategy.

Signature and Structure

In general a signature (or vocabulary) σ is a finite sequence of relation, function and constant symbols:

$$
\sigma=\left(R_{1}, \ldots, R_{m}, f_{1}, \ldots, f_{n}, c_{1}, \ldots, c_{p}\right)
$$

where, associated with each relation and function symbol is an arity.

Descriptive Complexity

Descriptive Complexity provides an alternative perspective on Computational Complexity.

Computational Complexity

- Measure use of resources (space, time, etc.) on a machine model of computation;
- Complexity of a language - i.e. a set of strings.

Descriptive Complexity

- Complexity of a class of structures-e.g. a collection of graphs.
- Measure the complexity of describing the collection in a formal logic, using resources such as variables, quantifiers, higher-order operators, etc.
There is a fascinating interplay between the views.

Structure

A structure \mathbb{A} over the signature σ is a tuple:

$$
\mathbb{A}=\left(A, R_{1}^{\mathbb{A}}, \ldots, R_{m}^{\mathbb{A}}, f_{1}^{\mathbb{A}}, \ldots, f_{n}^{\mathbb{A}}, c_{1}^{\mathbb{A}}, \ldots, c_{n}^{\mathbb{A}}\right)
$$

where,

- A is a non-empty set, the universe of the strucure \mathbb{A},
- each $R_{i}^{\mathbb{A}}$ is a relation over A of the appropriate arity.
- each $f_{i}^{\mathbb{A}}$ is a function over A of the appropriate arity.
- each $c_{i}^{\mathbb{A}}$ is an element of A.

First-order Logic

Formulas of first-order logic are formed from the signature σ and an infinite collection X of variables as follows.

$$
\text { terms }-c, x, f\left(t_{1}, \ldots, t_{a}\right)
$$

Formulas are defined by induction:

- atomic formulas - $R\left(t_{1}, \ldots, t_{a}\right), t_{1}=t_{2}$
- Boolean operations - $\phi \wedge \psi, \phi \vee \psi, \neg \phi$
- first-order quantifiers - $\exists x \phi, \forall x \phi$

Graphs

For example, take the signature (E), where E is a binary relation symbol.

Finite structures (V, E) of this signature are directed graphs.

Moreover, the class of such finite structures satisfying the sentence

$$
\forall x \neg E x x \wedge \forall x \forall y(E x y \rightarrow E y x)
$$

can be identified with the class of (loop-free, undirected) graphs.

Queries

A formula ϕ with free variables among x_{1}, \ldots, x_{n} defines a map Q from structures to relations:

$$
Q(\mathbb{A})=\{\mathbf{a} \mid \mathbb{A} \models \phi[\mathbf{a}]\} .
$$

Any such map Q which associates to every structure \mathbb{A} a (n-ary) relation on A, and is isomorphism invariant, is called a (n-ary) query.
Q is isomorphism invariant if, whenever $f: A \rightarrow B$ is an isomorphism between \mathbb{A} and \mathbb{B}, it is also an isomorphism between $(A, Q(\mathbb{A}))$ and $(B, Q(\mathbb{B}))$.

If $n=0$, we can regard the query as a map from structures to $\{0,1\}$-a Boolean query.

Complexity

For a first-order sentence ϕ, we ask what is the computational complexity of the problem:

> Input: a structure \mathbb{A}
> Decide: if $\mathbb{A} \models \phi$

In other words, how complex can the collection of finite models of ϕ be?

In order to talk of the complexity of a class of finite structures, we need to fix some way of representing finite structures as strings.

Representing Structures as Strings

We use an alphabet $\Sigma=\{0,1, \#,-\}$.
For a structure $\mathbb{A}=\left(A, R_{1}, \ldots, R_{m}, f_{1}, \ldots, f_{l}\right)$, fix a linear order $<$ on $A=\left\{a_{1}, \ldots, a_{n}\right\}$.
R_{i} (of arity k) is encoded by a string $\left[R_{i}\right]_{<}$of 0 s and 1 s of length n^{k}.
f_{i} is encoded by a string $\left[f_{i}\right]_{<}$of $0 \mathrm{~s}, 1 \mathrm{~s}$ and -s of length $n^{k} \log n$.

$$
[\mathbb{A}]_{<}=\underbrace{1 \cdots 1}_{n} \#\left[R_{1}\right]_{<} \# \cdots \#\left[R_{m}\right]_{<} \#\left[f_{1}\right]_{<} \# \cdots \#\left[f_{l}\right]_{<}
$$

The exact string obtained depends on the choice of order.

Naïve Algorithm

The straightforward algorithm proceeds recursively on the structure of ϕ :

- Atomic formulas by direct lookup.
- Boolean connectives are easy.
- If $\phi \equiv \exists x \psi$ then for each $a \in \mathbb{A}$ check whether

$$
(\mathbb{A}, c \mapsto a) \models \psi[c / x],
$$

where c is a new constant symbol.
This runs in time $O\left(n^{m}\right)$ and $O(m \log n)$ space, where m is the nesting depth of quantifiers in ϕ.

$$
\operatorname{Mod}(\phi)=\{\mathbb{A} \mid \mathbb{A} \models \phi\}
$$

is in logarithmic space and polynomial time.

Reading List for this Part

1. Papadimitriou. Chapters 8
2. Libkin Chapter 2.
3. Grädel et al. Sections 2.1-2.4 (Kolaitis).

> Topics in Logic and Complexity Part 4

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Complexity of First-Order Logic

The following problem:
FO satisfaction
Input: a structure \mathbb{A} and a first-order sentence ϕ
Decide: if $\mathbb{A} \models \phi$
is PSPACE-complete.

It follows from the $O\left(\ln n^{m}\right)$ and $O(m \log n)$ space algorithm that the problem is in PSPACE.

How do we prove completeness?

QBF

Given a quantified Boolean formula ϕ and an assignment of truth values to its free variables, we can ask whether ϕ evaluates to true or false.
In particular, if ϕ has no free variables, then it is equivalent to either true or false.

QBF is the following decision problem:
Input: a quantified Boolean formula ϕ with no free variables.
Decide: whether ϕ evaluates to true.

QBF

We define quantified Boolean formulas inductively as follows, from a set \mathcal{X} of propositional variables.

- A propositional constant T or F is a formula
- A propositional variable $X \in \mathcal{X}$ is a formula
- If ϕ and ψ are formulas then so are: $\neg \phi, \phi \wedge \psi$ and $\phi \vee \psi$
- If ϕ is a formula and X is a variable then $\exists X \phi$ and $\forall X \phi$ are formulas.

Say that an occurrence of a variable X is free in a formula ϕ if it is not within the scope of a quantifier of the form $\exists X$ or $\forall X$.

Complexity of QBF

Note that a Boolean formula ϕ without quantifiers and with variables X_{1}, \ldots, X_{n} is satisfiable if, and only if, the formula

$$
\exists X_{1} \cdots \exists X_{n} \phi \quad \text { is true. }
$$

Similarly, ϕ is valid if, and only if, the formula

$$
\forall X_{1} \cdots \forall X_{n} \phi \quad \text { is true. }
$$

Thus, SAT \leq_{L} QBF and VAL \leq_{L} QBF and so QBF is NP-hard and co-NP-hard.

In fact, QBF is PSPACE-complete.

QBF is in PSPACE

To see that QBF is in PSPACE, consider the algorithm that maintains a 1-bit register X for each Boolean variable appearing in the input formula ϕ and evaluates ϕ in the natural fashion.

The crucial cases are:

- If ϕ is $\exists X \psi$ then return T if either $(X \leftarrow \mathrm{~T} \quad ; \quad$ evaluate $\psi)$ or $(X \leftarrow \mathrm{~F} \quad ; \quad$ evaluate ψ) returns T .
- If ϕ is $\forall X \psi$ then return T if both $(X \leftarrow \mathrm{~T} \quad ; \quad$ evaluate $\psi)$ and $(X \leftarrow \mathrm{~F} ; \quad$ evaluate $\psi)$ return T .

Constructing ϕ_{x}^{M}

We use tuples A,B of n^{k} Boolean variables each to encode configurations of M.

