Interprocedural Data Flow Analysis

Uday P. Khedker

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

May 2011

Part 1

About These Slides

MACS L111 Interprocedural DFA: About These Slides 1/54

Copyright

These slides constitute the lecture notes for

e MACS L111 Advanced Data Flow Analysis course at Cambridge
University, and
e CS 618 Program Analysis course at |IT Bombay.
They have been made available under GNU FDL v1.2 or later (purely for
academic or research use) as teaching material accompanying the book:

e Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow
Analysis: Theory and Practice. CRC Press (Taylor and Francis
Group). 2009.

Apart from the above book, some slides are based on the material from
the following books

e M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

P May 2011 Uday Khedker

He

MACS L111 Interprocedural DFA: Outline 2/54

Outline

Issues in interprocedural analysis

Functional approach

The classical call strings approach

Modified call strings approach

May 2011 Uday KhedkerQ

Part 3

Issues in Interprocedural Analysis

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 3/54

Interprocedural Analysis: Overview

e Extends the scope of data flow analysis across procedure boundaries
Incorporates the effects of
» procedure calls in the caller procedures, and
» calling contexts in the callee procedures.
e Approaches :
» Generic : Call strings approach, functional approach.

» Problem specific : Alias analysis, Points-to analysis, Partial
redundancy elimination, Constant propagation

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 4/54
Inherited and Synthesized Data Flow Information

| Data Flow Information

Inherited by procedure r from

X call site ¢; in procedure s
Inherited by procedure r from

for G Yl call site ¢j in procedure t
o Synthesized by procedure r in

s at call site procedure ¢;
Xt Y =) V| eite maeeue o

: May 2011 Uday Khedker

5

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 5/54
Inherited and Synthesized Data Flow Information

e Example of uses of inherited data flow information

Answering questions about formal parameters and global variables:

» Which variables are constant?
» Which variables aliased with each other?
» Which locations can a pointer variable point to?

e Examples of uses of synthesized data flow information

Answering questions about side effects of a procedure call:

» Which variables are defined or used by a called procedure?
(Could be local/global /formal variables)

e Most of the above questions may have a May or Must qualifier.

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 6/54

Program Representation for Interprocedural Data Flow
Analysis: Call Multi-Graph

Startq
Startmain
Startpl;l n1|d—11+b| |a_ll|n2
Call Call Call p Call p
all p all g

”3| | | |”4

}
|:| End, \ /
Endma;n I___I Endq

Supergraphs of procedures

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 6/54

Program Representation for Interprocedural Data Flow
Analysis: Call Multi-Graph

Startq
Startmain

startp|;| mld—i+b| Ia—lllnz

Call p Call p
Call p Call g

”3| | | |”4

}
|:| End, \ /
Endma;n I___I Endq

Supergraphs of procedures Call multi-graph

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 6/54

Program Representation for Interprocedural Data Flow
Analysis: Call Multi-Graph

Startq
Startmain

] s] n=l | e Cmsin)

Call p Call p

Call p Call g

”3| | | |”4

}
|:| End, \ /
Endma;n I___I Endq

Supergraphs of procedures Call multi-graph

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis

6/54

Program Representation for Interprocedural Data Flow

Analysis: Call Multi-Graph

Startq
Startmain
Startpl;l n1|d—1)+b| |a_ll|n2
Call Call Call p Call p
all p all g

”3| | | |”4

}
|:| End, \ /
Endma;n I___I Endq

Supergraphs of procedures

(

Call multi-graph

J May 2011

Uday Khedker

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis

6/54

Program Representation for Interprocedural Data Flow

Analysis: Call Multi-Graph

Startq
Startmain
Startpl;l n1|d—1)+b| |a_ll|n2
Call Call Call p Call p
all p all g

”3| | | |”4

}
|:| End, \ /
Endma;n I___I Endq

Supergraphs of procedures

()

Call multi-graph

J May 2011

Uday Khedker

MACS L111

Interprocedural DFA: lIssues in Interprocedural Analysis 6/54

Program Representation for Interprocedural Data Flow

Startmain

startp|;| mld—z+b|

Analysis: Call Multi-Graph

Call p

Call g

T
1 End,

En dmain

Startq

|a:1|n2

Call p

Call p

n3|

| ma

Supergraphs of procedures

N
[]End,

/

)

proc.

Call multi-graph

J May 2011

Uday KhedkerQ

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis

7/54

Program Representation for Interprocedural Data Flow
Analysis: Supergraph

Startg
Startmain
Startp;| n1|d—i+b| |‘-,,_11|,,2
all p all g

”3| | | |”4

!
I:I End, \ /
Endpain I_—_I Endq

J May 2011 Uday Khedker

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis

7/54

Program Representation for Interprocedural Data Flow
Analysis: Supergraph

Startg
Startmain

Start,|] ”1|d_‘1’+b| |3_11|”2
c2 C3|Callp| |Ca||p|C4
R LR

R | !
”3| | | |”4

End, \ /

Endmain I___I Endq

J May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 7/54

Program Representation for Interprocedural Data Flow
Analysis: Supergraph

Startg
Startmain

|a:1|n2

|Ca|| p| Cs

Endmain I___I Endq

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis

7/54

Program Representation for Interprocedural Data Flow

Analysis: Supergraph

1
Startg
Startmain
n1|d:a+b| |a:1|n2
|
C3|Callp| |Ca||p|C4
R LR

1

m|__]

Endma,-n \ Endq

J May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 7/54

Program Representation for Interprocedural Data Flow
Analysis: Supergraph

3
Startg
Startmain
n1|d:a+b| |a:1|n2
|
Cs | Call p| [Callp| G
L J
—
Rl LR
|
3 | | | | na
Endmain \ A/Endq

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 7/54

Program Representation for Interprocedural Data Flow
Analysis: Supergraph

3
Startg
Startmain
n1|d:a+b| |a:1|n2
|
Cs | Call p| [Callp| G
L J
—
Rl LR
|
3 | | | | na
Endmain \ A/Endq

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 8/54

Validity of Interprocedural Control Flow Paths

Start,
Startmain
Start,, n1|d—i+b| [a=1]m
[
afcGlip]| c[calq] G [Call p]| [Callp] G
L — |
[! R3 | | | | R
R1| l | R | | 1
I:I ns | | | | na stack —
End, e \ / ,jnainl
main J Endq

Interprocedurally valid control flow path

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 8/54

Validity of Interprocedural Control Flow Paths

Start,
Startmain
Start, n1|d—i+b| [a=1]m
[
C1|Ca|| p| C2|Ca||q| C3|C3“ P| |Ca|| p|C4
L |-
[! R3| | | | R
R1| l | R2| | 1 -
I:I ns | | | | na stack C2
End, e \ / l:nainl
main J Endq

Interprocedurally valid control flow path

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 8/54

Validity of Interprocedural Control Flow Paths

Start,
Startmain
Start,, n1|d—i+b| [a=1]m
[
afclp]| &[] G [Call p]| [Callp] G
L —
] ¥ Rs| | | | Ry
R1| l | R | | 1
I:I ns | | | | na stack —
End, e \ / l:nainl
main =[Bj Endq

Interprocedurally valid control flow path

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 8/54

Validity of Interprocedural Control Flow Paths

Start,
Startmain
Start,, n1|d—i+b| [a=1]m
[
afclp]| &[] G [Call p]| [Callp] G
L —
] ¥ Rs| | | | Ry
R1| l | R | | 1
I:I ns | | | | na stack —
End, e \ / ,I)'nainl
main =[Dj Endq

Interprocedurally invalid control flow path

) May 2011 Uday Khedker

MACS L111

Interprocedural DFA: lIssues in Interprocedural Analysis

Validity of Interprocedural Control Flow Paths

Start,
Startmain
Start, mld—z+b| [2=1]n
|
afGip]| ofaiq] || @lete] | [ce]a
(
— v 2N
O _|sCa | Caw
n3 | | | | N4 stack e
I:I Ende \ / ’l)'n'ainl
Endmain =[Dj Endq
Interprocedurally invalid control flow path
) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 8/54

Validity of Interprocedural Control Flow Paths

Start,
Startmain
Start,, n1|d—i+b| [a=1]m
[
afclp]| &[] G [Call p]| [Callp] G
L —
N v Rs| ||| E
R1| l | R | | 1
I:I ns | | | | na stack —
End, o \ / l:nainl
main =[Bj Endq

Interprocedurally valid control flow path

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 9/54

Safety, Precision, and Efficiency of Data Flow Analysis

e Data flow analysis uses static representation of programs to
compute summary information along paths

J May 2011 Uday Khedkernggﬁ

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 9/54

Safety, Precision, and Efficiency of Data Flow Analysis

e Data flow analysis uses static representation of programs to
compute summary information along paths

e Ensuring Safety. All valid paths must be covered

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis

9/54

Safety, Precision, and Efficiency of Data Flow Analysis

A path which represents
legal control flow

e Data flow analysis uses static representation
compute summary information

programs to

e Ensuring Safety. All valid paths must be covered

J May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 9/54

Safety, Precision, and Efficiency of Data Flow Analysis

A path which represents
legal control flow

e Data flow analysis uses static representation
compute summary information

programs to

e Ensuring Safety. All valid paths must be covered

e Ensuring Precision . Only valid paths should be covered.

