
Further Generalizations

Uday P. Khedker

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

May 2011

Part 1

About These Slides

MACS L111 Generalizations-2: About These Slides 1/59

Copyright

These slides constitute the lecture notes for

• MACS L111 Advanced Data Flow Analysis course at Cambridge
University, and

• CS 618 Program Analysis course at IIT Bombay.

They have been made available under GNU FDL v1.2 or later (purely for
academic or research use) as teaching material accompanying the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow

Analysis: Theory and Practice. CRC Press (Taylor and Francis
Group). 2009.

Apart from the above book, some slides are based on the material from
the following books

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

• F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag. 1998.

May 2011 Uday Khedker

MACS L111 Generalizations-2: About These Slides 2/59

Outline

• Partial Redundancy Elimination (previous lecture)

• Introduction to Constant Propagation (previous lecture)

• Theoretical Abstractions in Data Flow Analysis
◮ The world of data flow values (previous lecture)
◮ The world of functions and operations that compute data values

(today)
◮ Results of data flow analysis (today)
◮ Algorithms for performing data flow analysis (today)

• Precise Modelling of General flows (today)
Example: Constant Propagation

May 2011 Uday Khedker

Part 2

Flow Functions

MACS L111 Generalizations-2: Flow Functions 3/59

Flow Functions: An Outline of Our Discussion

• Defining flow functions

• Properties of flow functions
(Some properties discussed in the context of solutions of data flow
analysis)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 4/59

The Set of Flow Functions

• F is the set of functions f : L 7→ L such that

◮ F contains an identity function

To model “empty” statements, i.e. statements which do not
influence the data flow information

◮ F is closed under composition

Cumulative effect of statements should generate data flow
information from the same set.

◮ For every x ∈ L, there must be a finite set of flow functions
{f1, f2, . . . fm} ⊆ F such that

x =
1≤i≤m

fi (BI)

• Properties of f

◮ Monotonicity and Distributivity

◮ Separability

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 5/59

Flow Functions in Bit Vector Data Flow Frameworks

• Bit Vector Frameworks: Available Expressions Analysis, Reaching
Definitions Analysis Live variable Analysis, Anticipable Expressions
Analysis, Partial Redundancy Elimination etc.

◮ All functions can be defined in terms of constant Gen and Kill

f (x) = Gen ∪ (x − Kill)

◮ Lattices are powersets with partial orders as ⊆ or ⊇ relations
◮ Information is merged using ∩ or ∪

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 5/59

Flow Functions in Bit Vector Data Flow Frameworks

• Bit Vector Frameworks: Available Expressions Analysis, Reaching
Definitions Analysis Live variable Analysis, Anticipable Expressions
Analysis, Partial Redundancy Elimination etc.

◮ All functions can be defined in terms of constant Gen and Kill

f (x) = Gen ∪ (x − Kill)

◮ Lattices are powersets with partial orders as ⊆ or ⊇ relations
◮ Information is merged using ∩ or ∪

• Flow functions in Faint Variables Analysis, Pointer Analyses, Constant
Propagation, Possibly Uninitialized Variables cannot be expressed using
constant Gen and Kill .

Local context alone is not sufficient to describe the effect of statements
fully.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 6/59

Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

x y

f

f (x) f (y)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 6/59

Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

x y

f

f (x) f (y)⊑

⊑

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 6/59

Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

∀x , y ∈ L, x ⊑ y ⇒ f (x) ⊑ f (y)

x y

f

f (x) f (y)⊑

⊑

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 6/59

Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

∀x , y ∈ L, x ⊑ y ⇒ f (x) ⊑ f (y)

x y

f

f (x) f (y)⊑

⊑

• Alternative definition

∀x , y ∈ L, f (x ⊓ y) ⊑ f (x) ⊓ f (y)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 6/59

Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

∀x , y ∈ L, x ⊑ y ⇒ f (x) ⊑ f (y)

x y

f

f (x) f (y)⊑

⊑

• Alternative definition

∀x , y ∈ L, f (x ⊓ y) ⊑ f (x) ⊓ f (y)

• Merging at intermediate points in shared segments of paths is safe
(However, it may lead to imprecision).

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 7/59

Distributivity of Flow Functions

• Merging distributes over function application

x y

f

f (x) ⊓ f (y)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 7/59

Distributivity of Flow Functions

• Merging distributes over function application

x y

f

f (x ⊓ y)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 7/59

Distributivity of Flow Functions

• Merging distributes over function application

∀x , y ∈ L, x ⊑ y ⇒ f (x ⊓ y) = f (x) ⊓ f (y)

x y

f

f (x ⊓ y)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 7/59

Distributivity of Flow Functions

• Merging distributes over function application

∀x , y ∈ L, x ⊑ y ⇒ f (x ⊓ y) = f (x) ⊓ f (y)

x y

f

f (x ⊓ y)

• Merging at intermediate points in shared segments of paths does
not lead to imprecision.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 8/59

Monotonicity and Distributivity

⊤

⊥

L

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 8/59

Monotonicity and Distributivity

⊤

⊥

L

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 8/59

Monotonicity and Distributivity

⊤

⊥

L

⊤

⊥

L

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 8/59

Monotonicity and Distributivity

⊤

⊥

L

⊤

⊥

L

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 8/59

Monotonicity and Distributivity

⊤

⊥

L

⊤

⊥

L

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 8/59

Monotonicity and Distributivity

⊤

⊥

L

⊤

⊥

L

Monotonic and
Distributive

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 8/59

Monotonicity and Distributivity

⊤

⊥

L

⊤

⊥

L

Monotonic but
not Distributive

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 9/59

Distributivity of Bit Vector Frameworks

f (x) = Gen ∪ (x − Kill)

f (y) = Gen ∪ (y − Kill)

f (x ∪ y) = Gen ∪ ((x ∪ y)− Kill)

= Gen ∪ ((x − Kill) ∪ (y − Kill))

= (Gen ∪ (x − Kill) ∪ Gen ∪ (y − Kill))

= f (x) ∪ f (y)

f (x ∩ y) = Gen ∪ ((x ∩ y)− Kill)

= Gen ∪ ((x − Kill) ∩ (y − Kill))

= (Gen ∪ (x − Kill) ∩ Gen ∪ (y − Kill))

= f (x) ∩ f (y)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 10/59

Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 10/59

Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

• x = 〈1, 2, 3, ?〉 (Along Outn1 → Inn2)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 10/59

Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

a = 2, b = 1

• x = 〈1, 2, 3, ?〉 (Along Outn1 → Inn2)

• y = 〈2, 1, 3, 2〉 (Along Outn3 → Inn2)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 10/59

Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

a = 2, b = 1

• x = 〈1, 2, 3, ?〉 (Along Outn1 → Inn2)

• y = 〈2, 1, 3, 2〉 (Along Outn3 → Inn2)

• Function application for block n2 before merging

f (x) ⊓ f (y) = f (〈1, 2, 3, ?〉) ⊓ f (〈2, 1, 3, 2〉)
= 〈1, 2, 3, 2〉 ⊓ 〈2, 1, 3, 2〉
= 〈⊥̂, ⊥̂, 3, 2〉

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 10/59

Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

a = 2, b = 1

• x = 〈1, 2, 3, ?〉 (Along Outn1 → Inn2)

• y = 〈2, 1, 3, 2〉 (Along Outn3 → Inn2)

• Function application for block n2 before merging

f (x) ⊓ f (y) = f (〈1, 2, 3, ?〉) ⊓ f (〈2, 1, 3, 2〉)
= 〈1, 2, 3, 2〉 ⊓ 〈2, 1, 3, 2〉
= 〈⊥̂, ⊥̂, 3, 2〉

• Function application for block n2 after merging

f (x ⊓ y) = f (〈1, 2, 3, ?〉 ⊓ 〈2, 1, 3, 2〉)
= f (〈⊥̂, ⊥̂, 3, 2〉)
= 〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 10/59

Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

a = 2, b = 1

• x = 〈1, 2, 3, ?〉 (Along Outn1 → Inn2)

• y = 〈2, 1, 3, 2〉 (Along Outn3 → Inn2)

• Function application for block n2 before merging

f (x) ⊓ f (y) = f (〈1, 2, 3, ?〉) ⊓ f (〈2, 1, 3, 2〉)
= 〈1, 2, 3, 2〉 ⊓ 〈2, 1, 3, 2〉
= 〈⊥̂, ⊥̂, 3, 2〉

• Function application for block n2 after merging

f (x ⊓ y) = f (〈1, 2, 3, ?〉 ⊓ 〈2, 1, 3, 2〉)
= f (〈⊥̂, ⊥̂, 3, 2〉)
= 〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

• f (x ⊓ y) ⊏ f (x) ⊓ f (y)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 11/59

Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 11/59

Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 11/59

Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a + b = 3

• Correct combination.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 11/59

Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a + b = 3

• Correct combination.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 11/59

Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a + b = 2

• Wrong combination.

• Mutually exclusive information.

• No execution path along which
this information holds.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Flow Functions 11/59

Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a + b = 4

• Wrong combination.

• Mutually exclusive information.

• No execution path along which
this information holds.

May 2011 Uday Khedker

Part 3

Solutions of Data Flow Analysis

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 12/59

Solutions of Data Flow Analysis: An Outline of Our
Discussion

• MoP and MFP assignments and their relationship

• Existence of MoP assignment

◮ Boundedness of flow functions

• Existence and Computability of MFP assignment

◮ Flow functions Vs. function computed by data flow equations

• Safety of MFP solution

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 13/59

Solutions of Data Flow Analysis

• An assignment A associates data flow values with program points.
A ⊑ B if for all program points p, A(p) ⊑ B(p)

• Performing data flow analysis

Given

◮ A set of flow functions, a lattice, and merge operation

◮ A program flow graph with a mapping from nodes to flow functions

Find out

◮ An assignment A which is as exhaustive as possible and is safe

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 14/59

Meet Over Paths (MoP) Assignment

Entry

p

Exit

Entry
• The largest safe approximation of the information
reaching a program point along all information
flow paths.

MoP(p) =
d

ρ∈Paths(p)
fρ(BI)

◮ fρ represents the compositions of flow functions
along ρ.

◮ BI refers to the relevant information from the
calling context.

◮ All execution paths are considered potentially
executable by ignoring the results of conditionals.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 14/59

Meet Over Paths (MoP) Assignment

Entry

p

Exit

Entry
• The largest safe approximation of the information
reaching a program point along all information
flow paths.

MoP(p) =
d

ρ∈Paths(p)
fρ(BI)

◮ fρ represents the compositions of flow functions
along ρ.

◮ BI refers to the relevant information from the
calling context.

◮ All execution paths are considered potentially
executable by ignoring the results of conditionals.

• Any Info(p) ⊑ MoP(p) is safe.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 15/59

Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 15/59

Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

◮ In the presence of cycles there are infinite paths

If all paths need to be traversed ⇒ Undecidability

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 15/59

Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

◮ In the presence of cycles there are infinite paths

If all paths need to be traversed ⇒ Undecidability

◮ Even if a program is acyclic, every conditional
multiplies the number of paths by two

If all paths need to be traversed ⇒ Intractability

n

n n

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 15/59

Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

◮ In the presence of cycles there are infinite paths

If all paths need to be traversed ⇒ Undecidability

◮ Even if a program is acyclic, every conditional
multiplies the number of paths by two

If all paths need to be traversed ⇒ Intractability

• Why not merge information at intermediate points?

◮ Merging is safe but may lead to imprecision.

◮ Computes fixed point solutions of data flow equations.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 15/59

Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

◮ In the presence of cycles there are infinite paths

If all paths need to be traversed ⇒ Undecidability

◮ Even if a program is acyclic, every conditional
multiplies the number of paths by two

If all paths need to be traversed ⇒ Intractability

• Why not merge information at intermediate points?

◮ Merging is safe but may lead to imprecision.

◮ Computes fixed point solutions of data flow equations.