Inductively, we define a formula $\psi_{i}(\mathbf{A}, \mathbf{B})$ which is true if the configuration coded by \mathbf{B} is reachable from that coded by \mathbf{A} in at most 2^{i} steps.

$$
\begin{aligned}
& \psi_{0}(\mathbf{A}, \mathbf{B}) \equiv " \mathbf{A}=\mathbf{B}^{\prime \prime} \vee " \mathbf{A} \rightarrow_{M} \mathbf{B}^{\prime \prime} \\
& \psi_{i+1}(\mathbf{A}, \mathbf{B}) \equiv \exists \mathbf{Z} \forall \mathbf{X} \forall \mathbf{Y}[(\mathbf{X}=\mathbf{A} \wedge \mathbf{Y}=\mathbf{Z}) \vee(\mathbf{X}=\mathbf{Z} \wedge \mathbf{Y}=\mathbf{B}) \\
&\left.\Rightarrow \psi_{i}(\mathbf{X}, \mathbf{Y})\right] \\
& \phi \equiv \psi_{n^{k}}(\mathbf{A}, \mathbf{B}) \wedge " \mathbf{A}=\text { start" } \wedge \text { " } \mathbf{B}=\text { accept" }^{\prime}
\end{aligned}
$$

PSPACE-completeness

To prove that QBF is PSPACE-complete, we want to show:
Given a machine M with a polynomial space bound and an input x, we can define a quantified Boolean formula ϕ_{x}^{M} which evaluates to true if, and only if, M accepts x.

Moreover, ϕ_{x}^{M} can be computed from x in polynomial time (or even logarithmic space).

The number of distinct configurations of M on input x is bounded by $2^{n^{k}}$ for some $k(n=|x|)$.
Each configuration can be represented by n^{k} bits.

Reducing QBF to FO satisfaction

We have seen that FO satisfaction is in PSPACE.
To show that it is PSPACE-complete, it suffices to show that QBF \leq_{L} FO sat.

The reduction maps a quantified Boolean formula ϕ to a pair $\left(\mathbb{A}, \phi^{*}\right)$ where \mathbb{A} is a structure with two elements: 0 and 1 interpreting two constants f and t respectively.
ϕ^{*} is obtained from ϕ by a simple inductive definition.

Expressive Power of FO

For any fixed sentence ϕ of first-order logic, the class of structures $\operatorname{Mod}(\phi)$ is in L.

There are computationally easy properties that are not definable in first-order logic.

- There is no sentence ϕ of first-order logic such that $\mathbb{A} \models \phi$ if, and only if, $|A|$ is even.
- There is no formula $\phi(E, x, y)$ that defines the transitive closure of a binary relation E.

We will see proofs of these facts later on.

Existential Second-Order Logic

ESO-existential second-order logic consists of those formulas of second-order logic of the form:

$$
\exists X_{1} \cdots \exists X_{k} \phi
$$

where ϕ is a first-order formula.

Second-Order Logic

We extend first-order logic by a set of relational variables.
For each $m \in \mathbb{N}$ there is an infinite collection of variables $\mathcal{V}^{m}=\left\{V_{1}^{m}, V_{2}^{m}, \ldots\right\}$ of arity m.

Second-order logic extends first-order logic by allowing second-order quantifiers

$$
\exists X \phi \quad \text { for } X \in \mathcal{V}^{m}
$$

A structure \mathbb{A} satisfies $\exists X \phi$ if there is an m-ary relation R on the universe of \mathbb{A} such that $(\mathbb{A}, X \rightarrow R)$ satisfies ϕ.

Examples

Evennness

This formula is true in a structure if, and only if, the size of the domain is even.

$$
\begin{aligned}
\exists B \exists S & \forall x \exists y B(x, y) \wedge \forall x \forall y \forall z B(x, y) \wedge B(x, z) \rightarrow y=z \\
& \forall x \forall y \forall z B(x, z) \wedge B(y, z) \rightarrow x=y \\
& \forall x \forall y S(x) \wedge B(x, y) \rightarrow \neg S(y) \\
& \forall x \forall y \neg S(x) \wedge B(x, y) \rightarrow S(y)
\end{aligned}
$$

Examples

Transitive Closure

This formula is true of a pair of elements a, b in a structure if, and only if, there is an E-path from a to b.

$$
\begin{aligned}
\exists P & \forall x \forall y P(x, y) \rightarrow E(x, y) \\
& \exists x P(a, x) \wedge \exists x P(x, b) \wedge \neg \exists x P(x, a) \wedge \neg \exists x P(b, x) \\
& \forall x \forall y(P(x, y) \rightarrow \forall z(P(x, z) \rightarrow y=z)) \\
& \forall x \forall y(P(x, y) \rightarrow \forall z(P(z, x) \rightarrow y=z)) \\
& \forall x((x \neq a \wedge \exists y P(x, y)) \rightarrow \exists z P(z, x)) \\
& \forall x((x \neq b \wedge \exists y P(y, x)) \rightarrow \exists z P(x, z))
\end{aligned}
$$

3-Colourability

The following formula is true in a graph (V, E) if, and only if, it is 3-colourable.

```
\existsR\existsB\existsG \forallx (Rx\veeBx\veeGx)^
    \forallx( \neg(Rx\wedgeBx)\wedge\neg(Bx\wedgeGx)\wedge\neg(Rx\wedgeGx))^
    \forallx\forally(Exy ->( \neg(Rx\wedgeRy)^
    \neg ( B x \wedge B y ) \wedge
    \neg ( G x \wedge G y ) ) )
```

 Topics in Logic and Complexity
 Part 5
 Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Fagin's Theorem

Theorem (Fagin)

A class \mathcal{C} of finite structures is definable by a sentence of existential second-order logic if, and only if, it is decidable by a nondeterminisitic machine running in polynomial time.

$$
\mathrm{ESO}=\mathrm{NP}
$$

One direction is easy: Given \mathbb{A} and $\exists P_{1} \ldots \exists P_{m} \phi$.
a nondeterministic machine can guess an interpretation for P_{1}, \ldots, P_{m} and then verify ϕ.

Fagin's Theorem

Given a machine M and an integer k, there is an ESO sentence ϕ such that $\mathbb{A} \models \phi$ if, and only if, M accepts $[\mathbb{A}]_{<}$, for some order $<$ in n^{k} steps.

We construct a first-order formula $\phi_{M, k}$ such that

$$
\begin{aligned}
(\mathbb{A},<, \mathbf{X}) \models \phi_{M, k} \quad \Leftrightarrow \quad & \mathbf{X} \text { codes an accepting computation of } M \\
& \text { of length at most } n^{k} \text { on input }[\mathbb{A}]_{<}
\end{aligned}
$$

So, $\mathbb{A} \models \exists<\exists \mathbf{X} \phi_{M, k}$ if, and only if, there is some order $<$ on \mathbb{A} so that M accepts $[\mathbb{A}]_{<}$in time n^{k}.

Ordering Tuples

If $\mathbf{x}=x_{1}, \ldots, x_{k}$ and $\mathbf{y}=y_{1}, \ldots, y_{k}$ are k-tuples of variables, we use $\mathbf{x}=\mathbf{y}$ as shorthand for the formula $\bigwedge_{1<i<k} x_{i}=y_{i}$ and $\mathbf{x}<\mathbf{y}$ as shorthand for the formula

$$
\bigvee_{1 \leq i \leq k}\left(\left(\bigwedge_{j<i} x_{j}=y_{j}\right) \wedge x_{i}<y_{i}\right)
$$

We also write $\mathbf{y}=\mathbf{x}+1$ for the following formula:

$$
\mathbf{x}<\mathbf{y} \wedge \forall \mathbf{z}(\mathbf{x}<\mathbf{z} \rightarrow(\mathbf{y}=\mathbf{z} \vee \mathbf{y}<\mathbf{z}))
$$

Constructing the Formula

Let $M=(K, \Sigma, s, \delta)$.
The tuple \mathbf{X} of second-order variables appearing in $\phi_{M, k}$ contains the following:
$S_{q} \quad$ a k-ary relation symbol for each $q \in K$
$T_{\sigma} \quad$ a $2 k$-ary relation symbol for each $\sigma \in \Sigma$
H a $2 k$-ary relation symbol

Initial state is s and the head is initially at the beginning of the tape.

$$
\forall \mathrm{x}\left((\forall \mathbf{y} \mathbf{x} \leq \mathbf{y}) \rightarrow S_{s}(\mathrm{x}) \wedge H(\mathrm{x}, \mathrm{x})\right)
$$

The head is never in two places at once

$$
\forall \mathbf{x} \forall \mathbf{y}(H(\mathbf{x}, \mathbf{y}) \rightarrow(\forall \mathbf{z}(\mathbf{y} \neq \mathbf{z}) \rightarrow(\neg H(\mathbf{x}, \mathbf{z}))))
$$

The machine is never in two states at once

$$
\forall \mathbf{x} \bigwedge_{q}\left(S_{q}(\mathbf{x}) \rightarrow \bigwedge_{q^{\prime} \neq q}\left(\neg S_{q^{\prime}}(\mathbf{x})\right)\right)
$$

Each tape cell contains only one symbol

$$
\forall \mathbf{x} \forall \mathbf{y} \bigwedge_{\sigma}\left(T_{\sigma}(\mathbf{x}, \mathbf{y}) \rightarrow \bigwedge_{\sigma^{\prime} \neq \sigma}\left(\neg T_{\sigma^{\prime}}(\mathbf{x}, \mathbf{y})\right)\right)
$$

Intuitively, these relations are intended to capture the following:

- $S_{q}(\mathbf{x})$ - the state of the machine at time \mathbf{x} is q.
- $T_{\sigma}(\mathbf{x}, \mathbf{y})$ - at time x, the symbol at position j of the tape is σ.
- $H(\mathbf{x}, \mathbf{y})$ - at time \mathbf{x}, the tape head is pointing at tape cell \mathbf{y}.