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis

9/54

Safety, Precision, and Efficiency of Data Flow Analysis

A path which represents
legal control flow

e Data flow analysis uses static representation
compute summary information

programs to

e Ensuring Safety. All valid paths must be covered

e Ensuring Precision . Only valid paths should be covered.

Subject to merging data flow
values at shared program points
without creating invalid paths

Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 9/54

Safety, Precision, and Efficiency of Data Flow Analysis

A path which represents
legal control flow

Data flow analysis uses static representation
compute summary information

programs to

Ensuring Safety. All valid paths must be covered

Ensuring Precision . Only valid paths should be covered.

Ensuring Efficlency. Only |relevant valid paths should be covered.

Subject to merging data flow
values at shared program points
without creating invalid paths

Uday Khedker n

He

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 9/54

Safety, Precision, and Efficiency of Data Flow Analysis

A path which represents
legal control flow

Data flow analysis uses static representation
compute summary information

programs to

Ensuring Safety. All valid paths must be covered

Ensuring Precision . Only valid paths should be covered.

Ensuring Efficlency. Only |relevant valid paths should be covered.

—

Subject to merging data flow A path which yields
values at shared program points information that affects
without creating invalid paths the summary information.

Uday Khedker n

He

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 10/54

Flow and Context Sensitivity

e Flow sensitive analysis:
Considers intraprocedurally valid paths

J May 2011 Uday Khedkernw}

=

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 10/54
Flow and Context Sensitivity

e Flow sensitive analysis:
Considers intraprocedurally valid paths

e Context sensitive analysis:
Considers interprocedurally valid paths

Uday Khedker

J May 2011

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 10/54

Flow and Context Sensitivity

e Flow sensitive analysis:
Considers intraprocedurally valid paths

e Context sensitive analysis:
Considers interprocedurally valid paths

e For maximum statically attainable precision , analysis must be
both flow and context sensitive.

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 10/54

Flow and Context Sensitivity

e Flow sensitive analysis:
Considers intraprocedurally valid paths

e Context sensitive analysis:
Considers interprocedurally valid paths

e For maximum statically attainable precision , analysis must be
both flow and context ségsitive.

MFEP computation restricted to valid paths only

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 11/54

Context Sensitivity in Interprocedural Analysis

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 11/54

Context Sensitivity in Interprocedural Analysis

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 11/54

Context Sensitivity in Interprocedural Analysis

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 11/54

Context Sensitivity in Interprocedural Analysis

x
y

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 11/54

Context Sensitivity in Interprocedural Analysis

x
y

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 12/54

Staircase Diagrams of Interprocedurally Valid Paths

G
Cy Ry Ca Ry G
G Rs G| | Rs Ca Ry G
G
G

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 12/54

Staircase Diagrams of Interprocedurally Valid Paths

G
G Ry G Ry G
C3 R3 C6 ,_\ R6 C4 R4 Cl

G
G

Cs Rs

CﬂR2c3,—\R3c4,—\R4C5 Rs Cs| |Re G|

May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 12/54

Staircase Diagrams of Interprocedurally Valid Paths

G
G Ry G Ry G
C3 R3 C6 ,_\ R6 C4 R4 Cl

G
G

Cs Rs

CﬂR2c3,—\R3c4,—\R4C5 Rs Cs| |Re G|

e “You can descend only as much as you have ascended!”

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 12/54

Staircase Diagrams of Interprocedurally Valid Paths

G
C4 R4 C4 R4 C1
Cs Rs Cs [_\ Rs Ca R, Gy
G

G

Cs Rs

CﬂR2c3,—\R3c4,—\R4C5 Rs Cs| |Re G|

e “You can descend only as much as you have ascended!”

e Every descending step must match a corresponding ascending step.

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis

13/54

Context Sensitivity in Presence of Recursion

u Sk Sr

N

May 2011 Uday Khedker

=

MACS L111

Interprocedural DFA: lIssues in Interprocedural Analysis

Context Sensitivity in Presence of Recursion

13/54
u Sk Sr
% Sp 5
..,.. 5’. Sq
£l s v
E; Eq
Ep Ej
v Ek Er
May 2011

Uday Khedker g : §

=

MACS L111

Interprocedural DFA: lIssues in Interprocedural Analysis

13/54

Sk S,

Ey

May 2011

Context Sensitivity in Presence of Recursion

Uday Khedker

=

MACS L111

Interprocedural DFA: lIssues in Interprocedural Analysis

13/54

Sk

Ey

May 2011

Context Sensitivity in Presence of Recursion

Uday Khedker

=

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis

13/54

Context Sensitivity in Presence of Recursion

l-l Sk Sr
\'-. Sp f 5
S S S,
f! s -7
h
gl
E; Eq
Ep g E;
v Ek Er

May 2011 Uday Khedker

=

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 13/54

Context Sensitivity in Presence of Recursion

u Sk Sr
5 Sp f S
‘.“'
. S Sq
f! s -7
h
/o semeeemaa, .
E; q
1E g Ej
¥
v Ek Er

J May 2011 Uday Khedkernggi

=

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis

13/54

Context Sensitivity in Presence of Recursion

u
u Sk S, i
QQ..’ l h
3 Sp f ST .
% 18
N \
\.‘. 5’ Sq v
o s 7
h
g/ JUPRTLLLIIEN .
E; q
1E g Ej
g
v Ey E,
J May 2011

Uday Khedker

=

MACS L111

Interprocedural DFA: lIssues in Interprocedural Analysis

13/54

Context Sensitivity in Presence of Recursion

u Sk Sr

5 Sp f S
‘.“'
. S Sq
f! s -7
h
/o semeeemaa, .

E; q

1E g Ej
¥
v Ek Er

u o
i
|h|r
ig’ lh
\
v
lg
H}
ig
v

J May 2011

Uday Khedker

=

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 13/54
Context Sensitivity in Presence of Recursion
u u u
VY A B
u Sk S, SO Lf
bole |
% Sp f 5 l
. H
‘\‘ ;g lh f
\,. S: S v
D I lg h
£ LLT S 4
h ‘g |8
A\
g/ JUURCLLLLLLE . v
T E E, g
ég’
" E g Ej v
V’
v Ek Er

J May 2011

Uday Khedker

=

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 13/54
Context Sensitivity in Presence of Recursion

u Sk S ENA A A &
h lf folf
.-' Sp f SJ !
y ig lh Folr
«‘.’. S, Sq v lg h
.
tran v
f‘/ -------- v
h g’ |lg |h
Y
g/ JNEL L TN v
- E, g |&
g e
'E g E Y
',' P J v
o g
v Ex E, gg/
Y

e May 2011 :

Uday Khedker “==3

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 13/54
Context Sensitivity in Presence of Recursion

u Sk S ENA A A &
h lf folp o
.-' Sp f SJ !
y ig lh Folr
«‘.’. S, Sq v lg h
.
LT 4
f‘/ -------- v
h ‘g’ g |n
Y
g/ JNEL L TN v
~F, E, g |sg
g’ g
!E, g E 2
',' P J v
o g
v Ex E, gg/
Y

e May 2011 :

Uday Khedker “==3

MACS L111

Interprocedural DFA: lIssues in Interprocedural Analysis

Context Sensitivity in Presence of Recursion

13/54
b ® @ @
H A B B
L_‘l Sk S, ff L uf
h lf ol
45 f 5 l
. [
S 18 lh fo|f
S S S, v e For a path from u to
P . 4 lg h f v, g must be applied
h Eg’ g exactly the same
v number of times as f.
g/ IS ED . v
e E, & |& e For a prefix of the
0 1
', above path, g can be
3 ‘g |8 -
ie, g E v applied on.Iy at most
v as many times as f.
g
4
v Ey E, gg/
Y
v
May 2011

Uday Khedker g = §

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 14/54

Staircase Diagrams of Interprocedurally Valid Paths

J May 2011 Uday Khedkernggi

=

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 14/54

Staircase Diagrams of Interprocedurally Valid Paths

u Cx C,
G G
G &
o TR 4
R; Ry
Ry R;
v Ry R,

J May 2011 Uday Khedkernggi

=

MACS L111

Interprocedural DFA: lIssues in Interprocedural Analysis

14/54

Staircase Diagrams of Interprocedurally Valid Paths

u Ck
C,

.‘ ¢

R;
Rp

v Ry

J May 2011

Uday Khedker

=

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 14/54
Staircase Diagrams of Interprocedurally Valid Paths

u Ck C
G G

.G Cq

f! AT ¢
h

R, Ry

FRe R
¥
v Ry R,

J May 2011 Uday Khedkernggi

=

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 14/54

Staircase Diagrams of Interprocedurally Valid Paths

L"l Cx C,
o < f > G
C Co
fro T —
R; Ry
Ry R;
v Ry R,

J May 2011 Uday Khedkernggi

=

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 14/54

Staircase Diagrams of Interprocedurally Valid Paths

L'l Ck C,
G (f > G

N . Cl Cq

£ AT 4
h

R Rq
Ry R

v Rk R,

J May 2011 Uday Khedkernggi

=

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 14/54

Staircase Diagrams of Interprocedurally Valid Paths

J May 2011 Uday Khedkerngg}

=

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 15/54
Flow Insensitivity in Data Flow Analysis

e Assumption: Statements can be executed in any order.

e Instead of computing point-specific data flow information, summary
data flow information is computed.
The summary information is required to be a safe approximation of
point-specific information for each point.

e Kill,(x) component is ignored.
If statement n kills data flow information, there is an alternate path
that excludes n.