Path based
specification

Edge based
specifications

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 16/59

Assignments for Constant Propagation Example

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 16/59

Assignments for Constant Propagation Example

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

MoP

〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉

〈1, 2, 3, ⊤̂〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈2, 1, 3, 2〉

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 16/59

Assignments for Constant Propagation Example

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

MoP

〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉

〈1, 2, 3, ⊤̂〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈2, 1, 3, 2〉

MFP

〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉

〈1, 2, 3, ⊤̂〉

〈⊥̂, ⊥̂, 3, ⊥̂〉

〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

〈2, 1, 3, ⊥̂〉

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 17/59

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 17/59

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 17/59

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 17/59

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 17/59

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

∀i , Ini = Outi = ⊥

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 17/59

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

∀i , Ini = Outi = ⊥

Meet Over Paths Assignment

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 17/59

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

∀i , Ini = Outi = ⊥

Meet Over Paths Assignment

Maximum Fixed Point

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 17/59

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

∀i , Ini = Outi = ⊥

Meet Over Paths Assignment

Maximum Fixed Point

Least Fixed Point

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 18/59

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 18/59

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 18/59

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 18/59

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments

A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00

Out1 11 00 11 11 11 11

In2 11 00 00 10 01 01

Out2 11 00 00 10 01 10

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 18/59

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments

A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00

Out1 11 00 11 11 11 11

In2 11 00 00 10 01 01

Out2 11 00 00 10 01 10

• Maximum fixed point
assignment

• Initialization for round
robin iterative method: 11

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 18/59

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments

A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00

Out1 11 00 11 11 11 11

In2 11 00 00 10 01 01

Out2 11 00 00 10 01 10

• Not a fixed point
assignment

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 18/59

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments

A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00

Out1 11 00 11 11 11 11

In2 11 00 00 10 01 01

Out2 11 00 00 10 01 10

• Minimum fixed point
assignment

• Initialization for round
robin iterative method: 00

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 18/59

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments

A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00

Out1 11 00 11 11 11 11

In2 11 00 00 10 01 01

Out2 11 00 00 10 01 10

• Fixed point assignment
which is neither maximum
nor minimum

• Initialization for round
robin iterative method: 10

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 18/59

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments

A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00

Out1 11 00 11 11 11 11

In2 11 00 00 10 01 01

Out2 11 00 00 10 01 10

• Fixed point assignment
which is neither maximum
nor minimum

• Initialization for round
robin iterative method: 01

May 2011 Uday Khedker

MACS L111 Generalizations-2: Solutions of Data Flow Analysis 18/59

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments

A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00

Out1 11 00 11 11 11 11

In2 11 00 00 10 01 01

Out2 11 00 00 10 01 10

• Not a fixed point
assignment

May 2011 Uday Khedker

Part 4

Performing Data Flow Analysis

MACS L111 Generalizations-2: Performing Data Flow Analysis 19/59

Performing Data Flow Analysis

• Algorithms for computing MFP solution

• Complexity of data flow analysis

• Factor affecting the complexity of data flow analysis

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 20/59

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (⊤)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 20/59

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (⊤)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations

Our examples use
this method.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 20/59

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (⊤)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations

Our examples use
this method.

• Work List. Dynamic list of nodes which need recomputation

Termination : When the list becomes empty

+ Demand driven. Avoid unnecessary computations.

− Overheads of maintaining work list.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 21/59

Elimination Methods of Performing Data Flow Analysis

Delayed computations of dependent data flow values of dependent nodes.

Find suitable single-entry regions.

• Interval Based Analysis. Uses graph partitioning.

• T1,T2 Based Analysis. Uses graph parsing.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 22/59

Classification of Edges in a Graph

Graph G

1

2

6

34

5

7

8

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 22/59

Classification of Edges in a Graph

Graph G A depth first spanning tree of G

1

2

6

34

5

7

8

1

2

6

34

5

7

8

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 22/59

Classification of Edges in a Graph

Graph G A depth first spanning tree of G

1

2

6

34

5

7

8

1

2

6

34

5

7

8

Back edges
Forward edges
Tree edges
Cross edges

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 22/59

Classification of Edges in a Graph

Graph G A depth first spanning tree of G

1

2

6

34

5

7

8

1

2

6

34

5

7

8

Back edges
Forward edges

For data flow analysis, we club tree,
forward, and cross edges into forward

edges. Thus we have just forward or
back edges in a control flow graph

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 23/59

Reverse Post Order Traversal

• A reverse post order (rpo) is a topological sort of the graph
obtained after removing back edges

Graph G
G ′ obtained after removing

back edges of G

1

2
6

34

5
7

8

1

2
6

34

5
7

8

• Some possible RPOs for G are: (1, 2, 3, 4, 5, 6, 7, 8),
(1, 6, 7, 2, 3, 4, 5, 8), (1, 6, 2, 7, 4, 3, 5, 8), and (1, 2, 6, 7, 3, 4, 5, 8)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 24/59

Round Robin Iterative Algorithm

1 In0 = BI

2 for all j 6= 0 do
3 Inj = ⊤
4 change = true

5 while change do
6 { change = false

7 for j = 1 to N − 1 do

8 { temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 change = true

12 }
13 }
14 }

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 24/59

Round Robin Iterative Algorithm

1 In0 = BI

2 for all j 6= 0 do
3 Inj = ⊤
4 change = true

5 while change do
6 { change = false

7 for j = 1 to N − 1 do

8 { temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 change = true

12 }
13 }
14 }

• Computation of Outj has
been left implicit
Works fine for unidirectional
frameworks

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 24/59

Round Robin Iterative Algorithm

1 In0 = BI

2 for all j 6= 0 do
3 Inj = ⊤
4 change = true

5 while change do
6 { change = false

7 for j = 1 to N − 1 do

8 { temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 change = true

12 }
13 }
14 }

• Computation of Outj has
been left implicit
Works fine for unidirectional
frameworks

• ⊤ is the identity of ⊓
(line 3)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 24/59

Round Robin Iterative Algorithm

1 In0 = BI

2 for all j 6= 0 do
3 Inj = ⊤
4 change = true

5 while change do
6 { change = false

7 for j = 1 to N − 1 do

8 { temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 change = true

12 }
13 }
14 }

• Computation of Outj has
been left implicit
Works fine for unidirectional
frameworks

• ⊤ is the identity of ⊓
(line 3)

• Reverse postorder (rpo)
traversal for efficiency
(line 7)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 24/59

Round Robin Iterative Algorithm

1 In0 = BI

2 for all j 6= 0 do
3 Inj = ⊤
4 change = true

5 while change do
6 { change = false

7 for j = 1 to N − 1 do

8 { temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 change = true

12 }
13 }
14 }

• Computation of Outj has
been left implicit
Works fine for unidirectional
frameworks

• ⊤ is the identity of ⊓
(line 3)

• Reverse postorder (rpo)
traversal for efficiency
(line 7)

• rpo traversal AND no loops
⇒ no need of initialization

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 25/59

Complexity of Round Robin Iterative Algorithm

• Unidirectional bit vector frameworks

◮ Construct a spaning tree T of G to identify postorder traversal
◮ Traverse G in reverse postorder for forward problems and

Traverse G in postorder for backward problems
◮ Depth d(G ,T): Maximum number of back edges in any acyclic path

Task Number of iterations

First computation of In and Out 1
Convergence

d(G ,T)
(until change remains true)
Verifying convergence

1
(change becomes false)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 25/59

Complexity of Round Robin Iterative Algorithm

• Unidirectional bit vector frameworks

◮ Construct a spaning tree T of G to identify postorder traversal
◮ Traverse G in reverse postorder for forward problems and

Traverse G in postorder for backward problems
◮ Depth d(G ,T): Maximum number of back edges in any acyclic path

Task Number of iterations

First computation of In and Out 1
Convergence

d(G ,T)
(until change remains true)
Verifying convergence

1
(change becomes false)

• What about bidirectional bit vector frameworks?

