Further Generalizations

Uday P. Khedker

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

May 2011

Part 1

About These Slides

Copyright

These slides constitute the lecture notes for

- MACS L111 Advanced Data Flow Analysis course at Cambridge University, and
- CS 618 Program Analysis course at IIT Bombay.

They have been made available under GNU FDL v1.2 or later (purely for academic or research use) as teaching material accompanying the book:

- Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis: Theory and Practice. CRC Press (Taylor and Francis Group). 2009.

Apart from the above book, some slides are based on the material from the following books

- M. S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland Inc. 1977.
- F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag. 1998.

Outline

- Partial Redundancy Elimination (previous lecture)
- Introduction to Constant Propagation (previous lecture)
- Theoretical Abstractions in Data Flow Analysis
- The world of data flow values (previous lecture)
- The world of functions and operations that compute data values (today)
- Results of data flow analysis (today)
- Algorithms for performing data flow analysis (today)
- Precise Modelling of General flows (today) Example: Constant Propagation

Part 2

Flow Functions

Flow Functions: An Outline of Our Discussion

- Defining flow functions
- Properties of flow functions
(Some properties discussed in the context of solutions of data flow analysis)

The Set of Flow Functions

- F is the set of functions $f: L \mapsto L$ such that
- F contains an identity function

To model "empty" statements, i.e. statements which do not influence the data flow information

- F is closed under composition

Cumulative effect of statements should generate data flow information from the same set.

- For every $x \in L$, there must be a finite set of flow functions $\left\{f_{1}, f_{2}, \ldots f_{m}\right\} \subseteq F$ such that

$$
x=\prod_{1 \leq i \leq m} f_{i}(B I)
$$

- Properties of f
- Monotonicity and Distributivity
- Separability

Flow Functions in Bit Vector Data Flow Frameworks

- Bit Vector Frameworks: Available Expressions Analysis, Reaching Definitions Analysis Live variable Analysis, Anticipable Expressions Analysis, Partial Redundancy Elimination etc.
- All functions can be defined in terms of constant Gen and Kill

$$
f(x)=G e n \cup(x-\text { Kill })
$$

- Lattices are powersets with partial orders as \subseteq or \supseteq relations
- Information is merged using \cap or \cup

Flow Functions in Bit Vector Data Flow Frameworks

- Bit Vector Frameworks: Available Expressions Analysis, Reaching Definitions Analysis Live variable Analysis, Anticipable Expressions Analysis, Partial Redundancy Elimination etc.
- All functions can be defined in terms of constant Gen and Kill

$$
f(x)=G e n \cup(x-K i l l)
$$

- Lattices are powersets with partial orders as \subseteq or \supseteq relations
- Information is merged using \cap or \cup
- Flow functions in Faint Variables Analysis, Pointer Analyses, Constant Propagation, Possibly Uninitialized Variables cannot be expressed using constant Gen and Kill.
Local context alone is not sufficient to describe the effect of statements fully.

Monotonicity of Flow Functions

- Partial order is preserved: If x can be safely used in place of y then $f(x)$ can be safely used in place of $f(y)$

Monotonicity of Flow Functions

- Partial order is preserved: If x can be safely used in place of y then $f(x)$ can be safely used in place of $f(y)$

Monotonicity of Flow Functions

- Partial order is preserved: If x can be safely used in place of y then $f(x)$ can be safely used in place of $f(y)$

$$
\forall x, y \in L, x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)
$$

Monotonicity of Flow Functions

- Partial order is preserved: If x can be safely used in place of y then $f(x)$ can be safely used in place of $f(y)$

$$
\forall x, y \in L, x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)
$$

- Alternative definition

$$
\forall x, y \in L, f(x \sqcap y) \sqsubseteq f(x) \sqcap f(y)
$$

Monotonicity of Flow Functions

- Partial order is preserved: If x can be safely used in place of y then $f(x)$ can be safely used in place of $f(y)$

$$
\forall x, y \in L, x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)
$$

- Alternative definition

$$
\forall x, y \in L, f(x \sqcap y) \sqsubseteq f(x) \sqcap f(y)
$$

- Merging at intermediate points in shared segments of paths is safe (However, it may lead to imprecision).