J May 2011 Uday Khedkerng&gﬁ

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 16/54

Flow Insensitivity in Data Flow Analysis

Assuming that DepGenp(x) = 0, and Kill,(X) is ignored for all n

Start
LA|2(R| 36| -+ ilf] -
End

Flow insensitive analysis

Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 16/54

Flow Insensitivity in Data Flow Analysis

Assuming that DepGenp(x) = 0, and Kill,(X) is ignored for all n

Start

End

Control flow graph Flow insensitive analysis

Function composition is replaced by function confluence

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 17/54

Flow Insensitivity in Data Flow Analysis

If DepGenp(x) # 0

Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 17/54

Flow Insensitivity in Data Flow Analysis

If DepGenp(x) # 0

Allows arbitrary compositions of flow functions
in any order = Flow insensitivity

Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 17/54

Flow Insensitivity in Data Flow Analysis

If DepGenp(x) # 0

In practice, dependent constraints are collected in a global
repository in one pass and then are solved independently

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis 18/54

Example of Flow Insensitive Analysis

Flow insensitive points-to analysis
= Same points-to information at each program point

J May 2011 Uday Khedkernggﬁ

MACS L111 Interprocedural DFA: lIssues in Interprocedural Analysis

18/54

Example of Flow Insensitive Analysis

Flow insensitive points-to analysis
= Same points-to information at each program point

Program

3|a:&d| 4|a:&e|

J May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 18/54

Example of Flow Insensitive Analysis

Flow insensitive points-to analysis
= Same points-to information at each program point

Program Constraints
1 Node | Constraint
1 P, D {b}
2 |c=a 2 P. D P,
3 P, D {d}
3|a:&d|4|a:&e| 4 Pa 2 {e}
5 P, 2 P,

Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 18/54

Example of Flow Insensitive Analysis

Flow insensitive points-to analysis
= Same points-to information at each program point

Program Constraints Points-to Graph
1 Node | Constraint /@
1 P, D {b}
2 [c=a 2 Pc 2 P, \®
3 P, 2 {d}
3|a:&d|4|a:&e| 4 P2 2 {e} @
5 P, D P,

Uday Khedker

o5

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 18/54

Example of Flow Insensitive Analysis

Flow insensitive points-to analysis
= Same points-to information at each program point

Program Constraints Points-to Graph
1 Node | Constraint @
1 | P,2{b} O %
2 [c=a 2 P. D P, @
3 P, 2 {d} \
3|a:&d|4|a:&e| 4 P2 2 {e} @
5 Py, D P,

Uday Khedker

He

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 18/54

Example of Flow Insensitive Analysis

Flow insensitive points-to analysis
= Same points-to information at each program point

Program Constraints Points-to Graph
1 Node | Constraint @
1 | P,2{b} /
2 |c=a 2 P. D P,
3 P, 2 {d} e
3|a:&d|4|a:&e| 4 P2 2 {e} \®
5 P, D P,

Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 18/54

Example of Flow Insensitive Analysis

Flow insensitive points-to analysis
= Same points-to information at each program point

Program Constraints Points-to Graph
1 Node | Constraint @
1 | P,2{b} /
2 |c=a 2 P. D P,
3 P, 2 {d} e
3|a:&d|4|a:&e| 4 P2 2 {e} \®
5 P, D P,

5 E e c does not point to any location in block 1
e a does not point b in block 5

e b does not point to itself at any time

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 19/54

Increasing Precision in Data Flow Analysis

Flow insensitive

intraprocedural
Flow sensitive Context insensitive
intraprocedural flow insensitive
Context insensitive Context sensitive
flow sensitive flow insensitive
Context sensitive

flow sensitive
Y

May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Issues in Interprocedural Analysis 19/54

Increasing Precision in Data Flow Analysis

Flow insensitive

intraprocedural
Flow sensitive Context insensitive
intraprocedural flow insensitive
Context insensitive Context sensitive
flow sensitive flow insensitive
Context sensitive \

v flow sensitive
actually, only
caller sensitive

J May 2011 Uday Khedkerng&gi

Part 4

Classical Functional Approach

MACS L111 Interprocedural DFA: Classical Functional Approach 20/54

Functional Approach

May 2011 Uday KhedkerQ

MACS L111 Interprocedural DFA: Classical Functional Approach 20/54
Functional Approach

e Compute summary flow
functions for each procedure

= £,(x) e Use summary flow functions as
the flow function for a call block

: May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach

21/54

Notation for Summary Flow Function

For simplicity forward flow is assumed.

Procedure r

f

[\

f2

f3

\ /

J May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach 21/54

Notation for Summary Flow Function

For simplicity forward flow is assumed.

Procedure r

S (u1) = dig

f

[\

f2 f3

\ /

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Classical Functional Approach 21/54

Notation for Summary Flow Function

For simplicity forward flow is assumed.

Procedure r

f

[\

S (u1) = dig

¢r(u2) =f

f2

f3

\ /

J May 2011

Uday KhedkerQ

MACS L111 Interprocedural DFA: Classical Functional Approach 21/54

Notation for Summary Flow Function

For simplicity forward flow is assumed.

Procedure r

¢, (u1) = ¢ig
fi
O () =h
o, (u3) =h / \ o, (ug) =
fa f3
\ /
fa

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Classical Functional Approach 21/54

Notation for Summary Flow Function

For simplicity forward flow is assumed.

Procedure r

¢, (u1) = did
f
/ \¢r(u2) =f
¢r(U3) = fl ¢r(U4) = fl
f f3
¢r(U5) = f2 o ﬁ_ \ /
fa

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach

21/54

Notation for Summary Flow Function

For simplicity forward flow is assumed.

¢r(U3) = fl

¢r(U5) = f2 o ﬁ_

Procedure r

f

[\

S (u1) = dig

¢r(u2) =f

f2

f3

\ /

¢r(U4) = fl

P (ug) =fr0H

J May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach

21/54

Notation for Summary Flow Function

For simplicity forward flow is assumed.

¢r(U3) = fl

¢r(U5) = f2 o ﬁ_

Procedure r

f

[\

S (u1) = dig

¢r(u2) =f

f2

f3

\ /

¢r(U4) = fl

P (ug) =fr0H

O, (ur) = hoAMfoh

J May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach 21/54

Notation for Summary Flow Function

For simplicity forward flow is assumed.

Procedure r

. (u1) = ¢ig
fi
/ \¢r(u2) =h
¢r(U3) = fl q)r(U4) = fl
fa f3
cl>r(L’5) = f2 o ﬁ. \ / ¢r(U6) = f3 o fl
&, (u7)=hofTMhof
fa
®,(ug) =fao(fhaofiMfzof)

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach 22/54

Reducing Flow Compositions and Meets

f2 o fl = fz:, & Vx € L, f2(f1(X)) = f‘EJ,(X)
hMfA=Ff & Vxel, hx)Nh(x)=mf(x)

J May 2011 Uday Khedkern%iq,}

MACS L111 Interprocedural DFA: Classical Functional Approach 23/54

Reducing Function Compositions

Assumption: No dependent parts (as in bit vector frameworks).
Kill, is ConstKill,, and Gen, is ConstGeny,.