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 25/59

Complexity of Round Robin Iterative Algorithm

• Unidirectional bit vector frameworks

◮ Construct a spaning tree T of G to identify postorder traversal
◮ Traverse G in reverse postorder for forward problems and

Traverse G in postorder for backward problems
◮ Depth d(G ,T): Maximum number of back edges in any acyclic path

Task Number of iterations

First computation of In and Out 1
Convergence

d(G ,T)
(until change remains true)
Verifying convergence

1
(change becomes false)

• What about bidirectional bit vector frameworks?

• What about other frameworks?

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 26/59

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 26/59

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 26/59

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 26/59

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 26/59

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

3 + 1 iterations for available expressions analysis

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 27/59

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

1

6

7

8 9

10

11

12

2

3 4

5

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 27/59

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Node numbers are in reverse post
order

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 27/59

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Node numbers are in reverse post
order

• Back edges in the graph are
n5 → n2 and n10 → n9.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 27/59

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Node numbers are in reverse post
order

• Back edges in the graph are
n5 → n2 and n10 → n9.

• d(G ,T) = 1

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 27/59

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Node numbers are in reverse post
order

• Back edges in the graph are
n5 → n2 and n10 → n9.

• d(G ,T) = 1

• Actual iterations : 5

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 28/59

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1
11 1,1
10 1,1
9 1,1
8 1,1
7 1,1
6 1,1
5 1,1
4 1,1
3 1,1
2 1,1
1 1,1

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 28/59

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0
11 1,1 0,1
10 1,1
9 1,1
8 1,1
7 1,1
6 1,1 1,0
5 1,1
4 1,1
3 1,1
2 1,1
1 1,1 0,0

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 28/59

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0
11 1,1 0,1
10 1,1
9 1,1
8 1,1
7 1,1
6 1,1 1,0
5 1,1
4 1,1
3 1,1
2 1,1 1,0
1 1,1 0,0

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 28/59

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0
11 1,1 0,1
10 1,1
9 1,1
8 1,1
7 1,1
6 1,1 1,0
5 1,1 0,0
4 1,1 0,1
3 1,1 0,0
2 1,1 1,0 0,0
1 1,1 0,0

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 28/59

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0
11 1,1 0,1 0,0
10 1,1 0,1
9 1,1 1,0
8 1,1
7 1,1 0,0
6 1,1 1,0 0,0
5 1,1 0,0
4 1,1 0,1 0,0
3 1,1 0,0
2 1,1 1,0 0,0
1 1,1 0,0

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 28/59

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0
11 1,1 0,1 0,0
10 1,1 0,1
9 1,1 1,0
8 1,1 1,0
7 1,1 0,0
6 1,1 1,0 0,0
5 1,1 0,0
4 1,1 0,1 0,0
3 1,1 0,0
2 1,1 1,0 0,0
1 1,1 0,0

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 28/59

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0 0,0
11 1,1 0,1 0,0 0,0
10 1,1 0,1 0,1
9 1,1 1,0 1,0
8 1,1 1,0 1,0
7 1,1 0,0 0,0
6 1,1 1,0 0,0 0,0
5 1,1 0,0 0,0
4 1,1 0,1 0,0 0,0
3 1,1 0,0 0,0
2 1,1 1,0 0,0 0,0
1 1,1 0,0 0,0

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 28/59

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0 0,0
11 1,1 0,1 0,0 0,0
10 1,1 0,1 0,1 Delete
9 1,1 1,0 1,0 Insert
8 1,1 1,0 1,0 Insert
7 1,1 0,0 0,0
6 1,1 1,0 0,0 0,0
5 1,1 0,0 0,0
4 1,1 0,1 0,0 0,0
3 1,1 0,0 0,0
2 1,1 1,0 0,0 0,0
1 1,1 0,0 0,0

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 29/59

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 29/59

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 29/59

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 29/59

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 29/59

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 29/59

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 29/59

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 29/59

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 29/59

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 30/59

Information Flow and Information Flow Paths

• Default value at each program point: ⊤
• Information flow path

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 30/59

Information Flow and Information Flow Paths

• Default value at each program point: ⊤
• Information flow path

Sequence of adjacent program points

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 30/59

Information Flow and Information Flow Paths

• Default value at each program point: ⊤
• Information flow path

Sequence of adjacent program points
along which data flow values change

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 30/59

Information Flow and Information Flow Paths

• Default value at each program point: ⊤
• Information flow path

Sequence of adjacent program points
along which data flow values change

• A change in the data flow at a program point could be

◮ Generation of information

Change from ⊤ to a non-⊤ due to local effect (i.e. f (⊤) 6= ⊤)

◮ Propagation of information

Change from x to y such that y ⊑ x due to global effect

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 30/59

Information Flow and Information Flow Paths

• Default value at each program point: ⊤
• Information flow path

Sequence of adjacent program points
along which data flow values change

• A change in the data flow at a program point could be

◮ Generation of information

Change from ⊤ to a non-⊤ due to local effect (i.e. f (⊤) 6= ⊤)

◮ Propagation of information

Change from x to y such that y ⊑ x due to global effect

• Information flow path (ifp) need not be a graph theoretic path

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 31/59

Edge and Node Flow Functions

n

m

Inn

Outn

Inm

Outm

f fn

f fn→m

f fm

Inn

Outn

Inm

Outm

f bn

f bn→m

f bm

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 31/59

Edge and Node Flow Functions

n

m

Inn

Outn

Inm

Outm

f fn

f fn→m

f fm

Inn

Outn

Inm

Outm

f bn

f bn→m

f bm

Forward Node Flow Function

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 31/59

Edge and Node Flow Functions

n

m

Inn

Outn

Inm

Outm

f fn

f fn→m

f fm

Inn

Outn

Inm

Outm

f bn

f bn→m

f bm

Forward Node Flow Function

Forward Edge Flow Function

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 31/59

Edge and Node Flow Functions

n

m

Inn

Outn

Inm

Outm

f fn

f fn→m

f fm

Inn

Outn

Inm

Outm

f bn

f bn→m

f bm

Forward Node Flow Function

Forward Edge Flow Function

Backward Node Flow Function

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 31/59

Edge and Node Flow Functions

n

m

Inn

Outn

Inm

Outm

f fn

f fn→m

f fm

Inn

Outn

Inm

Outm

f bn

f bn→m

f bm

Forward Node Flow Function

Forward Edge Flow Function

Backward Node Flow Function

Backward Edge Flow Function

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 32/59

General Data Flow Equations

Inn =

BIStart ⊓ f bn (Outn) n = Start(

m∈pred(n)
f fm→n(Outm)