We now have to see how to write the formula $\phi_{M, k}$, so that it enforces these meanings.

Initial Tape Contents

The initial contents of the tape are $[\mathbb{A}]_{<}$.

$$
\begin{array}{rl}
\forall \mathbf{x} & \mathbf{x} \leq n \rightarrow T_{1}(\mathbf{1}, \mathbf{x}) \wedge \\
& \mathbf{x} \leq n^{a} \rightarrow\left(T_{1}(\mathbf{1}, \mathbf{x}+n+1) \leftrightarrow R_{1}\left(\left.\mathbf{x}\right|_{a}\right)\right)
\end{array}
$$

where,

$$
\mathbf{x}<n^{a} \quad: \bigwedge_{i \leq(k-a)} x_{i}=0
$$

The tape does not change except under the head

$$
\forall \mathbf{x} \forall \mathbf{y} \forall \mathbf{z}\left(\mathbf{y} \neq \mathbf{z} \rightarrow\left(\bigwedge_{\sigma}\left(H(\mathbf{x}, \mathbf{y}) \wedge T_{\sigma}(\mathbf{x}, \mathbf{z}) \rightarrow T_{\sigma}(\mathbf{x}+1, \mathbf{z})\right)\right)\right.
$$

Each step is according to δ.

$$
\begin{aligned}
\forall \mathbf{x} \forall \mathbf{y} \bigwedge_{\sigma} \bigwedge_{q}(& \left.H(\mathbf{x}, \mathbf{y}) \wedge S_{q}(\mathbf{x}) \wedge T_{\sigma}(\mathbf{x}, \mathbf{y})\right) \\
& \rightarrow \bigvee_{\Delta}\left(H\left(\mathbf{x}+1, \mathbf{y}^{\prime}\right) \wedge S_{q^{\prime}}(\mathbf{x}+1) \wedge T_{\sigma^{\prime}}(\mathbf{x}+1, \mathbf{y})\right)
\end{aligned}
$$

NP

Recall that a languge L is in NP if, and only if,

$$
L=\{x \mid \exists y R(x, y)\}
$$

where R is polynomial-time decidable and polynomially-balanced.

Fagin's theorem tells us that polynomial-time decidability can, in some sense, be replaced by first-order definability.
where Δ is the set of all triples $\left(q^{\prime}, \sigma^{\prime}, D\right)$ such that $\left((q, \sigma),\left(q^{\prime}, \sigma^{\prime}, D\right)\right) \in \delta$ and

$$
\mathbf{y}^{\prime}= \begin{cases}\mathbf{y} & \text { if } D=S \\ \mathbf{y}-1 & \text { if } D=L \\ \mathbf{y}+1 & \text { if } D=R\end{cases}
$$

Finally, some accepting state is reached

$$
\exists \mathrm{x} S_{\mathrm{acc}}(\mathrm{x})
$$

USO—universal second-order logic consists of those formulas of second-order logic of the form:

$$
\forall X_{1} \cdots \forall X_{k} \phi
$$

where ϕ is a first-order formula.

A corollary of Fagin's theorem is that a class \mathcal{C} of finite structures is definable by a sentence of existential second-order logic if, and only if, it is decidable by a nondeterminisitic machine running in polynomial time.

$$
\mathrm{USO}=\mathrm{co}-\mathrm{NP}
$$

Second-Order Alternation Hierarchy

We can define further classes by allowing other second-order quantifier prefixes.
$\Sigma_{1}^{1}=\mathrm{ESO}$
$\Pi_{1}^{1}=$ USO
Σ_{n+1}^{1} is the collection of properties definable by a sentence of the
form: $\exists X_{1} \cdots \exists X_{k} \phi$ where ϕ is a Π_{n}^{1} formula.
Π_{n+1}^{1} is the collection of properties definable by a sentence of the form: $\forall X_{1} \cdots \forall X_{k} \phi$ where ϕ is a Σ_{n}^{1} formula.

Note: every formula of second-order logic is Σ_{n}^{1} and Π_{n}^{1} for some n.

Polynomial Hierarchy

We have, for each n :

$$
\Sigma_{n}^{1} \cup \Pi_{n}^{1} \quad \subseteq \quad \Sigma_{n+1}^{1} \cap \Pi_{n+1}^{1}
$$

The classes together form the polynomial hierarchy or PH.

$$
\begin{aligned}
& N P \subseteq P H \subseteq P S P A C E \\
& P=N P \quad \text { if, and only if, } P=P H
\end{aligned}
$$

1. Grädel et al. Section 3.2
2. Libkin. Chapter 9.
3. Ebbinghaus and Flum. Chapter 7.

MPhil Advanced Computer Science, Lent 2011

Expressive Power of First-Order Logic

We noted that there are computationally easy properties that are not definable in first-order logic.

- There is no sentence ϕ of first-order logic such that $\mathbb{A} \models \phi$ if, and only if, $|A|$ is even.
- There is no sentence ϕ that defines exactly the connected graphs.

How do we prove these facts?

Our next aim is to develop the tools that enable such proofs.

Formulas of Bounded Quantifier Rank

Note: For the rest of this lecture, we assume that our signature consists only of relation and constant symbols. That is, there are no function symbols of non-zero arity.

With this proviso, it is easily proved that in a finite vocabulary, for each q, there are (up to logical equivalence) only finitely many sentences ϕ with $\operatorname{qr}(\phi) \leq q$.

To be precise, we prove by induction on q that for all m, there are only finitely many formulas of quantifier rank q with at most m free variables.

Quantifier Rank

The quantifier rank of a formula ϕ, written $\operatorname{qr}(\phi)$ is defined inductively as follows:

1. if ϕ is atomic then $\operatorname{qr}(\phi)=0$,
2. if $\phi=\neg \psi$ then $\operatorname{qr}(\phi)=\operatorname{qr}(\psi)$,
3. if $\phi=\psi_{1} \vee \psi_{2}$ or $\phi=\psi_{1} \wedge \psi_{2}$ then $\operatorname{qr}(\phi)=\max \left(\operatorname{qr}\left(\psi_{1}\right), \operatorname{qr}\left(\psi_{2}\right)\right)$.
4. if $\phi=\exists x \psi$ or $\phi=\forall x \psi$ then $\operatorname{qr}(\phi)=\operatorname{qr}(\psi)+1$

More informally, $\operatorname{qr}(\phi)$ is the maximum depth of nesting of quantifiers inside ϕ.

Equivalence Relation

For two structures \mathbb{A} and \mathbb{B}, we say $\mathbb{A} \equiv_{q} \mathbb{B}$ if for any sentence ϕ with $\operatorname{qr}(\phi) \leq q$,

$$
\mathbb{A} \models \phi \text { if, and only if, } \mathbb{B} \models \phi
$$

More generally, if \mathbf{a} and \mathbf{b} are m-tuples of elements from \mathbb{A} and \mathbb{B} respectively, then we write $(\mathbb{A}, \mathbf{a}) \equiv_{q}(\mathbb{B}, \mathbf{b})$ if for any formula ϕ with m free variables $\operatorname{qr}(\phi) \leq q$,

$$
\mathbb{A} \models \phi[\mathbf{a}] \text { if, and only if, } \mathbb{B} \models \phi[\mathbf{b}] .
$$

Partial Isomorphisms

A map f is a partial isomorphism between structures \mathbb{A} and \mathbb{B}, if

- the domain of $f=\left\{a_{1}, \ldots, a_{l}\right\} \subseteq A$, including the interpretation of all constants;
- the range of $f=\left\{b_{1}, \ldots, b_{l}\right\} \subseteq B$, including the interpretation of all constants; and
- f is an isomorphism between its domain and range.