B(x) = f(fA(x)
= fz((x—Killl)UGenl)

= <((x — Kill;) U Geny) — Killg) U Gen;
= (X - (Ki”l U Ki||2)) @] (Gen1 - Ki||2) U Geny
Hence,

Kill; = Kill; UKilly
Gens = (Genj —Killy) U Geny

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach 24/54

Reducing Function Confluences

Assumption: No dependent parts (as in bit vector frameworks).
Kill, is ConstKill,, and Gen, is ConstGeny,.

e When M is U,

flx) = BLK)UAK)
((x = Kill) U Genz) U ((x — Killy) U Geny)
= (x—(Kill; NKill)) U (Geny U Geny)

Hence,

Kill; = Kill; N Killy
Genz = Genj U Geny

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach 25/54

Reducing Function Confluences

Assumption: No dependent parts (as in bit vector frameworks).
Kill, is ConstKill,, and Gen, is ConstGeny,.

e When M is N,

flx) = BLK)NAK)
((x = Kill) U Genz) N ((x — Killy) U Geny)
= (x—(Kill UKill)) U (Geny N Geny)

Hence

Kill; = Kill; UKill,
Genz = Gen; N Geny

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach 26/54

Constructing Summary Flow Function

For simplicity forward flow is assumed.

®,(Entry(n)) =

o, (Exit(n)) =

Gid
M (o(Exit(p)))

pEpred(n)

®4(u) 0 &, (Entry(n)

fno ¢r(Entry(n))

if nis Start,

otherwise

if n calls procedure s
and u is Exit(Ends)

otherwise

J May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach 27/54

Constructing Summary Flow Functions

Start, fi

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Functional Approach

27/54

Constructing Summary Flow Functions

r [teration #1
S, (u1) = ¢ig
Start, fi
¢r(u2) = fl
¢r(U3) - fl
f
() = o i

J May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach 27/54

Constructing Summary Flow Functions

r [teration #2
S, (u1) = ¢ig
Start, fi
¢r(u2) = fl

S (u3)=HMNhoh

P (us) = fho(fiMfhoh)

May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach 27/54

Constructing Summary Flow Functions

r [teration #3
S, (u1) = ¢ig
Start, fi
cl>r(L’2) — fl

& (u3)=fAMhofMho(AMfof)

&, (ug) =ho(AMhofhMho(RMkoh))

Termination is possible only if all function compositions
and confluences can be reduced to a finite set of functions m
=

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach 28/54
Lattice of Flow Functions for Live Variables Analysis

Component functions (i.e. for a single variable)

Lattice of All ble flow functi Lattice of
data flow values possibie Tlow Tunctions | ¢\ functions

=, Gen,, | Kill, f QZJ
Al b 10 1% i
L ={a} 0 {a} </75\T Al

{a} | 0 | o, a1

He

p May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach 29/54

Lattice of Flow Functions for Live Variables Analysis

Flow functions for two variables

Lattice of Lattice of
data flow All possible flow functions flow functions
values

[Gen, | Kil, | f, || Gen, | Kil, | f |

T=0 ([0 [0 Jou] B[0 [on AN
/ \ 0 fa} | o || {b} | {a} |o71 ¢TI diT
{a} {b} 0 {b} | o || {b} | {b} | d11 N/ N\
\ / 0 [{a,b} | o1 | {b} |{ab}|orL || 9TL /qb//\ })J_T
e [0 T [Tabr | 0 Jou]| 37 3/
fa} | {a}t | ou | {ab}| {a} | o1
{a} | {b} |out | {ab}| {b} |¢11 ¢11
{a} [{a,b} | ot |[{a b} |{a,b} |01

Uday Khedker

MACS L111

Interprocedural DFA: Classical Functional Approach

29/54

Lattice of Flow Functions for Live Variables Analysis

Flow functions for two variables

Lattice of . . Lattice of
\C/Ijltjegow All possible flow functions flow functions
[Gen, | Kill, [f, || Gen, | Kill, | #, | ,
T—0 0 0 e T 0 Tg /T(*
Essentially, a prod-
{a{ \%b} 8 %Z{ i uct lattice of the %;Ll /qsﬂ\ /¢IT\
\ / 0 {(a,b} | 4] two' component oL oT1 b LT
L={a,b} || {a} 0 ¢;|,attlckesy 5 $11 / \:b
{a} | {a} | ou [{ab}] fa} [o01 N/
{a} | {b} | i1 | fa,b}| {b} |d1L b1
{at [{a,b} | ¢u7 || {a b} [{a b} | oL
P‘ May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Functional Approach

30/54

An Example of Interprocedural Liveness Analysis

a=>5;

b=3

Smain c=7"T;read d

c| Ca

M print

a=a+?2

c+d

no d =

& | Ca

Epnain print a—+c

Sp

b=2

if (b < d)
4

F

n3|c:a—|—b|C4| Call q |

£, [oint crd

Uday Khedker

He

MACS L111 Interprocedural DFA: Classical Functional Approach 31/54
Summary Flow Functions for Interprocedural Liveness
Analysis
S | Flow Defining [teration #1 ié?;?i%i:;&

a- | Function | Expression Gen | Kl |Gen] Kil
,(Ep) | 1, {c,d} 0
p d,(n3) fny 0 ®p(Ep) {a, b, d} {c}
dp(ca) fa o ®,(Ep) = ¢ 0 {a,b,c,d} | {d} | {a,b,c}
d,(Sp) fs, o (¢p(n3) M d>p(c4)) {a,d} {b, c}
fo d,(Sp) {a,d} {b, c}
g(Eq) | T, {a, b} {a}
q | Pg(c3) fp 0 ®g(Eq) {a,d} {a,b,c}
Pq(Sq) | fs, 0 Pylcs) {d} {a, b, c}
fq Dq(Sq) {d} {a,b,c}

Jiok

Uday Khedker ﬁ

MACS L111 Interprocedural DFA: Classical Functional Approach 32/54

Computed Summary Flow Function

So | 272
P if (b<d) ‘ Summary Flow Function ‘
-»I/ \I«: ¢p(Ep) Bl, U{c, d}
nlc=a J@ C4ya// I I (Blp — {c}) U{a, b,d}
_ d,(ca) (Blp —{a, b, c}) u{d}
2
d,(Sp) (Blp —{b, c}) U{a,d}
Sq ®q(Eq) (qu - {3}) U{a, b}
®g(c3) | (Blg—{a. b, c}) U{a,d}
a | Call
’ 4(Sq) | (Bly — {2 b, c}) U{d}

P May 2011 Uday Khedker

m
)
|
)
*
lon

He

MACS L111 Interprocedural DFA: Classical Functional Approach 33/54

Result of Interprocedural Liveness Analysis

Data flow Summary flow function Data flow
variable Name | Definition value
Procedure main, Bl =)

Ing,, &n(Em) Bl,U{a,c} {a,c}
In, bpn(e) (Blm —{a, b, c}) U {d} {d}
Inp, | ®m(n2) | (Blm—{a,b,c,d}) U{a,b} {a, b}
Innl q)m(nl) (Blm - {37 b> ¢, d}) U{aa ba c, d} {aa ba c, d}
Ine, Om(ct) | (Blm—{a,b,c,d}) U{a,d} {a,d}
Ins,, ®m(Sm) Bly, —{a, b,c,d} 0

P May 2011 Uday Khedker

He

MACS L111 Interprocedural DFA: Classical Functional Approach 34/54
Result of Interprocedural Liveness Analysis
Data flow Summary flow function Data flow

variable Name | Definition value
Procedure p, Bl ={a,b,c,d}
a7 b7
e, | ®p(Ep) B, U {c, d} o
Inp, ®,(n3) | (Bl —{c}) U{a,b,d} {a, b,d}
Inc, ®y(ca) | (Blp—{a,b,c}) U{d} {d}
Ins, ®,(Sp) | (Blp—{b,c}) U{a,d} {a,d}
Procedure q, Bl ={a,b,c,d}
Ing, dq(Eq) (Blg — {a}) U{a, b} {a, b,c,d}
Inc, ®g(cs) | (Blg—{a, b, c}) U{a,d} {a,d}
Ins, ®q(Sq) | (Blg—{a b, c}) U{d} {d}

Uday Khedker

He

MACS L111

Interprocedural DFA: Classical Functional Approach 35/54

Result of Interprocedural Liveness Analysis

0

a=>5;

Smain c=7T;read d

b=3

Ca

{a,d}

{a,b,c,d}

ny

print

a=a+2

c+d

(o=

Ca

{a, b}
axb
{d}

{a,c}

Epain | print a+c

{a,d}
5, b

b<d)

{abd}V N\F {9
n3|C—a—|—b|C4| Call q |

{a,b,c,d}

£, [pint e rd]

{d}
5q a=1

{a,d}

{a,b,c,d}

Eq; | a=axb

'P May 2011

Jiok

Uday Khedker ﬁ

MACS L111 Interprocedural DFA: Classical Functional Approach 36/54

Context Sensitivity of Interprocedural Liveness Analysis

1] {a,d, e}
Smain ca:: 7?;rga§ 3d Sp bb <2d)