Distributivity of Flow Functions

- Merging distributes over function application

Distributivity of Flow Functions

- Merging distributes over function application

Distributivity of Flow Functions

- Merging distributes over function application

$$
\forall x, y \in L, x \sqsubseteq y \Rightarrow f(x \sqcap y)=f(x) \sqcap f(y)
$$

- Merging distributes over function application

$$
\forall x, y \in L, x \sqsubseteq y \Rightarrow f(x \sqcap y)=f(x) \sqcap f(y)
$$

- Merging at intermediate points in shared segments of paths does not lead to imprecision.

Monotonicity and Distributivity

Distributivity of Bit Vector Frameworks

$$
\begin{aligned}
f(x) & =\text { Gen } \cup(x-\text { Kill }) \\
f(y) & =\text { Gen } \cup(y-\text { Kill }) \\
f(x \cup y) & =\text { Gen } \cup((x \cup y)-\text { Kill }) \\
& =G e n \cup((x-\text { Kill }) \cup(y-\text { Kill })) \\
& =(\text { Gen } \cup(x-\text { Kill }) \cup G e n \cup(y-\text { Kill })) \\
& =f(x) \cup f(y) \\
& \\
f(x \cap y) & =G e n \cup((x \cap y)-\text { Kill }) \\
& =G e n \cup((x-\text { Kill }) \cap(y-\text { Kill })) \\
& =(G e n \cup(x-\text { Kill }) \cap \text { Gen } \cup(y-\text { Kill })) \\
& =f(x) \cap f(y)
\end{aligned}
$$

Non-Distributivity of Constant Propagation

Non-Distributivity of Constant Propagation

- $x=\langle 1,2,3, ?\rangle$ (Along Out $t_{n_{1}} \rightarrow I_{n_{2}}$)

Non-Distributivity of Constant Propagation

- $x=\langle 1,2,3, ?\rangle$ (Along Out $t_{n_{1}} \rightarrow I n_{n_{2}}$)
- $y=\langle 2,1,3,2\rangle$ (Along Out $n_{n_{3}} \rightarrow I n_{n_{2}}$)

Non-Distributivity of Constant Propagation

- $x=\langle 1,2,3, ?\rangle$ (Along Out $t_{n_{1}} \rightarrow I n_{n_{2}}$)
- $y=\langle 2,1,3,2\rangle$ (Along Out $n_{n_{3}} \rightarrow I n_{n_{2}}$)
- Function application for block n_{2} before merging

$$
\begin{aligned}
f(x) \sqcap f(y) & =f(\langle 1,2,3, ?\rangle) \sqcap f(\langle 2,1,3,2\rangle) \\
& =\langle 1,2,3,2\rangle \sqcap\langle 2,1,3,2\rangle \\
& =\langle\hat{\perp}, \widehat{\perp}, 3,2\rangle
\end{aligned}
$$

Non-Distributivity of Constant Propagation

- $x=\langle 1,2,3, ?\rangle$ (Along Out $t_{n_{1}} \rightarrow \ln _{n_{2}}$)
- $y=\langle 2,1,3,2\rangle$ (Along Out $_{n_{3}} \rightarrow I n_{n_{2}}$)
- Function application for block n_{2} before merging

$$
\begin{aligned}
f(x) \sqcap f(y) & =f(\langle 1,2,3, ?\rangle) \sqcap f(\langle 2,1,3,2\rangle) \\
& =\langle 1,2,3,2\rangle \sqcap\langle 2,1,3,2\rangle \\
& =\langle\widehat{\perp}, \widehat{\perp}, 3,2\rangle
\end{aligned}
$$

- Function application for block n_{2} after merging

$$
\begin{aligned}
f(x \sqcap y) & =f(\langle 1,2,3, ?\rangle \sqcap\langle 2,1,3,2\rangle) \\
& =f(\langle\widehat{\perp}, \widehat{\perp}, 3,2\rangle) \\
& =\langle\widehat{\perp}, \widehat{\perp}, \widehat{\perp}, \widehat{\perp}\rangle
\end{aligned}
$$