Note that if f is a partial isomorphism taking a tuple a to a tuple b, then for any quantifier-free formula θ

$$
\mathbb{A} \models \theta[\mathbf{a}] \text { if, and only if, } \mathbb{B} \models \theta[\mathbf{b}] \text {. }
$$

Ehrenfeucht-Fraïssé Games

The q-round Ehrenfeucht game on structures \mathbb{A} and \mathbb{B} proceeds as follows:

- There are two players called Spoiler and Duplicator.
- At the i th round, Spoiler chooses one of the structures (say \mathbb{B}) and one of the elements of that structure (say b_{i}).
- Duplicator must respond with an element of the other structure (say a_{i}).
- If, after q rounds, the map $a_{i} \mapsto b_{i}$ is a partial isomorphism, then Duplicator has won the game, otherwise Spoiler has won.

Equivalence and Games

Write $\mathbb{A} \sim_{q} \mathbb{B}$ to denote the fact that Duplicator has a winning strategy in the q-round Ehrenfeucht game on \mathbb{A} and \mathbb{B}.

The relation \sim_{q} is, in fact, an equivalence relation.

Theorem (Fraïssé 1954; Ehrenfeucht 1961)
$\mathbb{A} \sim_{q} \mathbb{B}$ if, and only if, $\mathbb{A} \equiv_{q} \mathbb{B}$

While one direction $\mathbb{A} \sim_{q} \mathbb{B} \Rightarrow \mathbb{A} \equiv_{q} \mathbb{B}$ is true for an arbitrary vocabulary, the other direction assumes that the vocabulary is finite and has no function symbols.

Proof

To prove $\mathbb{A} \sim_{q} \mathbb{B} \Rightarrow \mathbb{A} \equiv_{q} \mathbb{B}$, it suffices to show that if there is a sentence ϕ with $\operatorname{qr}(\phi) \leq q$ such that

$$
\mathbb{A} \models \phi \quad \text { and } \quad \mathbb{B} \not \models \phi
$$

then Spoiler has a winning strategy in the q-round Ehrenfeucht game on \mathbb{A} and \mathbb{B}.

Assume that ϕ is in negation normal form, i.e. all negations are in front of atomic formulas.

Proof

We prove by induction on q the stronger statement that if ϕ is a formula with $\operatorname{qr}(\phi) \leq q$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)$ are tuples of elements from \mathbb{A} and \mathbb{B} respectively such that

$$
\mathbb{A} \models \phi[\mathbf{a}] \quad \text { and } \quad \mathbb{B} \not \models \phi[\mathbf{b}]
$$

then Spoiler has a winning strategy in the q-round Ehrenfeucht game which starts from a position in which a_{1}, \ldots, a_{m} and b_{1}, \ldots, b_{m} have already been selected.

Proof

When $q=0, \phi$ is a quantifier-free formula. Thus, if

$$
\mathbb{A} \models \phi[\mathbf{a}] \quad \text { and } \quad \mathbb{B} \not \models \phi[\mathbf{b}]
$$

there is an atomic formula θ that distinguishes the two tuples and therefore the map taking \mathbf{a} to \mathbf{b} is not a partial isomorphism.

When $q=p+1$, there is a subformula θ of ϕ of the form $\exists x \psi$ or $\forall x \psi$ such that $\mathrm{qr}(\psi) \leq p$ and

$$
\mathbb{A} \models \theta[\mathbf{a}] \quad \text { and } \quad \mathbb{B} \not \models \theta[\mathbf{b}]
$$

If $\theta=\exists x \psi$, Spoiler chooses a witness for x in \mathbb{A}.
If $\theta=\forall x \psi, \mathbb{B} \models \exists x \neg \psi$ and Spoiler chooses a witness for x in \mathbb{B}.

Using Games

To show that a class of structures S is not definable in FO, we find, for every q, a pair of structures \mathbb{A}_{q} and \mathbb{B}_{q} such that

- $\mathbb{A}_{q} \in S, \mathbb{B}_{q} \in \bar{S}$; and
- Duplicator wins a q-round game on \mathbb{A}_{q} and \mathbb{B}_{q}.

This shows that S is not closed under the relation \equiv_{q} for any q.

Fact:

S is definable by a first order sentence if, and only if, S is closed under the relation \equiv_{q} for some q.
The direction from right to left requires a finite, function-free vocabulary.

Evenness

Let \mathbb{A} be a structure in the empty vocabulary with q elements and \mathbb{B} be a structure with $q+1$ elements.

Then, it is easy to see that $\mathbb{A} \sim_{q} \mathbb{B}$.

It follows that there is no first-order sentence that defines the structures with an even number of elements.

If $S \subset \mathbb{N}$ is a set such that

$$
\{\mathbb{A}||\mathbb{A}| \in S\}
$$

is definable by a first-order sentence then S is finite or co-finite.

Linear Orders

Let L_{n} denote the structure in one binary relation \leq which is a linear order of n elements. Then $L_{6} \not \equiv_{3} L_{7}$ but $L_{7} \equiv_{3} L_{8}$.

In general, for $m, n \geq 2^{p}-1$,

$$
L_{m} \equiv_{p} L_{n}
$$

Duplicator's strategy is to maintain the following condition after r rounds of the game:
for $1 \leq i<j \leq r$,

- either length $\left(a_{i}, a_{j}\right)=\operatorname{length}\left(b_{i}, b_{j}\right)$
- or length $\left(a_{i}, a_{j}\right)$, length $\left(b_{i}, b_{j}\right) \geq 2^{p-r}-1$

Evenness is not first order definable, even on linear orders.

Reading List for this Part

1. Ebbinghaus and Flum. Chapter 2.
2. Libkin. Chapter 3.
3. Grädel et al. Section 2.3.

Topics in Logic and Complexity
 Part 7

Anuj Dawar

Connectivity

Consider the signature $(E,<)$.
Consider structures $G=(V, E,<)$ in which E is a graph relation and $<$ is a linear order.

There is no first order sentence γ in this signature such that

$$
G \models \gamma \text { if, and only if, }(V, E) \text { is connected. }
$$

Proof

We obtain two disjoint cycles on linear orders of even length, and a single cycle on linear orders of odd length.

Proof

Suppose there was such a formula γ.
Let γ^{\prime} be the formula obtained by replacing every occurrence of $E(x, y)$ in γ by the following formula

$$
\begin{aligned}
& y=x+2 \vee \\
& (x=\max \wedge y=\min +1) \vee \\
& (y=\min \wedge x=\max -1)
\end{aligned}
$$

Then, $\neg \gamma^{\prime}$ defines evenness on linear orders!

Reduction

The above is, in fact, a first-order definable reduction from the problem of evenness of linear orders to the problem of connectivity of ordered graphs.

It follows from the above that there is no first order formula that can express the transitive closure query on graphs.

Any such formula would also work on ordered graphs.

Gaifman Graphs and Neighbourhoods

On a structure \mathbb{A}, define the binary relation:
$E\left(a_{1}, a_{2}\right)$ if, and only if, there is some relation R and some tuple a containing both a_{1} and a_{2} with $R(\mathbf{a})$.

The graph $G \mathbb{A}=(A, E)$ is called the Gaifman graph of \mathbb{A}.
$\operatorname{dist}(a, b)$ - the distance between a and b in the graph (A, E).
$\operatorname{Nbd}_{r}^{\mathbb{A}}(a)$ - the substructure of \mathbb{A} given by the set:

$$
\{b \mid \operatorname{dist}(a, b) \leq r\}
$$

Hanf Locality

Duplicator's strategy is to maintain the following condition:
After k moves, if a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k} have been selected, then

$$
\bigcup_{i} \operatorname{Nbd}_{3^{p-k}}^{\mathbb{A}}\left(a_{i}\right) \cong \bigcup_{i} \operatorname{Nbd}_{3^{p-k}}^{\mathbb{B}}\left(b_{i}\right)
$$

If Spoiler plays on a within distance $2 \cdot 3^{p-k-1}$ of a previously chosen point, play according to the isomorphism, otherwise, find b such that

$$
\operatorname{Nbd}_{3^{p-k-1}}(a) \cong \operatorname{Nbd}_{3^{p-k-1}}(b)
$$

and b is not within distance $2 \cdot 3^{p-k-1}$ of a previously chosen point.
Such a b is guaranteed by \simeq_{r}.