{(a,d} {ab.d,e} V N\F {d.¢)
Callzl n3|C—a—|—b|C4| Call q |

{a,b,c.d} {a,b,c,d, e}

R 3
{a,b, e} {d,e}
SYEFTY 5, [

{d, e} {a,d, e}
Ca//zl c3 Callzl

{a,c,e} {a,b,c,d, e}

Emain print a+c+e | Eq [[a=axb m

p May 2011 Uday Khedker ==y’

MACS L111

Interprocedural DFA: Classical Functional Approach 36/54

Context Sensitivity of Interprocedural Liveness Analysis

Smain c=7T;read d

{a,d}

m

a=a+2 | ®
e=c+d | e

(o=

Ca

{a,b, e}
axb
{d.e}

{a,c,e}

Ema,-,,| print a

+c+tel

Sp

{a,b,d,

{a,d, e}

b

2
(b < d)

(b
e}V

N\ (¢}

n3|C—a—|—b|C4| Call q |

{a,b,c,d}

{a,b,c,d, e}

fp and f, remain same _ 4
e € Ins, but e & Ing,

{d, e}
S, a=1
{a,d, e}
Callzl
{a,b,c,d, e}

Eq; | a=axb

'P May 2011

Jiok

Uday Khedker ﬁ

MACS L111 Interprocedural DFA: Classical Functional Approach 37/54

Limitations of Functional Approach to Interprocedural Data
Flow Analysis

e Problems with constructing summary flow functions

J May 2011 Uday Khedkernggi

=

MACS L111 Interprocedural DFA: Classical Functional Approach 37/54

Limitations of Functional Approach to Interprocedural Data
Flow Analysis

e Problems with constructing summary flow functions

» Reducing expressions defining flow functions may not be possible
when DepGen,, # ()
» May work for some instances of some problems but not for all

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Functional Approach 37/54

Limitations of Functional Approach to Interprocedural Data
Flow Analysis

e Problems with constructing summary flow functions

» Reducing expressions defining flow functions may not be possible
when DepGen,, # ()
» May work for some instances of some problems but not for all

e Enumeration based approach

» Instead of constructing flow functions, remember the mapping x — y
as input output values

» Reuse output value of a flow function when the same input value is
encountered again

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Functional Approach 37/54

Limitations of Functional Approach to Interprocedural Data
Flow Analysis

e Problems with constructing summary flow functions

» Reducing expressions defining flow functions may not be possible
when DepGen,, # ()

» May work for some instances of some problems but not for all
e Enumeration based approach
» Instead of constructing flow functions, remember the mapping x — y

as input output values
» Reuse output value of a flow function when the same input value is

encountered again

Requires the number of values to be finite

Uday Khedker

J May 2011

Part 5

Classical Call Strings Approach

MACS L111 Interprocedural DFA: Classical Call Strings Approach 38/54

Classical Full Call Strings Approach

Most general, flow and context sensitive method

e Remember call history
Information should be propagated back to the correct point

e Call string at a program point:

» Sequence of unfinished calls reaching that point
» Starting from the Sp.in

A snap-shot of call stack in terms of call sites

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Classical Call Strings Approach 39/54

Interprocedural Data Flow Analysis Using Call Strings

e Tagged data flow information

» IN, and OUT,, are sets of the form {(o,x) | o is a call string ,x € L}
» The final data flow information is

I =
n (oelN,

Out
Hen (U,X)EOUT,,X

e Flow functions to manipulate tagged data flow information

> Intraprocedural edges manipulate data flow value x
» Interprocedural edges manipulate call string o

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 40/54

Overall Data Flow Equations

(\, Bl nis a Smain
IN, = H—J OUT, otherwise
pEpred(n)

OUT,, = DepGEN,

Effectively, ConstGEN,, = ConstKILL, = () and DepKILL,(X) = X.

X wY={(oxMy)|{o,x) €X, (o,y) €Y} U
{{o,x) | (o,x) € X, Vz€ L, {0,2) € Y } U
{{(oy) [{(oy) € Y, Vze L, {(0,2) € X}

(We merge underlying data flow values only if the contexts are same.)

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts

G
Gy Ry Gy Ry G
G Rs Gs| |Rs G e
G
G

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts
G
G Ry G Ry G
C3 R3 C6 ,_\ R6 C4 R4 Cl

G
G

Cs Rs

Cil_\R2C3[—\R3C4,—\R4C5 Rs Co| |ReCi|

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts
G
G Ry G Ry G
C3 R3 C6 ,_\ R6 C4 R4 Cl

G
G

Cs Rs

C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|

e “You can descend only as much as you have ascended!”

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts

G
Gy Ry Gy Ra G
C3 R3 C6 ,_\ R6 C4 R4 Cl
G

G

Cs Rs

C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|

e “You can descend only as much as you have ascended!”

e Every descending step must match a corresponding ascending step.

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts

G
Gy Ry Gy Ra G
C3 R3 C6 ,_\ R6 C4 R4 Cl
G

G

Cs Rs

C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|

e “You can descend only as much as you have ascended!”
e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

'P May 2011

Uday Khedker

Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts
G

MACS L111

Gy Ry G
R3 Ce ,_\ Re Ca Ry C;

A

Cs Rs

C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|

e “You can descend only as much as you have ascended!”

e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

Uday Khedker

Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts
G
G Ry G
R3 Ce ,_\ Re Ca Ry C;

MACS L111

C1CC3C,

A
Cs Rs

C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|

e “You can descend only as much as you have ascended!”
e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

Uday Khedker

Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts
G
G Ry G
R3 Ce ,_\ Re Ca Ry C;

12

MACS L111

C1CC3C,

A
Cs Rs

C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|

e “You can descend only as much as you have ascended!”
e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts

C1CrC3Cy G
C1C2C6 Gy Ra G
R3 Ce ,_\ Re Ca Ry C;

12

Cs Rs

C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|

e “You can descend only as much as you have ascended!”
e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts

C1CrC3Cy G
C1C2C6 Gy Ra G
R3 Ce ,_\ Re Ca Ry C;

12 1

Cs Rs

C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|

e “You can descend only as much as you have ascended!”
e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts

G

C1CC3C,

C1CCsCy

C1CCp

Rs Co| | Rs G

12 1

Cs Rs

C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|

e “You can descend only as much as you have ascended!”
e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts

G

C1CC3C,

C1CCsCy

C1CCp

Rs Co| | Rs G

12 1 e

Cs Rs

C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|

e “You can descend only as much as you have ascended!”
e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts
1t (C1C1C1

G

C1CCsCy

C1CC3C,

C1CCp

Rs Co| | Rs G

12 1 e

Cs Rs

C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|

e “You can descend only as much as you have ascended!”

e Every descending step must match a corresponding ascending step.

p May 2011 Uday Khedker

e Calling context is represented by the remaining descending steps.

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts
1t (C1C1C1

G

C1CC3C,

C1CCsCy

C1CCp

Rs Co| | Rs G

12 1 e

Cs Rs

C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|
))))))

e “You can descend only as much as you have ascended!”
e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts
1t (C1C1C1

G

C1CC3C,

C1CCsCy

C1CCp

Rs Co| | Rs G

12 1 e

Cs Rs

(&)
C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|
))))))

e “You can descend only as much as you have ascended!”
e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts
1t (C1C1C1

G

C1CC3C,

C1CCsCy

C1CCp

Rs Co| | Rs G

12 1 e

Cs Rs

(&) c3
C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|
))))))

e “You can descend only as much as you have ascended!”
e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts
1t (C1C1C1

G

C1CC3C,

C1CCsCy

C1CCp

Rs Co| | Rs G

12 1 e

Cs Rs

Co c3 Cy
C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|
))))))

e “You can descend only as much as you have ascended!”
e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts
1t (C1C1C1

G

C1CC3C,

C1CCsCy

C1CCp

Rs Co| | Rs G

12 1 e

C5Cs
Cs Rs

Co c3 Cy
C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|
))))))

e “You can descend only as much as you have ascended!”
e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts
1t (C1C1C1

G

C1CC3C,

C1CCsCy

C1CCp

Rs Co| | Rs G

12 1 e

C5Cs
Cs Rs

(&) C3 Cy C6
C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|
))))))

e “You can descend only as much as you have ascended!”
e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 41/54

Interprocedural Validity and Calling Contexts

1t (C1C1C1
C1CC3Cs C1CCsCy Cl
C1C2C6
Rs Co| | Rs G
Cc10 C1Co 1
C5Ch
Gs Rs

Co c3 Ca C6 7
C£|_\R2C3[—\R3C4[—\R4C5 Rs Co| |ReCi|
))))))

e “You can descend only as much as you have ascended!”
e Every descending step must match a corresponding ascending step.

e Calling context is represented by the remaining descending steps.