Non-Distributivity of Constant Propagation

- $x=\langle 1,2,3, ?\rangle$ (Along Out $t_{n_{1}} \rightarrow \ln _{n_{2}}$)
- $y=\langle 2,1,3,2\rangle$ (Along Out $_{n_{3}} \rightarrow I n_{n_{2}}$)
- Function application for block n_{2} before merging

$$
\begin{aligned}
f(x) \sqcap f(y) & =f(\langle 1,2,3, ?\rangle) \sqcap f(\langle 2,1,3,2\rangle) \\
& =\langle 1,2,3,2\rangle \sqcap\langle 2,1,3,2\rangle \\
& =\langle\widehat{\perp}, \widehat{\perp}, 3,2\rangle
\end{aligned}
$$

- Function application for block n_{2} after merging

$$
\begin{aligned}
f(x \sqcap y) & =f(\langle 1,2,3, ?\rangle \sqcap\langle 2,1,3,2\rangle) \\
& =f(\langle\widehat{\perp}, \widehat{\perp}, 3,2\rangle) \\
& =\langle\widehat{\perp}, \widehat{\perp}, \widehat{\perp}, \widehat{\perp}\rangle
\end{aligned}
$$

- $f(x \sqcap y) \sqsubset f(x) \sqcap f(y)$

Why is Constant Propagation Non-Distribitive?

Why is Constant Propagation Non-Distribitive?

Possible combinations due to merging

Why is Constant Propagation Non-Distribitive?

Possible combinations due to merging

- Correct combination.

Why is Constant Propagation Non-Distribitive?

Possible combinations due to merging

$a=1$

$b=2$

- Correct combination.

Why is Constant Propagation Non-Distribitive?

Possible combinations due to merging

$b=2$

- Wrong combination.
- Mutually exclusive information.
- No execution path along which this information holds.

Why is Constant Propagation Non-Distribitive?

Possible combinations due to merging

$a=1$

- Wrong combination.
- Mutually exclusive information.
- No execution path along which this information holds.

Part 3

Solutions of Data Flow Analysis

Solutions of Data Flow Analysis: An Outline of Our Discussion

- MoP and MFP assignments and their relationship
- Existence of MoP assignment
- Boundedness of flow functions
- Existence and Computability of MFP assignment
- Flow functions Vs. function computed by data flow equations
- Safety of MFP solution

Solutions of Data Flow Analysis

- An assignment A associates data flow values with program points. $A \sqsubseteq B$ if for all program points $p, A(p) \sqsubseteq B(p)$
- Performing data flow analysis

Given

- A set of flow functions, a lattice, and merge operation
- A program flow graph with a mapping from nodes to flow functions

Find out

- An assignment A which is as exhaustive as possible and is safe

Meet Over Paths (MoP) Assignment

- The largest safe approximation of the information reaching a program point along all information flow paths.

$$
\operatorname{MoP}(p)=\prod_{\rho \in \operatorname{Paths}(p)} f_{\rho}(B I)
$$

- f_{ρ} represents the compositions of flow functions along ρ.
- $B I$ refers to the relevant information from the calling context.
- All execution paths are considered potentially executable by ignoring the results of conditionals.

Meet Over Paths (MoP) Assignment

- The largest safe approximation of the information reaching a program point along all information flow paths.

$$
\operatorname{MoP}(p)=\prod_{\rho \in \operatorname{Paths}(p)} f_{\rho}(B I)
$$

- f_{ρ} represents the compositions of flow functions along ρ.
- $B I$ refers to the relevant information from the calling context.
- All execution paths are considered potentially executable by ignoring the results of conditionals.
- Any $\operatorname{Info}(p) \sqsubseteq \operatorname{MoP}(p)$ is safe.

Maximum Fixed Point (MFP) Assignment

- Difficulties in computing MoP assignment

Maximum Fixed Point (MFP) Assignment

- Difficulties in computing MoP assignment
- In the presence of cycles there are infinite paths

If all paths need to be traversed \Rightarrow Undecidability

Maximum Fixed Point (MFP) Assignment

- Difficulties in computing MoP assignment
- In the presence of cycles there are infinite paths If all paths need to be traversed \Rightarrow Undecidability
- Even if a program is acyclic, every conditional multiplies the number of paths by two If all paths need to be traversed \Rightarrow Intractability

Maximum Fixed Point (MFP) Assignment

- Difficulties in computing MoP assignment
- In the presence of cycles there are infinite paths

If all paths need to be traversed \Rightarrow Undecidability

- Even if a program is acyclic, every conditional multiplies the number of paths by two

If all paths need to be traversed \Rightarrow Intractability

- Why not merge information at intermediate points?
- Merging is safe but may lead to imprecision.
- Computes fixed point solutions of data flow equations.