Hanf Locality Theorem

We say \mathbb{A} and \mathbb{B} are Hanf equivalent with radius $r\left(\mathbb{A} \simeq_{r} \mathbb{B}\right)$ if, for every $a \in A$ the two sets
$\left\{a^{\prime} \in A \mid \operatorname{Nbd}_{r}^{\mathbb{A}}(a) \cong \operatorname{Nbd}_{r}^{\mathbb{A}}\left(a^{\prime}\right)\right\} \quad$ and $\quad\left\{b \in B \mid \operatorname{Nbd}_{r}^{\mathbb{A}}(a) \cong \operatorname{Nbd}_{r}^{\mathbb{B}}(b)\right\}$
have the same cardinality
and, similarly for every $b \in B$.

Theorem (Hanf)

For every vocabulary σ and every p there is $r \leq 3^{p}$ such that for any σ-structures \mathbb{A} and \mathbb{B} : if $\mathbb{A} \simeq_{r} \mathbb{B}$ then $\mathbb{A} \equiv_{p} \mathbb{B}$.

In other words, if $r \geq 3^{p}$, the equivalence relation \simeq_{r} is a refinement of \equiv_{p}.

Uses of Hanf locality

The Hanf locality theorem immediately yields, as special cases, the proofs of undefinability of:

- connectivity;
- 2-colourability
- acyclicity
- planarity

A simple illustration can suffice.

Connectivity

To illustrate the undefinability of connectivity and 2-colourability, consider on the one hand the graph consisting of a single cycle of length $4 r+6$ and, on the other hand, a graph consisting of two disjoint cycles of length $2 r+3$.

Planarity

A figure illustrating that planarity is not first-order definable.

Acyclicity

A figure illustrating that acyclicity is not first-order definable.

Monadic Second Order Logic

MSO consists of those second order formulas in which all relational variables are unary.

That is, we allow quantification over sets of elements, but not other relations.

Any MSO formula can be put in prenex normal form with second-order quantifiers preceding first order ones.

Mon. Σ_{1}^{1} - MSO formulas with only existential second-order quantifiers in prenex normal form.

Mon. Π_{1}^{1} - MSO formulas with only universal second-order quantifiers in prenex normal form.

Undefinability in MSO

The method of games and locality can also be used to show inexpressibility results in MSO.

In particular,
There is a Mon. Σ_{1}^{1} query that is not definable in Mon. Π_{1}^{1}
(Fagin 1974)

Note: A similar result without the monadic restriction would imply that $N P \neq$ co-NP and therefore that $P \neq N P$.

MSO Game

The m-round monadic Ehrenfeucht game on structures \mathbb{A} and \mathbb{B} proceeds as follows:

- At the i th round, Spoiler chooses one of the structures (say \mathbb{B}) and plays either a point move or a set move.

In a point move, he chooses one of the elements of the chosen structure (say b_{i}) - Duplicator must respond with an element of the other structure (say a_{i}).
In a set move, he chooses a subset of the universe of the chosen structure (say S_{i}) - Duplicator must respond with a subset of the other structure (say R_{i}).

Connectivity

Recall that connectivity of graphs can be defined by a Mon. Π_{1}^{1} sentence.

$$
\forall S(\exists x S x \wedge(\forall x \forall y(S x \wedge E x y) \rightarrow S y)) \rightarrow \forall x S x
$$

and by a Σ_{1}^{1} sentence (simply because it is in NP).
We now aim to show that connectivity is not definable by a Mon. Σ_{1}^{1} sentence.

MSO Game

- If, after m rounds, the map

$$
a_{i} \mapsto b_{i}
$$

is a partial isomorphism between

$$
\left(\mathbb{A}, R_{1}, \ldots, R_{q}\right) \text { and }\left(\mathbb{B}, S_{1}, \ldots, S_{q}\right)
$$

then Duplicator has won the game, otherwise Spoiler has won.

MSO Game

If we define the quantifier rank of an MSO formula by adding the following inductive rule to those for a formula of FO

$$
\text { if } \phi=\exists S \psi \text { or } \phi=\forall S \psi \text { then } \operatorname{qr}(\phi)=\operatorname{qr}(\psi)+1
$$

then, we have
Duplicator has a winning strategy in the m-round monadic Ehrenfeucht game on structures \mathbb{A} and \mathbb{B} if, and only if, for every sentence ϕ of MSO with $\mathrm{qr}(\phi) \leq m$

$$
\mathbb{A} \models \phi \quad \text { if, and only if, } \quad \mathbb{B} \models \phi
$$

Variation

To show that a Boolean query Q is not Mon. Σ_{1}^{1} definable, find for each m and p

- $\mathbb{A} \in Q$; and
- $\mathbb{B} \notin P$; such that
- Duplicator wins the m, p move game on (\mathbb{A}, \mathbb{B}).

Or,

- Duplicator chooses \mathbb{A}.
- Spoiler colours \mathbb{A} (with 2^{m} colours).
- Duplicator chooses \mathbb{B} and colours it.
- They play a p-round Ehrenfeucht game.

Existential Game

The m, p-move existential game on (\mathbb{A}, \mathbb{B}) :

- First Spoiler makes m set moves on \mathbb{A}, and Duplicator replies on \mathbb{B}.
- This is followed by an Ehrenfeucht game with p point moves.

If Duplicator has a winning strategy, then for every Mon. Σ_{1}^{1} sentence:

$$
\phi \equiv \exists R_{1} \ldots \exists R_{m} \psi
$$

with $\operatorname{qr}(\psi)=p$,

$$
\text { if } \mathbb{A} \models \phi \text { then } \mathbb{B} \models \phi
$$

Application

Write C_{n} for the graph that is a simple cycle of length n.

For n sufficiently large, and any colouring of C_{n}, we can find an $n^{\prime}<n$ and a colouring of
$C_{n^{\prime}} \oplus C_{n-n^{\prime}}$ the disjoint union of two cycles - one of length n^{\prime}, the other of length $n-n^{\prime}$

So that the graphs C_{n} and $C_{n^{\prime}} \oplus C_{n-n^{\prime}}$ are \simeq_{r} equivalent.

Taking $n>(2 r+1)^{2^{m}+2}$ suffices.

Reading List for this Part

1. Ebbinghaus and Flum. Section 2.4.
2. Libkin. Chapter 4.
3. Grädel et al. Section 2.3 and 2.5

Expressive Power of Logics

We have seen that the expressive power of first-order logic, in terms of computational complexity is weak.

Second-order logic allows us to express all properties in the polynomial hierarchy.

Are there interesting logics intermediate between these two?
We have seen one-monadic second-order logic.
We now examine another-LFP-the logic of least fixed points.

Topics in Logic and Complexity
 Part 8

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Inductive Definitions

LFP is a logic that formalises inductive definitions.
Unlike in second-order logic, we cannot quantify over arbitrary relations, but we can build new relations inductively.

Inductive definitions are pervasive in mathematics and computer science.

The syntax and semantics of various formal languages are typically defined inductively.
viz. the definitions of the syntax and semantics of
first-order logic seen earlier.

Transitive Closure

The transitive closure of a binary relation E is the smallest relation T satisfying:

- $E \subseteq T$; and
- if $(x, y) \in T$ and $(y, z) \in E$ then $(x, z) \in T$.

This constitutes an inductive definition of T and, as we have already seen, there is no first-order formula that can define T in terms of E.

Least and Greatest Fixed Points

A fixed point of F is any set $S \subseteq A$ such that $F(S)=S$.
S is the least fixed point of F, if for all fixed points T of $F, S \subseteq T$.
S is the greatest fixed point of F, if for all fixed points T of F, $T \subseteq S$.

Monotone Operators

In order to introduce LFP, we briefly look at the theory of monotone operators, in our restricted context.

We write $\operatorname{Pow}(A)$ for the powerset of A.
An operator in A is a function

$$
F: \operatorname{Pow}(A) \rightarrow \operatorname{Pow}(A) .
$$

F is monotone if

$$
\text { if } S \subseteq T \text {, then } F(S) \subseteq F(T)
$$

Least and Greatest Fixed Points

For any monotone operator F, define the collection of its pre-fixed points as:

$$
\text { Pre }=\{S \subseteq A \mid F(S) \subseteq S\}
$$

Note: $A \in$ Pre.