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 42/54

Manipulating Values

e Call edge C; — S, (i.e. call site ¢; calling procedure p).
» Append ¢; to every o.

» Propagate the data flow values
unchanged.

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 42/54

Manipulating Values

e Call edge C; — S, (i.e. call site ¢; calling procedure p).
» Append ¢; to every o.

» Propagate the data flow values
unchanged.

e Return edge E, — R; (i.e. p returning the control to call site ¢;).

» If the last call site is ¢;, remove it and
propagate the data flow value unchanged.

» Block other data flow values.

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Classical Call Strings Approach 42/54

Manipulating Values

e Call edge C; — S, (i.e. call site ¢; calling procedure p).
» Append ¢; to every o.

Ascend

» Propagate the data flow values
unchanged.

e Return edge E, — R; (i.e. p returning the control to call site ¢;).

» If the last call site is ¢;, remove it and
propagate the data flow value unchanged. Descend

» Block other data flow values.

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Classical Call Strings Approach 42/54

Manipulating Values

e Call edge C; — S, (i.e. call site ¢; calling procedure p).
» Append ¢; to every o.

Ascend

» Propagate the data flow values
unchanged.

e Return edge E, — R; (i.e. p returning the control to call site ¢;).

» If the last call site is ¢;, remove it and
propagate the data flow value unchanged. Descend

» Block other data flow values.

{{o-ci,x) | (o,x) € X} nis G
DepGEN,(X) = {{o,x) | (c-ci,x) € X} nisR;
{{o,fa(x)) | (0,x) € X} otherwise

'P May 2011

Uday Khedker

MACS L111

Interprocedural DFA: Classical Call Strings Approach

43/54

Available Expressions Analysis Using Call Strings Approach

5main

read a, b
t:=axb

l

il

—

Ry
m @a*b

Uday Khedker

He

MACS L111 Interprocedural DFA: Classical Call Strings Approach

43/54

Available Expressions Analysis Using Call Strings Approach

5 read a, b
main | ¢ :— 3% b

l

il

—

Ry
Is ax b

available?

ny|print ax b
Emain

J May 2011

Uday Khedker

o5

MACS L111 Interprocedural DFA: Classical Call Strings Approach

Available Expressions Analysis Using Call Strings Approach

43/54

Vi
S
5 read a, b ’
main | + -— 3% b int a, b, t;
l void p()
{ if (a == 0)
pO;
I t = axb;
R[] J
Isaxb }
available?

ny|print ax b
Emain EP

P May 2011 Uday Khedker

He

MACS L111 Interprocedural DFA: Classical Call Strings Approach

Available Expressions Analysis Using Call Strings Approach

43/54

Vi
S
5 read a, b ’
main | + -— 3% b int a, b, t;
l void p()
{ if (a == 0)
pO;
I t = axb;
Ri }
Isaxb Yes! }
available? e

Emain EP

P May 2011 Uday Khedker

He

MACS L111 Interprocedural DFA: Classical Call Strings Approach 44/54

Available Expressions Analysis Using Call Strings Approach

5 read a, b
main | t .= ax b

l

ol

—

Ry
m IE axb
Emain I___I

Uday Khedker

He

MACS L111 Interprocedural DFA: Classical Call Strings Approach 44/54

Available Expressions Analysis Using Call Strings Approach

S read a, b
main | t :=ax b

l

ol
2

Ry
m @a*b

Emain I—__I

) May 2011 Uday Khedker

MACS L111

Interprocedural DFA: Classical Call Strings Approach

44/54

Available Expressions Analysis Using Call Strings Approach

S read a, b
main | t :=ax b

l

ol

—

Ry
m IE axb
Emain I___I

X

J May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 44/54

Available Expressions Analysis Using Call Strings Approach

S read a, b
main | t :=ax b

l

il
2

Ry
m @a*b

Emain I—__I

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 44/54

Available Expressions Analysis Using Call Strings Approach

S read a, b
main | t :=ax b

l

ol
2

Ry
m @a*b

Emain I—__I

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach

45/54

Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of

nodes to be processed

S read a, b
main t:=axb

l

il

—

Ry
m IE axb
Emain I___I

J May 2011

Uday Khedker

5

MACS L111 Interprocedural DFA: Classical Call Strings Approach 45/54

Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of
nodes to be processed

S read a, b
main | t :=ax b

| o
G callp
L

—

Ry
m IE axb
Emain I___I

Uday Khedker n

He

MACS L111

Interprocedural DFA: Classical Call Strings Approach

45/54

Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of
nodes to be processed

5main

(all)

read a, b
t:=axb

| o

il

—

Ry
m @a*b

|2
S, ifa==0

Uday Khedker

MACS L111

Interprocedural DFA: Classical Call Strings Approach

45/54

Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of
nodes to be processed

5main

{al1)

read a, b
t:=axb

| o

il

—

Ry
m @a*b

(all)

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach

45/54

Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of

{al1)

nodes to be processed

S read a, b
main | t :=ax b

| o

il
2

Ry
m @a*b

5,

(al)

Uday Khedker

He

MACS L111 Interprocedural DFA: Classical Call Strings Approach

45/54

Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of

{al1)

(c1c2|0)

nodes to be processed

S read a, b
main | t :=ax b

| o

il
2

Ry
m @a*b

Vi
S, ifa==0

(al)

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 45/54

Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of (a]1) (c1c2]0)
nodes to be processed

S,
S read a, b
main |t :=axb
| o
q
{ {al1)

Ry (c12[0)
ny|print ax b

P May 2011 Uday Khedker

He

MACS L111 Interprocedural DFA: Classical Call Strings Approach 45/54

Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of (c1]1) (c162]0), (c10262]0), . ..
nodes to be processed) ¢

S, ifa==0

5 read a, b
main | ¢ :— 3% b

| o

il

{ {al1)

Ry (c12[0)
ny|print ax b

Emain Ep
: J
i May 2011

Uday Khedker

C1C2|0>, ‘e

MACS L111 Interprocedural DFA: Classical Call Strings Approach 45/54

Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of (c1]1) (c162]0), (c10262]0), . ..
nodes to be processed

read a, b
Smain | t .= 4% b
| o
Cl acl0),...
—
R:
(c1c2|0)

<C1C2C2|0>

ny|print ax b

p May 2011 Uday Khedker

He

MACS L111

Interprocedural DFA: Classical Call Strings Approach

45/54

Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of

{al1)

(c102]0), (c16202]0),

nodes to be processed

read a, b
t:=axb

| o

il
2

Ry
m @a*b

5main

(€1]0){(c1c2|0)
ny t=axb

C1C2|0>, ‘e

(c1c2|0)
<C1C2C2|0>

Uday Khedker g = §

He

MACS L111 Interprocedural DFA: Classical Call Strings Approach 45/54

Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of (c1]1) (c162]0), (c10262]0), . ..
nodes to be processed

read a, b
Smain | t .= 4% b
| o
Cl acl0),...
—
R:
(c1c2|0)

<C1C2C2|0>

ny|print ax b

p May 2011 Uday Khedker

He

MACS L111 Interprocedural DFA: Classical Call Strings Approach 45/54

Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of (c1]1) (c162]0), (c10262]0), . ..
nodes to be processed

read a, b
Smain | t .= 4% b
| o
Cl acl0),...
{_(all)
R
(c1c2|0)

<C1C2C2|0>

ny|print ax b

p May 2011 Uday Khedker

He

MACS L111 Interprocedural DFA: Classical Call Strings Approach 45/54

Available Expressions Analysis Using Call Strings Approach

Maintain a worklist of (c1]1) (c162]0), (c10262]0), . ..
nodes to be processed

5 read a, b
main | ¢ :— 3% b

| o

il

{{all)
R

(A1)

C1C2|0>, ‘e

(c1c2|0)
<C1C2C2|0>
ny print ax b

p May 2011 Uday Khedker

He

MACS L111 Interprocedural DFA: Classical Call Strings Approach 46/54

Tutorial Problem

Generate a trace of the preceding example in the following format:

Step | Selected nggwe\(}alajzta Remaining

No. Node N |OUT,, Work List

e Assume that call site ¢; appended to a call string o only if there are
at most 2 occurences of ¢; in o

e What about work list organization?

