MPhil ACS 2010-11 Category Theory for Computer Science Mid-Term Test

1. On Galois connections

A Galois connection

 $f\dashv g:\mathsf{Q}\to\mathsf{P}$

between preorders $\mathsf{P} = (P, \leq_{\mathsf{P}})$ and $\mathsf{Q} = (Q, \leq_{\mathsf{Q}})$ is a pair of functions $f : \mathsf{P} \to \mathsf{Q}$ and $g : \mathsf{Q} \to \mathsf{P}$ such that

$$\forall x \in P, y \in Q. \ f(x) \leq_{\mathsf{Q}} y \iff x \leq_{\mathsf{P}} g(y) \ . \tag{1}$$

- (a) For a Galois connection $f \dashv g : \mathbb{Q} \to \mathbb{P}$, show that both f and g are monotone.
- (b) For a set X, let $\mathsf{P}(X) = (\mathcal{P}(X), \subseteq)$ be the poset of subsets of X ordered by inclusion. Let $f : X \to Y$ be a function and write $f^{-1}[_]$ for the inverse-image function $\mathcal{P}(Y) \to \mathcal{P}(X)$.
 - (1) Define a function $\exists_f : \mathcal{P}(X) \to \mathcal{P}(Y)$ and prove that

$$\exists_f \dashv f^{-1}[_] : \mathsf{P}(Y) \to \mathsf{P}(X)$$

is a Galois connection.

(2) Define a function $\forall_f : \mathcal{P}(X) \to \mathcal{P}(Y)$ and prove that

$$f^{-1}[-] \dashv \forall_f : \mathsf{P}(X) \to \mathsf{P}(Y)$$

is a Galois connection.

2. On distributive categories

Let \mathcal{S} be a cartesian category, and fix an object $S \in \mathcal{S}$.

An S-action (A, α) consists of an object $A \in S$ and a morphism $\alpha : S \times A \to A$ in S. Define S-act to be the category with

objects given by S-actions,

morphisms $h: (A, \alpha) \to (B, \beta)$ given by maps $h: A \to B$ in S such that

$$\begin{array}{c} S \times A \xrightarrow{\operatorname{id}_S \times h} S \times B \\ \downarrow^{\alpha} & \downarrow^{\beta} \\ A \xrightarrow{h} B \end{array}$$

,

identities and composition given as in \mathcal{S} .

Show that:

- (a) S-act is cartesian.
- (b) S-act is a distributive category whenever so is S.

3. On sections and regular, strong, and extremal monomorphisms

• A monomorphism $m: X \to Y$ is regular if there exist $f, g: Y \to Z$ such that

$$X \xrightarrow{m} Y \xrightarrow{f} Z$$

is an equaliser.

• A monomorphism $m: X \to Y$ is *strong*, if for every commutative square as on the left below where $e: U \to V$ is an epimorphism

$$\begin{array}{cccc} U \xrightarrow{e} V & & U \xrightarrow{e} V \\ u & & v & & u & d \swarrow \\ X \xrightarrow{m} Y & & X \xrightarrow{m} Y \end{array}$$

there exists a unique $d:V\to X$ as on the right above such that both triangles commute.

• A monomorphism $m: X \to Y$ is *extremal* if for every commutative triangle

where $e: X \to V$ is an epimorphism, e is an isomorphism.

(a) Prove that the following implications between properties of monomorphisms hold in any category:

section \Longrightarrow regular \Longrightarrow strong \Longrightarrow extremal .

[None of the above implications is in general an equivalence, but that is another story.]

4. On retractions, sections, pushouts, and coequalisers

Let $r: A \to B$ be a retraction with section $s: B \to A$, so that $r \circ s = id_B$.

(a) Show that

$$\begin{array}{ccc} A \xrightarrow{g} C \\ r & & \downarrow^{q} & \text{is a pushout} \\ B \xrightarrow{p} P \end{array}$$

if and only if

$$p = q \circ g \circ s$$
 and $A \xrightarrow{g} C \xrightarrow{q} P$ is a coequaliser .