Taking

$$
L=\bigcap \text { Pre }
$$

we can show that L is a fixed point of F.

Fixed Points

For any set $S \in$ Pre,
$L \subseteq S$
$F(L) \subseteq F(S)$
$F(L) \subseteq S$
$F(L) \subseteq L$
$F(F(L)) \subseteq F(L)$
$F(L) \in$ Pre
$L \subseteq F(L)$
by definition of L.
by monotonicity of F.
by definition of Pre. by definition of L by monotonicity of F by definition of Pre. by definition of L.

Least and Greatest Fixed Points

L is a fixed point of F.

Every fixed point P of F is in Pre, and therefore $L \subseteq P$.
Thus, L is the least fixed point of F

Similarly, the greatest fixed point is given by:

$$
G=\bigcup\{S \subseteq A \mid S \subseteq F(S)\}
$$

Iteration

Proof by induction.

$$
\emptyset=F^{0} \subseteq F^{1}
$$

If $F^{i} \subseteq F^{i+1}$ then, by monotonicity

$$
F\left(F^{i}\right) \subseteq F\left(F^{i+1}\right)
$$

and so $F^{i+1} \subseteq F^{i+2}$.

Fixed-Point by Iteration

If A has n elements, then

$$
F^{n}=F^{n+1}=F^{m} \quad \text { for all } \quad m>n
$$

Thus, F^{n} is a fixed point of F

Let P be any fixed point of F. We can show induction on i, that $F^{i} \subseteq P$.

$$
F^{0}=\emptyset \subseteq P
$$

If $F^{i} \subseteq P$ then

$$
F^{i+1}=F\left(F^{i}\right) \subseteq F(P)=P .
$$

Thus F^{n} is the least fixed point of F.

Positive Formulas

Definition

A formula ϕ is positive in the relation symbol R, if every occurence of R in ϕ is within the scope of an even number of negation signs.

Lemma

For any structure \mathbb{A} not interpreting the symbol R, any formula ϕ which is positive in R, and any tuple \mathbf{b} of elements of A, the operator $F_{\phi, \mathbf{b}}: \operatorname{Pow}\left(A^{k}\right) \rightarrow \operatorname{Pow}\left(A^{k}\right)$ is monotone.

Defined Operators

Suppose ϕ contains a relation symbol R (of arity k) not interpreted in the structure \mathbb{A} and let \mathbf{x} be a tuple of k free variables of ϕ.

For any relation $P \subseteq A^{k}, \phi$ defines a new relation:

$$
F_{P}=\{\mathbf{a} \mid(\mathbb{A}, P) \models \phi[\mathbf{a}]\} .
$$

The operator $F_{\phi}: \operatorname{Pow}\left(A^{k}\right) \rightarrow \operatorname{Pow}\left(A^{k}\right)$ defined by ϕ is given by the map

$$
P \mapsto F_{P} .
$$

Or, $F_{\phi, \mathbf{b}}$ if we fix parameters \mathbf{b}.

Topics in Logic and Complexity Part 9

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Syntax of LFP

- If t_{1} and t_{2} are terms, then $t_{1}=t_{2}$ is a formula of LFP.
- If P is a predicate expression of LFP of arity k and \mathbf{t} is a tuple of terms of length k, then $P(\mathbf{t})$ is a formula of LFP.
- If ϕ and ψ are formulas of LFP, then so are $\phi \wedge \psi$, and $\neg \phi$.
- If ϕ is a formula of LFP and x is a variable then, $\exists x \phi$ is a formula of LFP.

Syntax of LFP

- Any relation symbol of arity k is a predicate expression of arity $k ;$
- If R is a relation symbol of arity k, x is a tuple of variables of length k and ϕ is a formula of LFP in which the symbol R only occurs positively, then

$$
\mathbf{l f} \mathbf{p}_{R, \mathbf{x}} \phi
$$

is a predicate expression of LFP of arity k.

All occurrences of R and variables in \mathbf{x} in $\mathbf{l f} \mathbf{p}_{R, \mathbf{x}} \phi$ are bound

Semantics of LFP

Let $\mathbb{A}=(A, \mathcal{I})$ be a structure with universe A, and an interpretation \mathcal{I} of a fixed vocabulary σ.

Let ϕ be a formula of LFP, and \imath an interpretation in A of all the free variables (first or second order) of ϕ.

To each individual variable x, \imath associates an element of A, and to each k-ary relation symbol R in ϕ that is not in σ, \imath associates a relation $\imath(R) \subseteq A^{k}$.
\imath is extended to terms t in the usual way.

$$
\begin{aligned}
& \text { For constants } c, \imath(c)=\mathcal{I}(c) \\
& \imath\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=\mathcal{I}(f)\left(\imath\left(t_{1}\right), \ldots, \imath\left(t_{n}\right)\right)
\end{aligned}
$$

Semantics of LFP

- If R is a relation symbol in σ, then $\imath(R)=\mathcal{I}(R)$.
- If P is a predicate expression of the form $\mathbf{l f p}_{R, \mathbf{x}} \psi$, then $\imath(P)$ is the relation that is the least fixed point of the monotone operator F on A^{k} defined by:

$$
F(X)=\left\{\mathbf{a} \in A^{k} \mid \mathbb{A} \models \phi[\imath\langle X / R, \mathbf{x} / \mathbf{a}\rangle],\right.
$$

where $\imath\langle X / R, \mathbf{x} / \mathbf{a}\rangle$ denotes the interpretation \imath^{\prime} which is just like \imath except that $\imath^{\prime}(R)=X$, and $\imath^{\prime}(\mathbf{x})=\mathbf{a}$.

Semantics of LFP

- If ϕ is of the form $t_{1}=t_{2}$, then $\mathbb{A} \models \phi[\imath]$ if, $\imath\left(t_{1}\right)=\imath\left(t_{2}\right)$.
- If ϕ is of the form $R\left(t_{1}, \ldots, t_{k}\right)$, then $\mathbb{A} \models \phi[\imath]$ if,

$$
\left(\imath\left(t_{1}\right), \ldots, \imath\left(t_{k}\right)\right) \in \imath(R)
$$

- If ϕ is of the form $\psi_{1} \wedge \psi_{2}$, then $\mathbb{A} \models \phi[\imath]$ if, $\mathbb{A} \models \psi_{1}[\imath]$ and $\mathbb{A} \models \psi_{2}[\imath]$.
- If ϕ is of the form $\neg \psi$ then, $\mathbb{A} \models \phi[l]$ if, $\mathbb{A} \not \vDash \psi[\imath]$.
- If ϕ is of the form $\exists x \psi$, then $\mathbb{A} \models \phi[\imath]$ if there is an $a \in A$ such that $\mathbb{A} \models \psi[\imath\langle x / a\rangle]$.

Transitive Closure

The formula (with free variables u and v)

$$
\left[\theta \equiv \operatorname{lfp}_{T, x y}(x=y \vee \exists z(E(x, z) \wedge T(z, y)))\right](u, v)
$$

defines the transitive closure of the relation E.

Thus $\forall u \forall v \theta$ defines connectedness.

The expressive power of LFP properly extends that of first-order logic.

Greatest Fixed Points

If ϕ is a formula in which the relation symbol R occurs positively, then the greatest fixed point of the monotone operator F_{ϕ} defined by ϕ can be defined by the formula:

$$
\neg\left[\mathbf{l f p}_{R, \mathbf{x}} \neg \phi(R / \neg R)\right](\mathbf{x})
$$

where $\phi(R / \neg R)$ denotes the result of replacing all occurrences of R in ϕ by $\neg R$.

Exercise: Verify!.

Simultaneous Inductions

We are given two formulas $\phi_{1}(S, T, \mathbf{x})$ and $\phi_{2}(S, T, \mathbf{y})$,
S is k-ary, T is l-ary.

The pair (ϕ_{1}, ϕ_{2}) can be seen as defining a map:

$$
F: \operatorname{Pow}\left(A^{k}\right) \times \operatorname{Pow}\left(A^{l}\right) \rightarrow \operatorname{Pow}\left(A^{k}\right) \times \operatorname{Pow}\left(A^{l}\right)
$$

If both formulas are positive in both S and T, then there is a least fixed point.

$$
\left(P_{1}, P_{2}\right)
$$

defined by simultaneous induction on \mathbb{A}.

Proof

Assume $k \leq l$.