P May 2011 Uday Khedker{m“}

He

MACS L111 Interprocedural DFA: Classical Call Strings Approach 47/54

The Need for Multiple Occurrences of a Call Site

Even if data flow values in cyclic call sequence do not change

. int a,b,c;
. void main()
{ ¢ = axb;

pO;
)

. void p()
A if Gl
{ pO;

9. Is axb available?
10. a = axb;
1.}

12.}

J May 2011 Uday Khedkern%iq,}

O ~NO O WN -

MACS L111 Interprocedural DFA: Classical Call Strings Approach 47/54
The Need for Multiple Occurrences of a Call Site

Even if data flow values in cyclic call sequence do not change

1.int a,b,c; 3: Gen
2. void main() 4
3.{ c = axb; 7
4. pO; 8
5.} 7
6. void p(O) Path 1|12
7.{ if (...) 9 ¥
8. { pO; 10 : Kill
9. Is axb available? 11

10. a = axb; 12
1.} 5
12.}

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 47/54

The Need for Multiple Occurrences of a Call Site

Even if data flow values in cyclic call sequence do not change

3: Gen
1.int a,b,c; 3: Gen 4
2. void main() 4 7
3.{ c = axb; 7 8
a. pO; 8 7
5.} 7 8
6. void pQO Path 1| 12 Path2 7
7.{ if (...) 9 X 12
8. { pO; 10 : Kill 9 Y
9. Is axb available? 11 10 : Kill
10. a = axb; 12 11 |
1.} 5 12
12.} g Y

10 : Kill

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 48/54

The Need for Multiple Occurrences of a Call Site

Even if data flow values in cyclic call sequence do not change

. int a,b,c;
. void main()
{ ¢ = axb;

pO;
)

. void p()
A if Gl
{ pO;

9. Is axb available?
10. a = axb;
1.}

12.}

O ~NO O WN -

J May 2011 Uday Khedkern%iq,}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 48/54
The Need for Multiple Occurrences of a Call Site

Even if data flow values in cyclic call sequence do not change

. int a,b,c;
. void main()
{ ¢ = axb;

pO;
)

. void p(Q)
A if Gl
{ pO;

9. Is a*xb available?
10. a = axb;
1.}

12.}

O ~NO O WN -

e May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 48/54
The Need for Multiple Occurrences of a Call Site

Even if data flow values in cyclic call sequence do not chang

. int a,b,c;
. void main()
{ ¢ = axb;

pO;
)

. void p(Q)

A if Gl

{ pO;

9. Is axb available?
10. = axb;
11. } a a Emain

2.y e Sl ___

O ~NO O WN -

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 48/54

The Need for Multiple Occurrences of a Call Site

Even if data flow values in cyclic call sequence do not chang

int a,b,c;

. void main() Smain :I
{ ¢ = axb;

pO;
)

. void p(Q)

A if Gl

{ pO;

9. Is axb available?
10. = axb;
11. } a a Emain

12.}

O ~NO O WN -

e Interprocedurally valid IFP

Kill
ny, Ep7 R27 n

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 48/54

The Need for Multiple Occurrences of a Call Site

Even if data flow values in cyclic call sequence do not chang

1. int a,b,c; 1}
2. void main() Smain :I
3.{ c = axb;

4. pO; M i

5.}

6. void pQO G

7.{ if (...)

8. { pO;

9. Is a*xb available? f

10. = axb;

11. } @ @ Emain

12.}

e Interprocedurally valid IFP

Kill
C27 5p7 Ep7 R27 ny, Ep7 R27 n
L |

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 48/54

The Need for Multiple Occurrences of a Call Site

Even if data flow values in cyclic call sequence do not chang

1. int a,b,c; 1}
2. void main() Smain :I
3.{ c = axb;

4. pO; M i

5.}

6. void pQO G

7.{ if (...)

8. { pO;

9. Is a*xb available? f

10. = axb;

11. } @ @ Emain

12.}

e Interprocedurally valid IFP

Kill
o, 55, G, Sp, Ep, Roy 2, Epy Ry o
L

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 48/54

The Need for Multiple Occurrences of a Call Site

Even if data flow values in cyclic call sequence do not chang

1. int a,b,c; 1}
2. void main() Smain :I
3.{ c = axb;

4. pO; M i

5.}

6. void pQO G

7.{ if (...)

8. { pO;

9. Is a*xb available? f

10. = axb;

11. } @ @ Emain

12.}

e Interprocedurally valid IFP

Kill
Sm,n, G, Sp, G2, Sp, G2, 5p, Ep, Ro, N2, Ep, Roy o
L

'P May 2011

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 49/54

The Need for Multiple Occurrences of a Call Site

Even if data flow values in cyclic call sequence do not change

In terms of staircase diagram

e Interprocedurally valid IFP
Kill
Sma n, Cl’ SP’C27 Sp7C2’ Sp’ Ep’ R27 ny, Ep) R27 n
L |

J May 2011 Uday Khedkernggﬁ

MACS L111 Interprocedural DFA: Classical Call Strings Approach

49/54

The Need for Multiple Occurrences of a Call Site

Even if data flow values in cyclic call sequence do not change

In terms of staircase diagram

e Interprocedurally valid IFP
Kill
Sma n, Cl’ SP’C27 Sp7C2’ Sp’ Ep’ R27 ny, Epa R27 n
L |

e You cannot descend twice, unless you ascend twice

G Ry
G R>
G Ry

J May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 49/54

The Need for Multiple Occurrences of a Call Site

Even if data flow values in cyclic call sequence do not change

In terms of staircase diagram

e Interprocedurally valid IFP
Kill
Sma ny, Cl’ SP’C27 SP7C2’ Sp’ Ep’ R27 n, Ep> R27 n
L |

e You cannot descend twice, unless you ascend twice

G Ry
G R>
G Ry

e Even if the data flow values do not change while ascending, you
need to ascend because they may change while descending

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Classical Call Strings Approach 50/54

Terminating Call String Construction

e For non-recursive programs: Number of call strings is finite

J May 2011 Uday Khedkerngg}

=

MACS L111 Interprocedural DFA: Classical Call Strings Approach 50/54

Terminating Call String Construction

e For non-recursive programs: Number of call strings is finite

e For recursive programs: Number of call strings could be infinite
Fortunately, the problem is decidable for finite lattices.

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 50/54

Terminating Call String Construction

e For non-recursive programs: Number of call strings is finite

e For recursive programs: Number of call strings could be infinite
Fortunately, the problem is decidable for finite lattices.

» All call strings upto the following length must be constructed

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 50/54

Terminating Call String Construction

e For non-recursive programs: Number of call strings is finite

e For recursive programs: Number of call strings could be infinite
Fortunately, the problem is decidable for finite lattices.

» All call strings upto the following length must be constructed

o K- (|L| +1)? for general bounded frameworks
(L is the overall lattice of data flow values)

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Classical Call Strings Approach 50/54

Terminating Call String Construction

e For non-recursive programs: Number of call strings is finite

e For recursive programs: Number of call strings could be infinite
Fortunately, the problem is decidable for finite lattices.

» All call strings upto the following length must be constructed
o K- (|L| +1)? for general bounded frameworks
(L is the overall lattice of data flow values)
o K- (|7:| + 1)? for separable bounded frameworks
(L is the component lattice for an entity)

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Classical Call Strings Approach 50/54

Terminating Call String Construction

e For non-recursive programs: Number of call strings is finite

e For recursive programs: Number of call strings could be infinite
Fortunately, the problem is decidable for finite lattices.

» All call strings upto the following length must be constructed
o K- (|L| +1)? for general bounded frameworks
(L is the overall lattice of data flow values)
o K- (|7:| + 1)? for separable bounded frameworks
(L is the component lattice for an entity)
o K -3 for bit vector frameworks

J May 2011 Uday Khedkerng&gi

MACS L111 Interprocedural DFA: Classical Call Strings Approach 50/54
Terminating Call String Construction

e For non-recursive programs: Number of call strings is finite

e For recursive programs: Number of call strings could be infinite
Fortunately, the problem is decidable for finite lattices.

» All call strings upto the following length must be constructed
o K- (|L| +1)? for general bounded frameworks
(L is the overall lattice of data flow values)
o K- (|7:| + 1)? for separable bounded frameworks
(L is the component lattice for an entity)

o K -3 for bit vector frameworks
o 3 occurrences of any call site in a call string for bit vector frameworks

= Not a bound but prescribed necessary length

: May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 50/54
Terminating Call String Construction

e For non-recursive programs: Number of call strings is finite

e For recursive programs: Number of call strings could be infinite
Fortunately, the problem is decidable for finite lattices.