)
⊓ f bn (Outn) otherwise

Outn =

BIEnd ⊓ f fn (Inn) n = End(

m∈succ(n)
f bm→n(Inm)

)
⊓ f fn (Inn) otherwise

• Edge flow functions are typically identity

∀x ∈ L, f (x) = x

• If particular flows are absent, the correponding flow functions are

∀x ∈ L, f (x) = ⊤

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 33/59

Modelling Information Flows Using Edge and Node Flow
Functions

Forward Backward Bidirectional Bidirectional

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

f fk→l ◦ f fk ◦ f fi→k f bi→k ◦ f bk ◦ f bk→l f fi→k ◦ f bk→j f fk→l ◦ f bk→m

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 34/59

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 34/59

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 34/59

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 34/59

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 34/59

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 34/59

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 34/59

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 34/59

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 34/59

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

• Theoretically predicted number : 144

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 34/59

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

• Theoretically predicted number : 144

• Actual iterations : 5

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 34/59

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

• Theoretically predicted number : 144

• Actual iterations : 5

• Not related to depth (1)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 35/59

Lacuna with PRE Complexity

• Lacuna with PRE : Complexity O(n2) traversals.

Practical graphs may have upto 50 nodes.

◮ Predicted number of traversals : 2,500.

◮ Practical number of traversals : ≤ 5.

• No explanation for about 14 years despite dozens of efforts.

• Not much experimentation with performing advanced optimizations
involving bidirectional dependency.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 36/59

Complexity of Round Robin Iterative Method

Chemist Cloth Shop Doctor Tailor X-Ray Clinic

• Buy OTC (Over-The-Counter) medicine. No U-Turn 1 Trip

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 36/59

Complexity of Round Robin Iterative Method

Chemist Cloth Shop Doctor Tailor X-Ray Clinic

• Buy OTC (Over-The-Counter) medicine. No U-Turn 1 Trip

• Buy cloth. Give it to the tailor for stitching. No U-Turn 1 Trip

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 36/59

Complexity of Round Robin Iterative Method

Chemist Cloth Shop Doctor Tailor X-Ray Clinic

• Buy OTC (Over-The-Counter) medicine. No U-Turn 1 Trip

• Buy cloth. Give it to the tailor for stitching. No U-Turn 1 Trip

• Buy medicine with doctor’s prescription. 1 U-Turn 2 Trips

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 36/59

Complexity of Round Robin Iterative Method

Chemist Cloth Shop Doctor Tailor X-Ray Clinic

• Buy OTC (Over-The-Counter) medicine. No U-Turn 1 Trip

• Buy cloth. Give it to the tailor for stitching. No U-Turn 1 Trip

• Buy medicine with doctor’s prescription. 1 U-Turn 2 Trips

• Buy medicine with doctor’s prescription. 2 U-Turns 3 Trips

The diagnosis requires X-Ray.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 37/59

Information Flow Paths and Width of a Graph

• A traversal u → v in an ifp is

◮ Compatible if u is visited before v in the chosen graph traversal
◮ Incompatible if u is visited after v in the chosen graph traversal

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 37/59

Information Flow Paths and Width of a Graph

• A traversal u → v in an ifp is

◮ Compatible if u is visited before v in the chosen graph traversal
◮ Incompatible if u is visited after v in the chosen graph traversal

• Every incompatible edge traversal requires one additional iteration

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 37/59

Information Flow Paths and Width of a Graph

• A traversal u → v in an ifp is

◮ Compatible if u is visited before v in the chosen graph traversal
◮ Incompatible if u is visited after v in the chosen graph traversal

• Every incompatible edge traversal requires one additional iteration

• Width of a program flow graph with respect to a data flow
framework
Maximum number of incompatible traversals in any ifp, no part of
which is bypassed

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 37/59

Information Flow Paths and Width of a Graph

• A traversal u → v in an ifp is

◮ Compatible if u is visited before v in the chosen graph traversal
◮ Incompatible if u is visited after v in the chosen graph traversal

• Every incompatible edge traversal requires one additional iteration

• Width of a program flow graph with respect to a data flow
framework
Maximum number of incompatible traversals in any ifp, no part of
which is bypassed

• Width + 1 iterations are sufficient to converge on MFP solution
(1 additional iteration may be required for verifying convergence)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 38/59

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

• Every “incompatible” edge traversal
⇒ One additional graph traversal

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 38/59

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
• Every “incompatible” edge traversal

⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 0?

• Maximum number of traversals =
1 + Max. incompatible edge traversals

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 38/59

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
× • Every “incompatible” edge traversal

⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 1?

• Maximum number of traversals =
1 + Max. incompatible edge traversals

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 38/59

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
×× • Every “incompatible” edge traversal

⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 2?

• Maximum number of traversals =
1 + Max. incompatible edge traversals

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 38/59

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
××

×

• Every “incompatible” edge traversal
⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 3?

• Maximum number of traversals =
1 + Max. incompatible edge traversals

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 38/59

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
××

× √

• Every “incompatible” edge traversal
⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 3?

• Maximum number of traversals =
1 + Max. incompatible edge traversals

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 38/59

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
××

× √

√

• Every “incompatible” edge traversal
⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 3?

• Maximum number of traversals =
1 + Max. incompatible edge traversals

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 38/59

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
××

× √

√√

• Every “incompatible” edge traversal
⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 3?

• Maximum number of traversals =
1 + Max. incompatible edge traversals

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 38/59

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
××

× √

√√×

• Every “incompatible” edge traversal
⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 4

• Maximum number of traversals =
1 + Max. incompatible edge traversals

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 38/59

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
××

× √

√√×

• Every “incompatible” edge traversal
⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 4

• Maximum number of traversals =
1 + 4 = 5

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 39/59

Width Subsumes Depth

• Depth is applicable only to unidirectional data flow frameworks

• Width is applicable to both unidirectional and bidirectional
frameworks

• For a given graph, Width ≤ Depth
Width provides a tighter bound

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 40/59

Comparison Between Width and Depth

• Depth is purely a graph theoretic property whereas width depends
on control flow graph as well as the data framework

• Comparison between width and depth is meaningful only
◮ For unidirectional frameworks
◮ When the direction of traversal for computing width is the natural

direction of traversal

• Since width excludes bypassed path segments, width can be smaller
than depth

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 41/59

Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal
for available expressions analysis

• Depth = 2

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 41/59

Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal
for available expressions analysis

• Depth = 2

• Information generation point
n5 kills expression “a + b”

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 41/59

Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal
for available expressions analysis

• Depth = 2

• Information generation point
n5 kills expression “a + b”

• Information propagation path
n5 → n4 → n6 → n2
No Gen or Kill for “a + b”
along this path

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 41/59

Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal
for available expressions analysis

• Depth = 2

• Information generation point
n5 kills expression “a + b”

• Information propagation path
n5 → n4 → n6 → n2
No Gen or Kill for “a + b”
along this path

• Width = 2

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 41/59

Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal
for available expressions analysis

• Depth = 2

• Information generation point
n5 kills expression “a + b”

• Information propagation path
n5 → n4 → n6 → n2
No Gen or Kill for “a + b”
along this path

• Width = 2

• What about “j + 1”?