We define P, of arity $l+2$ such that:

$$
\begin{aligned}
& \left(c, d, a_{1}, \ldots, a_{l}\right) \in P \text { if, and only if, either } c=d \text { and } \\
& \left(a_{1}, \ldots, a_{k}\right) \in P_{1} \text { or } c \neq d \text { and }\left(a_{1}, \ldots, a_{l}\right) \in P_{2}
\end{aligned}
$$

For new variables x_{1} and x_{2} and a new $l+2$-ary symbol R, define ϕ_{1}^{\prime} and ϕ_{2}^{\prime} by replacing all occurrences of $S\left(t_{1}, \ldots, t_{k}\right)$ by:

$$
x_{1}=x_{2} \wedge \exists y_{k+1}, \ldots, \exists y_{l} R\left(x_{1}, x_{2}, t_{1}, \ldots, t_{k}, y_{k+1}, \ldots, y_{l}\right)
$$

and replacing all occurrences of $T\left(t_{1}, \ldots, t_{l}\right)$ by:

$$
x_{1} \neq x_{2} \wedge R\left(x_{1}, x_{2}, t_{1}, \ldots, t_{l}\right)
$$

Simultaneous Inductions

Theorem

For any pair of formulas $\phi_{1}(S, T)$ and $\phi_{2}(S, T)$ of LFP, in which the symbols S and T appear only positively, there are formulas ϕ_{S} and ϕ_{T} of LFP which, on any structure \mathbb{A} containing at least two elements, define the two relations that are defined on \mathbb{A} by ϕ_{1} and ϕ_{2} by simultaneous induction.

Proof

Define ϕ as

$$
\left(x_{1}=x_{2} \wedge \phi_{1}^{\prime}\right) \vee\left(x_{1} \neq x_{2} \wedge \phi_{2}^{\prime}\right)
$$

Then,

$$
\left[\mathbf{l f p}_{R, x_{1} x_{2} \mathbf{y}} \phi\right](x, x, \mathbf{y})
$$

defines P, so

$$
\phi_{S} \equiv \exists x \exists y_{k+1}, \ldots, \exists y_{l}\left[\mathbf{l} \mathbf{p}_{R, x_{1} x_{2} \mathbf{y}} \phi\right](x, x, \mathbf{y}) ;
$$

and

$$
\phi_{T} \equiv \exists x_{1} \exists x_{2}\left(x_{1} \neq x_{2} \wedge\left[\mathbf{l} \mathbf{f} \mathbf{p}_{R, x_{1} x_{2} \mathbf{y}} \phi\right]\left(x_{1}, x_{2}, \mathbf{y}\right)\right)
$$

Inflationary Fixed Points

We can associtate with any formula $\phi(R, \mathbf{x})$ (even one that is not monotone in R) an inflationary operator

$$
I F_{\phi}(P)=P \cup F_{\phi}(P)
$$

On any finite structure \mathbb{A} the sequence

$$
\begin{aligned}
I F^{0} & =\emptyset \\
I F^{n+1} & =I F_{\phi}\left(I F^{n}\right)
\end{aligned}
$$

converges to a limit $I F^{\infty}$.
If F_{ϕ} is monotone, then this fixed point is, in fact, the least fixed point of F_{ϕ}.

IFP

If ϕ defines a monotone operator, the relation defined by

$$
\operatorname{ifp}_{R, \mathbf{x}} \phi
$$

is the least fixed point of ϕ.
Thus, the expressive power of IFP is at least as great as that of LFP.

In fact, it is no greater:

Theorem (Gurevich-Shelah)

For every formula of ϕ of LFP, there is a predicate expression ψ of LFP such that, on any finite structure \mathbb{A}, ψ defines the same
relation as $\operatorname{ifp}_{R, \mathbf{x}} \phi$.

We define the logic IFP with a syntax similar to LFP except, instead of the lfp rule, we have

If R is a relation symbol of arity k, \mathbf{x} is a tuple of variables of length k and ϕ is any formula of IFP, then

$$
\operatorname{ifp}_{R, \mathbf{x}} \phi
$$

is a predicate expression of IFP of arity k.

Semantics: we say that the predicate expression $\operatorname{ifp}_{R, \mathbf{x}} \phi$ denotes the relation that is the limit reached by the iteration of the inflationary operator $I F_{\phi}$

Ranks

Let $\phi(R, \mathbf{x})$ be a formula defining an operator F_{ϕ} and $I F_{\phi}$ be the associated inflationary operator given by

$$
I F_{\phi}(S)=S \cup F_{\phi}(S)
$$

In a structure \mathbb{A}, we define for each $\mathbf{a} \in A^{k}$ a $\operatorname{rank}|\mathbf{a}|_{\phi}$.
The least n such that $\mathbf{a} \in I F^{\alpha}$, if there is such an n and ∞ otherwise.

Stage Comparison

We define the two stage comparison relations \preceq and \prec by:

$$
\begin{gathered}
\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \mathbf{a} \in I F_{\phi}^{\infty} \wedge|\mathbf{a}|_{\phi} \leq|\mathbf{b}|_{\phi} ; \\
\mathbf{a} \prec \mathbf{b} \Leftrightarrow|\mathbf{a}|_{\phi}<|\mathbf{b}|_{\phi} .
\end{gathered}
$$

These two relations can themselves be defined in IFP.

Stage Comparison in LFP

In the inductive definition of \prec :

$$
\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \mathbf{a} \in I F_{\phi}\left(\left\{\mathbf{a}^{\prime} \mid \mathbf{b} \notin I F_{\phi}\left(\left\{\mathbf{b}^{\prime} \mid \neg\left(\mathbf{a}^{\prime} \preceq_{\phi} \mathbf{b}^{\prime}\right)\right\}\right)\right.\right.
$$

we can replace the negative occurrences of $\mathbf{a} \preceq \mathbf{b}$ with $\neg(\mathbf{b} \prec \mathbf{a})$, and similarly, in the definition of \prec replace negative occurrences of \prec with positive occurrences of \preceq
as long as we can define the maximal rank

Stage Comparison

$$
\begin{gathered}
\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \mathbf{a} \in I F_{\phi}\left(\left\{\mathbf{a}^{\prime} \mid \mathbf{a} \prec \mathbf{b}\right\}\right) . \\
\mathbf{a} \prec \mathbf{b} \Leftrightarrow \mathbf{b} \notin I F_{\phi}\left(\left\{\mathbf{b}^{\prime} \mid \neg\left(\mathbf{a} \preceq \mathbf{b}^{\prime}\right)\right\}\right) .
\end{gathered}
$$

Together, these give:

$$
\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \mathbf{a} \in I F_{\phi}\left(\left\{\mathbf{a}^{\prime} \mid \mathbf{b} \notin I F_{\phi}\left(\left\{\mathbf{b}^{\prime} \mid \neg\left(\mathbf{a}^{\prime} \preceq \mathbf{b}^{\prime}\right)\right\}\right)\right) .\right.
$$

This is an inductive definition of \preceq.
A similar inductive definition is obtained from \prec.

Maximal Rank

There is a formula $\mu(\mathbf{y})$, which defines the set of tuples of maximal rank.

$$
I F_{\phi}(\{\mathbf{b} \mid \mathbf{b} \preceq \mathbf{a}\}) \subseteq I F_{\phi}(\{\mathbf{b} \mid \mathbf{b} \prec \mathbf{a}\}) .
$$

Replace the negative occurrence of $\mathbf{b} \preceq \mathbf{a}$ by $\neg(\mathbf{a} \prec \mathbf{b})$.

Reading List for this Part

1. Immerman. Chapter 4.
2. Libkin. Sections 10.2 and 10.3 .
3. Grädel et al. Secton 2.6.

Topics in Logic and Complexity

Part 10

Anuj Dawar

MPhil Advanced Computer Science, Lent 2011

Complexity of LFP

Any query definable in LFP is decidable by a deterministic machine in polynomial time.

To be precise, we can show, by induction on the structure of the formula $\phi(\mathrm{x})$ that for each formula ϕ there is a t such that

$$
\mathbb{A} \models \phi[\mathbf{a}]
$$

is decidable in time $O\left(n^{t}\right)$ where n is the number of elements of \mathbb{A}.
We prove this by induction on the structure of the formula.

Complexity of LFP

- Atomic formulas by direct lookup ($O\left(n^{a}\right)$ time, where a is the maximum arity of any predicate symbol in σ).
- Boolean connectives are easy.