» All call strings upto the following length must be constructed
o K- (|L| +1)? for general bounded frameworks
(L is the overall lattice of data flow values)
o K- (|7:| + 1)? for separable bounded frameworks
(L is the component lattice for an entity)

o K -3 for bit vector frameworks
o 3 occurrences of any call site in a call string for bit vector frameworks

= Not a bound but prescribed necessary length

= Large number of long call strings

: May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 51/54

Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 51/54

Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

Call string of length m—1 (G, - C;,... G, , | x)

May 2011 Uday KhedkerQ

MACS L111 Interprocedural DFA: Classical Call Strings Approach

51/54

Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

RN

&=

Uday Khedker “==3

MACS L111 Interprocedural DFA: Classical Call Strings Approach

51/54
Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

CASFRESHEEAEY (€, C, G %

-

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach

51/54
Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

CASFRESHEEAEY (€, C, G %

-

Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 51/54

Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

Call string of length m (G, - GCy...G, | x)

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 51/54

Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

Call string of length m (Cy - GCppy... G | x)

Call string of length m (Cy... G, - G| x)
(First call site ¢j1 removed

from incoming call string
and call site ¢, attached)

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 51/54

Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

Call string of length m (Cy - G, l .G | x)

Call string of length m (Cy... G, - G| x)

(First call site ¢j1 removed
from incoming call string
and call site ¢, attached) (G- Cif G ly)

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 51/54

Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

Call string of length m (Cy - G, l .G | x)

Call string of length m (Cy... G, - G| x)

(First call site ¢j1 removed

from incoming call string
and call site ¢, attached) (G- Cif G ly)

(G- Gy .. G |)

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 51/54

Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

<C,' ~C,‘ ,..C,'m |X1>

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 51/54

Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

<C,'~C,‘,..C,'m|X1> <Q1~C;2...Cfm|X2>

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach

51/54

Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

<C,'~C,‘,..C,'m|X1> <Q1~C;2...Cfm|X2>

(—\/

|

<C,' -G ...C,‘m~C3|X1|_|X2>

J May 2011

Uday KhedkerQ

MACS L111 Interprocedural DFA: Classical Call Strings Approach 51/54

Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

<C,'~C,‘,..C,'m|X1> <Cj~C,'...C,'m|X2>

(—\/

|

<C,' -G ...C,‘m~C3|X1|_|X2>

<C,‘ C,C, -Ca\y)

&
je—
3

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 51/54

Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

<C,'1~ m|X1 . ,...C,'m|X2>

(—\/

< . . C |X1|_|X2>

(CyCih.. G Caly)

H

(G- Gy Gy ly) Gy Gy | y)

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 51/54

Classical Approximate Approach

e Maintain call string suffixes of upto a given length m.

<C,'1~ m|X1 . ,...C,'m|X2>

(—\/

< . . C |X1|_|X2>

(CyCih.. G Caly)

H

(G- Gy Gy ly) Gy Gy | y)

e Practical choices of m have been 1 or 2.

J May 2011 Uday Khedkernh}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 52/54

Approximate Call Strings in Presence of Recursion

e For simplicity, assume m = 2

(Co | x1)
—

J May 2011 Uday Khedkerng}

=

MACS L111 Interprocedural DFA: Classical Call Strings Approach 52/54

Approximate Call Strings in Presence of Recursion

e For simplicity, assume m = 2

(Co | xa)

J May 2011 Uday Khedkerng}

=

MACS L111 Interprocedural DFA: Classical Call Strings Approach 52/54

Approximate Call Strings in Presence of Recursion

e For simplicity, assume m = 2

(Co | x1) (Co- Cy | %)

J May 2011 Uday Khedkerng}

=

MACS L111 Interprocedural DFA: Classical Call Strings Approach 52/54

Approximate Call Strings in Presence of Recursion

e For simplicity, assume m = 2

(Co | x1) (Co- Co| %)
M—

(Co- Gl xa), (Ga- G| x)

J May 2011 Uday Khedkerng}

=

MACS L111 Interprocedural DFA: Classical Call Strings Approach 52/54

Approximate Call Strings in Presence of Recursion

e For simplicity, assume m = 2

<Cb ‘ X1> <Cb -Gy | X2>7 <Ca -Gy | X3>

J May 2011 Uday Khedkern§§

=

MACS L111 Interprocedural DFA: Classical Call Strings Approach 52/54

Approximate Call Strings in Presence of Recursion

e For simplicity, assume m = 2

<Cb ‘X1> <Cb'Ca |X2>7 <Ca'Ca |X3>
—

<Cb -G, ‘ X1>7 <Ca -G, | Xo [X3>

J May 2011 Uday Khedkerng}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 52/54

Approximate Call Strings in Presence of Recursion

e For simplicity, assume m = 2

(Co | x1) (Co- G| x2), (Co-Cy| xa)
—

<Cb -G, ‘ X1>7 <|Ca -G, | X HX3>

Cm s s s s ...

J May 2011 Uday Khedkerng}

=

MACS L111 Interprocedural DFA: Classical Call Strings Approach 52/54

Approximate Call Strings in Presence of Recursion

e For simplicity, assume m = 2

(Co | x1) (Co- G| x2), (Co-Cy| xa)
—

(Cb- G, | x1), (G- Ga| xs)

J May 2011 Uday Khedkerng}

MACS L111 Interprocedural DFA: Classical Call Strings Approach 52/54

Approximate Call Strings in Presence of Recursion

e For simplicity, assume m = 2

(Co | x1) (Co- G| x2), (Co-Cy| xa)
—

(Co- Gl xa), (Ga- G| xs)

<Cb . Ca |}/1>7 <Ca . Ca | }’2>

J May 2011 Uday Khedkern%;§

MACS L111 Interprocedural DFA: Classical Call Strings Approach 52/54

Approximate Call Strings in Presence of Recursion

e For simplicity, assume m = 2

(Co | xa) (G- Gl x), (G- G| xa)

\—/—\f\/

F

G Ixa), (G- G xs)

%

Gln), (G- GColyr)

(Cb | y1) (Co-Caly2), (Ca-Ca| o)

J May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 52/54

Approximate Call Strings in Presence of Recursion

e For simplicity, assume m = 2

(Co | x1) (Co- G| x2), (Co-Cy| xa)
—

(Cb- G, | x1), (G- Ga| xs)

(Co | y1) (Co- Gl ya), (G- Goly2)

J May 2011 Uday Khedkern%iq,}

H

MACS L111 Interprocedural DFA: Classical Call Strings Approach 53/54
Value Based Termination of Call String Construction

e Clearly identifies the exact set of caII&@gs required.

e Value based termination of call st onstruction. No need to
construct call strings upto a fix ngth.

e Only as many call strings ar, \nstructed as are required.
o Significant reduction in spdee and time.

e Worst case call stri gth becomes linear in the size of the lattice
instead of the origigal quadratic.

éo

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 53/54
Value Based Termination of Call String Construction

e Clearly identifies the exact set of caII&@gs required.

e Value based termination of call st onstruction. No need to
construct call strings upto a fix ngth.

e Only as many call strings ar, \nstructed as are required.
o Significant reduction in spdee and time.

e Worst case call stri gth becomes linear in the size of the lattice
instead of the origigal quadratic.

éo

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 53/54
Value Based Termination of Call String Construction

e Clearly identifies the exact set of caII&@gs required.

e Value based termination of call st onstruction. No need to
construct call strings upto a fix ngth.

e Only as many call strings ar, \nstructed as are required.
o Significant reduction in spdee and time.

e Worst case call stri gth becomes linear in the size of the lattice
instead of the origigal quadratic.

éo

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 53/54
Value Based Termination of Call String Construction

e Clearly identifies the exact set of caII&@gs required.

e Value based termination of call st onstruction. No need to
construct call strings upto a fix ngth.

e Only as many call strings ar, \nstructed as are required.
o Significant reduction in spdee and time.

e Worst case call stri gth becomes linear in the size of the lattice
instead of the origigal quadratic.

éo

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 53/54
Value Based Termination of Call String Construction

e Clearly identifies the exact set of caII&@gs required.

e Value based termination of call st onstruction. No need to
construct call strings upto a fix ngth.

e Only as many call strings ar, \nstructed as are required.
o Significant reduction in spdee and time.

e Worst case call stri gth becomes linear in the size of the lattice
instead of the origigal quadratic.

éo

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 53/54
Value Based Termination of Call String Construction

e Clearly identifies the exact set of caII&@gs required.

e Value based termination of call st onstruction. No need to
construct call strings upto a fix ngth.

e Only as many call strings ar, \nstructed as are required.
o Significant reduction in spdee and time.
e Worst case call stri gth becomes linear in the size of the lattice

instead of the origigal quadratic.

All this is achie@a simple change without compromising on the
precision, simplicty, and generality of the classical method.

) May 2011 Uday Khedker

MACS L111 Interprocedural DFA: Classical Call Strings Approach 54/54

Some Observations

e Compromising on precision may not be necessary for efficiency.

e Separating the necessary information from redundant information is
much more significant.

e Data flow propagation in real programs seems to involve only a
small subset of all possible values.
Much fewer changes than the theoretically possible worst case
number of changes.

A precise modelling of the process of analysis is often an eye opener.

J May 2011 Uday Khedkerng&gﬁ

	About These Slides
	Outline
	Issues in Interprocedural Analysis
	Classical Functional Approach
	Classical Call Strings Approach