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 41/59

Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal
for available expressions analysis

• Depth = 2

• Information generation point
n5 kills expression “a + b”

• Information propagation path
n5 → n4 → n6 → n2
No Gen or Kill for “a + b”
along this path

• Width = 2

• What about “j + 1”?

• Not available on entry to the
loop

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 42/59

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 42/59

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 42/59

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 42/59

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

• ifp 6 → 3 → 6 is bypassed by the edge 6 → 7

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 42/59

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

• ifp 6 → 3 → 6 is bypassed by the edge 6 → 7

• ifp 7 → 2 → 8 is bypassed by the edge 7 → 8

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 42/59

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

• ifp 6 → 3 → 6 is bypassed by the edge 6 → 7

• ifp 7 → 2 → 8 is bypassed by the edge 7 → 8

• For forward unidirectional frameworks, width
is 1

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 42/59

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

• ifp 6 → 3 → 6 is bypassed by the edge 6 → 7

• ifp 7 → 2 → 8 is bypassed by the edge 7 → 8

• For forward unidirectional frameworks, width
is 1

• Splitting the bypassing edges and inserting
nodes along those edges increases the width

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 43/59

Work List Based Iterative Algorithm

Directly traverses information flow paths

1 In0 = BI

2 for all j 6= 0 do
3 { Inj = ⊤
4 Add j to LIST
5 }
6 while LIST is not empty do
7 { Let j be the first node in LIST. Remove it from LIST

8 temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 Add all successors of j to LIST
12 }
13 }

May 2011 Uday Khedker

MACS L111 Generalizations-2: Performing Data Flow Analysis 44/59

Tutorial Problem

Perform work list based iterative analysis for earlier examples. Assume
that the work list follows FIFO (First in First Out) policy.

Show the trace of the analysis in the folloing format:

Step Program Remaining Data Program Resulting
No. Point Work list Flow Point(s) Work list

Selected Value Added

May 2011 Uday Khedker

Part 5

Precise Modelling of General Flows

MACS L111 Generalizations-2: Precise Modelling of General Flows 45/59

Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 45/59

Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Iteration #1

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 45/59

Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Iteration #1

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = 3 4

5 d = 2 5

Iteration #2

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 45/59

Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Iteration #1

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = 3 4

5 d = 2 5

Iteration #2

1 a = b + 1 1

2 a = b + 1 2

3 b = 4 3

4 c = 3 4

5 d = 2 5

Iteration #3

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 45/59

Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Iteration #1

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = 3 4

5 d = 2 5

Iteration #2

1 a = b + 1 1

2 a = b + 1 2

3 b = 4 3

4 c = 3 4

5 d = 2 5

Iteration #3

1 a = 5 1

2 a = 5 2

3 b = 3 3

4 c = d + 1 4

5 d = 2 5

Iteration #4

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 46/59

Loop Closures of Flow Functions

X

p1

X

p2

X
p3

x

f (x)

Paths Terminating at p2 Data Flow Value

p1, p2 x

p1, p2, p3, p2 f (x)
p1, p2, p3, p2, p3, p2 f (f (x)) = f 2(x)
p1, p2, p3, p2, p3, p2, p3, p2 f (f (f (x))) = f 3(x)
.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 46/59

Loop Closures of Flow Functions

X

p1

X

p2

X
p3

x

f (x)

Paths Terminating at p2 Data Flow Value

p1, p2 x

p1, p2, p3, p2 f (x)
p1, p2, p3, p2, p3, p2 f (f (x)) = f 2(x)
p1, p2, p3, p2, p3, p2, p3, p2 f (f (f (x))) = f 3(x)
.

• For static analysis we need to summarize the value at p2 by a value
which is safe after any iteration.

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ f 4(x) ⊓ . . .

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 46/59

Loop Closures of Flow Functions

X

p1

X

p2

X
p3

x

f (x)

Paths Terminating at p2 Data Flow Value

p1, p2 x

p1, p2, p3, p2 f (x)
p1, p2, p3, p2, p3, p2 f (f (x)) = f 2(x)
p1, p2, p3, p2, p3, p2, p3, p2 f (f (f (x))) = f 3(x)
.

• For static analysis we need to summarize the value at p2 by a value
which is safe after any iteration.

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ f 4(x) ⊓ . . .

• f ∗ is called the loop closure of f .

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 47/59

Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ . . .

f 2(x) = f (Gen ∪ (x − Kill))

= Gen ∪ ((Gen ∪ (x − Kill))− Kill)

= Gen ∪ ((Gen − Kill) ∪ (x − Kill))

= Gen ∪ (Gen − Kill) ∪ (x − Kill)

= Gen ∪ (x − Kill) = f (x)

f ∗(x) = x ⊓ f (x)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 47/59

Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ . . .

f 2(x) = f (Gen ∪ (x − Kill))

= Gen ∪ ((Gen ∪ (x − Kill))− Kill)

= Gen ∪ ((Gen − Kill) ∪ (x − Kill))

= Gen ∪ (Gen − Kill) ∪ (x − Kill)

= Gen ∪ (x − Kill) = f (x)

f ∗(x) = x ⊓ f (x)

• Loop Closures of Bit Vector Frameworks are 2-bounded.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 47/59

Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ . . .

f 2(x) = f (Gen ∪ (x − Kill))

= Gen ∪ ((Gen ∪ (x − Kill))− Kill)

= Gen ∪ ((Gen − Kill) ∪ (x − Kill))

= Gen ∪ (Gen − Kill) ∪ (x − Kill)

= Gen ∪ (x − Kill) = f (x)

f ∗(x) = x ⊓ f (x)

• Loop Closures of Bit Vector Frameworks are 2-bounded.

• Intuition: Since Gen and Kill are constant, same things are generated or
killed in every application of f .

Multiple applications of f are not required unless the input value changes.