If $\mathbb{A} \models \phi_{1}$ can be decided in time $O\left(n^{t_{1}}\right)$ and $\mathbb{A} \models \phi_{2}$ in time $O\left(n^{t_{2}}\right)$, then $\mathbb{A} \models \phi_{1} \wedge \phi_{2}$ can be decided in time $O\left(n^{\max \left(t_{1}, t_{2}\right)}\right)$

- If $\phi \equiv \exists x \psi$ then for each $a \in \mathbb{A}$ check whether

$$
(\mathbb{A}, c \mapsto a) \models \psi[c / x],
$$

where c is a new constant symbol. If $\mathbb{A} \models \psi$ can be decided in time $O\left(n^{t}\right)$, then $\mathbb{A} \models \phi$ can be decided in time $O\left(n^{t+1}\right)$.

Complexity of LFP

Suppose $\phi \equiv \mathbf{l f p}_{R, \mathbf{x}} \psi(\mathbf{t})(R$ is l-ary $)$
To decide $\mathbb{A} \models \phi[\mathbf{a}]$:
$R:=\emptyset$
for $i:=1$ to n^{l} do
$R:=R \cup F_{\psi}(R)$
end
if $\mathbf{a} \in R$ then accept else reject

Capturing P

For any ϕ of LFP, the language $\left\{[\mathbb{A}]_{<} \mid \mathbb{A} \models \phi\right\}$ is in P.

Suppose ρ is a signature that contains a binary relation symbol $<$, possibly along with other symbols.

Let \mathcal{O}_{ρ} denote those structures \mathbb{A} in which $<$ is a linear order of the universe

For any language $L \in \mathrm{P}$, there is a sentence ϕ of LFP that defines the class of structures

$$
\left\{\mathbb{A} \in \mathcal{O}_{\rho} \mid[\mathbb{A}]_{<^{\mathbb{A}}} \in L\right\}
$$

(Immerman; Vardi 1982)

Complexity of LFP

To compute $F_{\psi}(R)$
For every tuple $\mathbf{a} \in A^{l}$, determine whether $(\mathbb{A}, R) \models \psi[\mathbf{a}]$.

If deciding $(\mathbb{A}, R) \models \psi$ takes time $O\left(n^{t}\right)$, then each assignment to R inside the loop requires time $O\left(n^{l+t}\right)$. The total time taken to execute the loop is then $O\left(n^{2 l+t}\right)$. Finally, the last line can be done by a search through R in time $O\left(n^{l}\right)$. The total running time is, therefore, $O\left(n^{2 l+t}\right)$.

The space required is $O\left(n^{l}\right)$.

Capturing P

Recall the proof of Fagin's Theorem, that ESO captures NP.
Given a machine M and an integer k, there is a first-order formula $\phi_{M, k}$ such that

$$
\mathbb{A} \models \exists<\exists T_{\sigma_{1}} \cdots T_{\sigma_{s}} \exists S_{q_{1}} \cdots S_{q_{m}} \exists H \phi_{M, k}
$$

if, and only if, M accepts $[\mathbb{A}]_{<}$in time n^{k}, for some order $<$.
If we fix the order $<$ as part of the structure \mathbb{A}, we do not need the outermost quantifier.

Moreover, for a deterministic machine M, the relations $T_{\sigma_{1}} \ldots T_{\sigma_{s}}, S_{q_{1}} \ldots S_{q_{m}}, H$ can be defined inductively.

Capturing \mathbf{P}

$$
\begin{array}{ll}
T_{a}(\mathbf{x}, \mathbf{y}) \Leftrightarrow & \\
\left(\mathbf{x}=\mathbf{1} \wedge \operatorname{Init}_{a}(\mathbf{y})\right) \vee \\
\exists \mathbf{t} \exists \mathbf{h} \bigvee_{q} \quad & \left(\mathbf{x}=\mathbf{t}+1 \wedge S_{q}(\mathbf{t}, \mathbf{h}) \wedge\right. \\
& {\left[\left(\mathbf{h}=\mathbf{y} \wedge \bigvee_{\left\{b, d, q^{\prime} \mid \Delta\left(q, b, q^{\prime}, a, d\right)\right\}} T_{b}(\mathbf{t}, \mathbf{y}) \vee\right.\right.} \\
& \left.\left.\mathbf{h} \neq \mathbf{y} \wedge T_{a}(\mathbf{t}, \mathbf{y})\right]\right) ;
\end{array}
$$

where $\operatorname{Init}_{a}(\mathbf{y})$ is the formula that defines the positions in which the symbol a appears in the input.

$$
\begin{array}{ll}
S_{q}(\mathbf{x}, \mathbf{y}) \Leftrightarrow \\
\left(\mathbf{x}=\mathbf{1} \wedge \mathbf{y}=\mathbf{1} \wedge q=q_{0}\right) \vee & \\
\exists \mathbf{t} \exists \mathbf{h} \quad \bigvee_{\left\{a, b, q^{\prime} \mid \Delta\left(q^{\prime}, a, q, b, R\right)\right\}} & \left(\mathbf{x}=\mathbf{t}+1 \wedge S_{q^{\prime}}(\mathbf{t}, \mathbf{h}) \wedge\right. \\
& \left.\left.T_{a}(\mathbf{t}, \mathbf{h}) \wedge \mathbf{y}=\mathbf{h}+1\right)\right) \\
& \bigvee_{\left\{a, b, q^{\prime} \mid \Delta\left(q^{\prime}, a, q, b, L\right)\right\}} \\
& \left(\mathbf{x}=\mathbf{t}+1 \wedge S_{q}^{\prime}(\mathbf{t}, \mathbf{h}) \wedge\right. \\
& \left.\left.T_{a}(\mathbf{t}, \mathbf{h}) \wedge \mathbf{h}=\mathbf{y}+1\right)\right)
\end{array}
$$

Unordered Structures

In the absence of an order relation, there are properties in P that are not definable in LFP.

There is no sentence of LFP which defines the structures with an even number of elements.

Capturing \mathbf{P}

Unordered Structures

Evenness

Let \mathcal{E} be the collection of all structures in the empty signature.
In order to prove that evenness is not defined by any LFP sentence, we show the following.

Lemma

For every LFP formula ϕ there is a first order formula ψ, such that for all structures \mathbb{A} in $\mathcal{E}, \mathbb{A} \models(\phi \leftrightarrow \psi)$.

Unordered Structures

Let $\psi(\mathbf{x}, \mathbf{y})$ be a first order formula.
$\operatorname{lfp}_{R, \mathbf{x}} \psi$ defines the relation

$$
F_{\psi, \mathbf{b}}^{\infty}=\bigcup_{i \in \mathbb{N}} F_{\psi, \mathbf{b}}^{i}
$$

for a fixed interpretation of the variables \mathbf{y} by the tuple of parameters \mathbf{b}.

For each i, there is a first order formula ψ^{i} such that on any structure \mathbb{A},

$$
F_{\psi, \mathbf{b}}^{i}=\left\{\mathbf{a} \mid \mathbb{A} \models \psi^{i}[\mathbf{a}, \mathbf{b}]\right\} .
$$

Let \mathbf{b} be an l-tuple, and \mathbf{a} and \mathbf{c} two k-tuples in a structure \mathbb{A} such that
there is an automorphism \imath of \mathbb{A} (i.e. an isomorphism from \mathbb{A} to itself) such that

- $\imath(\mathbf{b})=\mathbf{b}$
- $\imath(\mathbf{a})=\mathbf{c}$

Then,

$$
\mathbf{a} \in F_{\psi, \mathbf{b}}^{i} \quad \text { if, and only if, } \quad \mathbf{c} \in F_{\psi, \mathbf{b}}^{i}
$$

Defining the Stages

These formulas are obtained by induction.
ψ^{1} is obtained from ψ by replacing all occurrences of
subformulas of the form $R(\mathbf{t})$ by $t \neq t$.
ψ^{i+1} is obtained by replacing in ψ, all subformulas of the form $R(\mathbf{t})$ by $\psi^{i}(\mathbf{t}, \mathbf{y})$

Bounding the Induction

This defines an equivalence relation $\mathbf{a} \sim_{\mathbf{b}} \mathbf{c}$.

If there are p distinct equivalence classes, then

$$
F_{\psi, \mathbf{b}}^{\infty}=F_{\psi, \mathbf{b}}^{p}
$$

In \mathcal{E} there is a uniform bound p, that does not depend on the size of the structure.

Reading List for this Part

1. Libkin. Chapter 10.
2. Grädel et al. Section 3.3.