Maximum Fixed Point (MFP) Assignment

- Difficulties in computing MoP assignment

Path based specification

- In the presence of cycles there are infinite paths If all paths need to be traversed \Rightarrow Undecidability
- Even if a program is acyclic, every conditional multiplies the number of paths by two

If all paths need to be traversed \Rightarrow Intractability

- Why not merge information at intermediate points?
- Merging is safe but may lead to imprecision.

Edge based specifications

- Computes fixed point solutions of data flow equations.

Assignments for Constant Propagation Example

Assignments for Constant Propagation Example

Assignments for Constant Propagation Example

\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{n_{1}} \& \& \multirow[t]{2}{*}{MoP
$$
\begin{aligned}
& \langle\hat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top}\rangle \\
& \langle 1,2,3, \widehat{\top}\rangle
\end{aligned}
$$} \& \multirow[t]{2}{*}{$$
\begin{gathered}
\text { MFP } \\
\langle\widehat{\top}, \widehat{\uparrow}, \widehat{\uparrow}, \widehat{T}\rangle \\
\langle 1,2,3, \widehat{T}\rangle
\end{gathered}
$$}

\hline \& $$
\begin{gathered}
a=1 \\
b=2 \\
c=a+b
\end{gathered}
$$ \& \&

\hline n_{2} \& $$
\begin{gathered}
\downarrow \downarrow \\
c=a+b \\
d=a * b
\end{gathered}
$$ \& $\langle\widehat{\perp}, \widehat{\perp}, 3,2\rangle$
$\langle\widehat{\perp}, \widehat{\perp}, 3,2\rangle$ \& $\langle\widehat{\perp}, \widehat{\perp}, 3, \widehat{\perp}\rangle$
$\langle\widehat{\perp}, \widehat{\perp}, \widehat{\perp}, \widehat{\perp}\rangle$

\hline n_{3} \& $$
\begin{gathered}
d=c-1 \\
a=2 \\
b=1 \\
c=a+b
\end{gathered}
$$ \& $\langle\widehat{\perp}, \widehat{\perp}, 3,2\rangle$

$\langle 2,1,3,2\rangle$ \& $\langle\widehat{\perp}, \widehat{\perp}, \widehat{\perp}, \widehat{\perp}\rangle$
$\langle 2,1,3, \widehat{\perp}\rangle$

\hline
\end{tabular}

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

Available Expr. Analysis Framework with Two Expressions

Constant Functions		Dependent Functions	
f	$f(x)$	f	$f(x)$
f_{\top}	$\{a * b, b * c\}$	$f_{i d}$	x
f_{\perp}	\emptyset	f_{c}	$x \cup\{a * b\}$
f_{a}	$\{a * b\}$	f_{d}	$x \cup\{b * c\}$
f_{b}	$\{b * c\}$	f_{e}	$x-\{a * b\}$
		f_{f}	$x-\{b * c\}$

Available Expr. Analysis Framework with Two Expressions

Constant Functions		Dependent Functions	
f	$f(x)$	f	$f(x)$
f_{\top}	$\{a * b, b * c\}$	$f_{i d}$	x
f_{\perp}	\emptyset	f_{c}	$x \cup\{a * b\}$
f_{a}	$\{a * b\}$	f_{d}	$x \cup\{b * c\}$
f_{b}	$\{b * c\}$	f_{e}	$x-\{a * b\}$
		f_{f}	$x-\{b * c\}$

Program

Available Expr. Analysis Framework with Two Expressions

Constant Functions		Dependent Functions	
f	$f(x)$	f	$f(x)$
f_{\top}	$\{a * b, b * c\}$	$f_{i d}$	x
f_{\perp}	\emptyset	f_{c}	$x \cup\{a * b\}$
f_{a}	$\{a * b\}$	f_{d}	$x \cup\{b * c\}$
f_{b}	$\{b * c\}$	f_{e}	$x-\{a * b\}$
		f_{f}	$x-\{b * c\}$