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 48/59

Larger Values of Loop Closure Bounds

• Fast Frameworks ≡ 2-bounded frameworks (eg. bit vector
frameworks)
Both these conditions must be satisfied

◮ Separability

Data flow values of different entities are independent
◮ Constant or Identity Flow Functions

Flow functions for an entity are either constant or identity

• Non-fast frameworks
At least one of the above conditions is violated

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 49/59

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 49/59

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable Non-Separable

Example: All bit vector frameworks Example: Constant Propagation

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 49/59

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable

〈 x̂1, x̂2, . . . , x̂m 〉

f

〈 ŷ1, ŷ2, . . . , ŷm 〉

Non-Separable

〈 x̂1, x̂2, . . . , x̂m 〉

f

〈 ŷ1, ŷ2, . . . , ŷm 〉

Example: All bit vector frameworks Example: Constant Propagation

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 49/59

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ1, ŷ 2, . . . , ŷm 〉

Non-Separable

〈 x̂1, x̂2, . . . , x̂m 〉

f

〈 ŷ1, ŷ2, . . . , ŷm 〉

Example: All bit vector frameworks Example: Constant Propagation

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 49/59

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ1, ŷ 2, . . . , ŷm 〉

ĥ : L̂ 7→ L̂

Non-Separable

〈 x̂1, x̂2, . . . , x̂m 〉

f

〈 ŷ1, ŷ2, . . . , ŷm 〉

Example: All bit vector frameworks Example: Constant Propagation

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 49/59

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ1, ŷ 2, . . . , ŷm 〉

ĥ : L̂ 7→ L̂

Non-Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ1, ŷ 2, . . . , ŷm 〉

Example: All bit vector frameworks Example: Constant Propagation

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 49/59

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ1, ŷ 2, . . . , ŷm 〉

ĥ : L̂ 7→ L̂

Non-Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ1, ŷ 2, . . . , ŷm 〉

ĥ : L 7→ L̂

Example: All bit vector frameworks Example: Constant Propagation

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 50/59

Separability of Bit Vector Frameworks

• L̂ is {0, 1}, L is {0, 1}m
• ⊓̂ is either boolean AND or boolean OR

• ⊤̂ and ⊥̂ are 0 or 1 depending on ⊓̂.
• ĥ is a bit function and could be one of the following:

Raise Lower Propagate Negate

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 50/59

Separability of Bit Vector Frameworks

• L̂ is {0, 1}, L is {0, 1}m
• ⊓̂ is either boolean AND or boolean OR

• ⊤̂ and ⊥̂ are 0 or 1 depending on ⊓̂.
• ĥ is a bit function and could be one of the following:

Raise Lower Propagate Negate

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

Non-monotonicity

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 51/59

Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 51/59

Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 51/59

Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 51/59

Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉
f 2(⊤) = 〈1, ⊤̂, 2〉

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 51/59

Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉
f 2(⊤) = 〈1, ⊤̂, 2〉
f 3(⊤) = 〈1, 3, 2〉

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 51/59

Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉
f 2(⊤) = 〈1, ⊤̂, 2〉
f 3(⊤) = 〈1, 3, 2〉
f 4(⊤) = 〈⊥̂, 3, 2〉

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 51/59

Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉
f 2(⊤) = 〈1, ⊤̂, 2〉
f 3(⊤) = 〈1, 3, 2〉
f 4(⊤) = 〈⊥̂, 3, 2〉
f 5(⊤) = 〈⊥̂, 3, ⊥̂〉

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 51/59

Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉
f 2(⊤) = 〈1, ⊤̂, 2〉
f 3(⊤) = 〈1, 3, 2〉
f 4(⊤) = 〈⊥̂, 3, 2〉
f 5(⊤) = 〈⊥̂, 3, ⊥̂〉
f 6(⊤) = 〈⊥̂, ⊥̂, ⊥̂〉

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 51/59

Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

Summary flow function:
(data flow value at node 7)

f (〈va, vb, vc 〉) = 〈 1 ⊓ (vb + 1),
(vc + 1),
(va + 1)

〉

f 0(⊤) = 〈⊤̂, ⊤̂, ⊤̂〉
f 1(⊤) = 〈1, ⊤̂, ⊤̂〉
f 2(⊤) = 〈1, ⊤̂, 2〉
f 3(⊤) = 〈1, 3, 2〉
f 4(⊤) = 〈⊥̂, 3, 2〉
f 5(⊤) = 〈⊥̂, 3, ⊥̂〉
f 6(⊤) = 〈⊥̂, ⊥̂, ⊥̂〉
f 7(⊤) = 〈⊥̂, ⊥̂, ⊥̂〉

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 51/59

Boundedness of Constant Propagation

1 a = 1 1

2 a = 1 2

3 a = 1 3

4 a = b + 1 4

5 b = c + 1 5

6 c = a + 1 5

7 a = 1 1

f ∗(⊤) =
6d

i=0
f i(⊤)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 52/59

Boundedness of Constant Propagation

The moral of the story:

• The data flow value of every variable could change twice

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 52/59

Boundedness of Constant Propagation

The moral of the story:

• The data flow value of every variable could change twice

• In the worst case, only one change may happen in every step of a
function application

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 52/59

Boundedness of Constant Propagation

The moral of the story:

• The data flow value of every variable could change twice

• In the worst case, only one change may happen in every step of a
function application

• Maximum number of steps: 2× |Var|

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 52/59

Boundedness of Constant Propagation

The moral of the story:

• The data flow value of every variable could change twice

• In the worst case, only one change may happen in every step of a
function application

• Maximum number of steps: 2× |Var|
• Boundedness parameter k is (2× |Var|) + 1

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 53/59

Modelling Flow Functions for General Flows

• General flow functions can be written as

fn(X) = (X − Killn(X)) ∪ Genn(X)

where Gen and Kill have constant and dependent parts

Genn(X) = ConstGenn ∪ DepGenn(X)

Killn(X) = ConstKilln ∪ DepKilln(X)

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 53/59

Modelling Flow Functions for General Flows

• General flow functions can be written as

fn(X) = (X − Killn(X)) ∪ Genn(X)

where Gen and Kill have constant and dependent parts

Genn(X) = ConstGenn ∪ DepGenn(X)

Killn(X) = ConstKilln ∪ DepKilln(X)

• The dependent parts take care of
◮ dependence across different entities as well as
◮ dependence on the value of the same entity in the argument X

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 53/59

Modelling Flow Functions for General Flows

• General flow functions can be written as

fn(X) = (X − Killn(X)) ∪ Genn(X)

where Gen and Kill have constant and dependent parts

Genn(X) = ConstGenn ∪ DepGenn(X)

Killn(X) = ConstKilln ∪ DepKilln(X)

• The dependent parts take care of
◮ dependence across different entities as well as
◮ dependence on the value of the same entity in the argument X

• Bit vector frameworks are a special case

DepGenn(X) = DepKilln(X) = ∅

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 54/59

Component Lattice for Integer Constant Propagation

(⊤̂)
undef or ?

−∞ . . . −1−2 0 1 2 . . . ∞

(⊥̂)

nonconst or ×

• Overall lattice L is the product of L̂ for all variables.

• ⊓ and ⊓̂ get defined by ⊑ and ⊑̂.

⊓̂ 〈v , ?〉 〈v ,×〉 〈v , c1〉
〈v , ?〉 〈v , ?〉 〈v ,×〉 〈v , c1〉
〈v ,×〉 〈v ,×〉 〈v ,×〉 〈v ,×〉
〈v , c2〉 〈v , c2〉 〈v ,×〉 If c1 = c2 then 〈v , c1〉 else 〈v ,×〉

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 55/59

Flow Functions for Constant Propagation

• Flow function for r = a1 ∗ a2

mult 〈a1, ?〉 〈a1,×〉 〈a1, c1〉
〈a2, ?〉 〈r , ?〉 〈r ,×〉 〈r , ?〉
〈a2,×〉 〈r ,×〉 〈r ,×〉 〈r ,×〉
〈a2, c2〉 〈r , ?〉 〈r ,×〉 〈r , (c1 ∗ c2)〉

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 56/59

Defining Data Flow Equations for Constant Propagation

ConstGenn DepGenn(X) ConstKilln DepKilln(X)

v = c ,

c ∈ Const
{〈v , c〉} ∅ ∅ {〈v , d〉 |〈v , d〉∈X}

v = e,

e ∈ Expr
∅ {〈v , eval(e,X)〉} ∅ {〈v , d〉 |〈v , d〉∈X}

read(v) {〈v ,×〉} ∅ ∅ {〈v , d〉 |〈v , d〉∈X}
other ∅ ∅ ∅ ∅

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 56/59

Defining Data Flow Equations for Constant Propagation

ConstGenn DepGenn(X) ConstKilln DepKilln(X)

v = c ,

c ∈ Const
{〈v , c〉} ∅ ∅ {〈v , d〉 |〈v , d〉∈X}

v = e,

e ∈ Expr
∅ {〈v , eval(e,X)〉} ∅ {〈v , d〉 |〈v , d〉∈X}

read(v) {〈v ,×〉} ∅ ∅ {〈v , d〉 |〈v , d〉∈X}
other ∅ ∅ ∅ ∅

eval(a1 op a2,X)

〈a1, ?〉 ∈ X 〈a1,×〉 ∈ X 〈a1, c1〉 ∈ X

〈a2, ?〉 ∈ X ? × ?

〈a2,×〉 ∈ X × × ×
〈a2, c2〉 ∈ X ? × c1 op c2

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 57/59

Example Program for Constant Propagation

n1 read (e); n1

n2
a = 7; b = 2; f = e;

if (f > 0) n2

n3
a = 2;

if (f ≥ e + 2) n3

n4
b = c + 1;
if (b ≥ 7) n4

n6 if (f ≥ e + 1) n6

n5 f = f + 1; n5

n7 c = d ∗ a; n7n8 d = a + b; n8

n9
d = a + 1;
f = f + 1 n9n10 e = a + b; n10

false

true
false

false
true false

true

true

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 58/59

Result of Constant Propagation

Iteration #1
Changes in Changes in Changes in
iteration #2 iteration #3 iteration #4

Inn1 ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊤̂
Outn1 ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊤̂
Inn2 ⊤̂, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊤̂
Outn2 7, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂
Inn3 7, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ ⊥̂, 2, ⊤̂, 3, ⊥̂, ⊥̂ ⊥̂, 2, 6, 3, ⊥̂, ⊥̂ ⊥̂, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn3 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Inn4 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn4 2, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, ⊤̂, ⊤̂, 3, ⊥̂, ⊥̂ 2, 7, 6, 3, ⊥̂, ⊥̂
Inn5 2, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, ⊤̂, ⊤̂, 3, ⊥̂, ⊥̂ 2, 7, 6, 3, ⊥̂, ⊥̂
Outn5 2, ⊤̂, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, ⊤̂, ⊤̂, 3, ⊥̂, ⊥̂ 2, 7, 6, 3, ⊥̂, ⊥̂
Inn6 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn6 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Inn7 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn7 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Inn8 2, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn8 2, 2, ⊤̂, 4, ⊥̂, ⊥̂ 2, 2, ⊤̂, 4, ⊥̂, ⊥̂ 2, 2, 6, 4, ⊥̂, ⊥̂ 2, ⊥̂, 6, ⊥̂, ⊥̂, ⊥̂
Inn9 2, 2, ⊤̂, 4, ⊥̂, ⊥̂ 2, 2, 6, ⊥̂, ⊥̂, ⊥̂ 2, ⊥̂, 6, ⊥̂, ⊥̂, ⊥̂
Outn9 2, 2, ⊤̂, 3, ⊥̂, ⊥̂ 2, 2, 6, 3, ⊥̂, ⊥̂ 2, ⊥̂, 6, 3, ⊥̂, ⊥̂
Inn10 ⊥̂, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ ⊥̂, 2, ⊤̂, 3, ⊥̂, ⊥̂ ⊥̂, ⊥̂, 6, 3, ⊥̂, ⊥̂
Outn10 ⊥̂, 2, ⊤̂, ⊤̂, ⊥̂, ⊥̂ ⊥̂, 2, ⊤̂, 3, ⊥̂, ⊥̂ ⊥̂, ⊥̂, 6, 3, ⊥̂, ⊥̂

May 2011 Uday Khedker

MACS L111 Generalizations-2: Precise Modelling of General Flows 59/59

Monotonicity of Constant Propagation

• Flow function fn(X) = (X − Killn(X)) ∪ Genn(X) where

Genn(X) = ConstGenn ∪ DepGenn(X)

Killn(X) = ConstKilln ∪ DepKilln(X)

• ConstGenn and ConstKilln are trivially monotonic

• To show X1 ⊑ X2 ⇒ DepGenn(X1) ⊑ DepGenn(X2)
we need to show that X1 ⊑ X2 ⇒ eval(e,X1) ⊑ eval(e,X2).
This follows from definition of eval(e,X).

• To show X1 ⊑ X2 ⇒ (X1 − DepKilln(X1)) ⊑ (X2 − DepKilln(X2))
observe that DepKilln removes the pair corresponding to the
variable modified in statement n. Data flow values of other
variables remain unaffected.

May 2011 Uday Khedker

	About These Slides
	Flow Functions
	Solutions of Data Flow Analysis
	Performing Data Flow Analysis
	Precise Modelling of General Flows