Flow Functions	
Node	Flow Function
1	f_{\top}
2	$f_{i d}$

Available Expr. Analysis Framework with Two Expressions

Lattice

Constant Functions		Dependent Functions	
f	$f(x)$	f	$f(x)$

f_{\top}	$\{a * b, b * c\}$	$f_{i d}$	x
f_{\perp}	\emptyset	f_{c}	$x \cup\{a * b\}$
f_{a}	$\{a * b\}$	f_{d}	$x \cup\{b * c\}$
f_{b}	$\{b * c\}$	f_{e}	$x-\{a * b\}$
		f_{f}	$x-\{b * c\}$

Flow Functions	
Node	Flow Function
1	f_{T}
2	$f_{\text {id }}$

Some Possible Assignments						
	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}
I_{1}	00	00	00	00	00	00
Out $_{1}$	11	00	11	11	11	11
I_{2}	11	00	00	10	01	01
Out $_{2}$	11	00	00	10	01	10

Available Expr. Analysis Framework with Two Expressions

Available Expr. Analysis Framework with Two Expressions

Lattice		Constant Functions		Dependent Functions					
		f	$f(x)$		f	$f(x)$			
		$f_{\text {T }}$	$\{a * b, b * c\}$		$f_{\text {id }}$	x			
		f_{\perp}	a		f_{c}	$x \cup\{a * b\}$			
$\{a * b\}$		- Not a fixed point assignment			f_{d}	$x \cup\{b * c\}$			
					f_{e}	$x-\{a * b\}$			
					f_{f}	$x-\{b * c\}$			
Program Flow Functions Some Possible Assignments									
$1 \begin{array}{\|c} a * b \\ b * c \end{array}$	Flow Functions		$1 n_{1}$	$\xrightarrow{\rightarrow}{ }^{\text {a }}$		A_{3}	A_{4}	$A_{5} A_{6}$	
	Node	$\begin{gathered} \text { Flow } \\ \text { Function } \end{gathered}$		00	00	00	00	${ }^{\text {A }}$	${ }^{\prime}{ }_{6}$
			Out ${ }_{1}$	11	00	11	11	11	11
	2	$f_{\text {id }}$	In_{2}	11	00	00	10	01	01
		$f_{\text {id }}$	Out_{2}	11	00	00	10	01	10

Available Expr. Analysis Framework with Two Expressions

Available Expr. Analysis Framework with Two Expressions

Available Expr. Analysis Framework with Two Expressions

		Constant Functions		Dependent Functions					
		$f(x)$			f	$f(x)$			
		f_{T}	* $b, b * c\}$		$f_{\text {id }}$	x			
		Fixed point assignment which is neither maximum nor minimum Initialization for round robin iterative method: 01							
		$x-\{a * b\}$							
		$x-\{b * c\}$							
rogram	Flow Functions		Some Possible Assignments						
				A_{1}	A_{2}				A_{6}
c	Node	Flow	$1 n_{1}$	00	00	00	00	00	00
	1	f_{\top}	Out ${ }_{1}$	11	00	11	11	11	11
	2	$f_{\text {fid }}$	$\underline{n_{2}}$	11	00	00	10	01	01
			Out 2	11	00	00	10	01	10

Available Expr. Analysis Framework with Two Expressions

Part 4

Performing Data Flow Analysis

Performing Data Flow Analysis

- Algorithms for computing MFP solution
- Complexity of data flow analysis
- Factor affecting the complexity of data flow analysis

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (T)

- Round Robin. Repeated traversals over nodes in a fixed order Termination : After values stabilise
+ Simplest to understand and implement
- May perform unnecessary computations

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (T)

- Round Robin. Repeated traversals over nodes in a fixed order Termination : After values stabilise
+ Simplest to understand and implement
Our examples use this method.
- May perform unnecessary computations

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (T)

- Round Robin. Repeated traversals over nodes in a fixed order Termination: After values stabilise
+ Simplest to understand and implement
Our examples use this method.
- May perform unnecessary computations
- Work List. Dynamic list of nodes which need recomputation Termination : When the list becomes empty
+ Demand driven. Avoid unnecessary computations.
- Overheads of maintaining work list.

Elimination Methods of Performing Data Flow Analysis

Delayed computations of dependent data flow values of dependent nodes.
Find suitable single-entry regions.

- Interval Based Analysis. Uses graph partitioning.
- T_{1}, T_{2} Based Analysis. Uses graph parsing.

Classification of Edges in a Graph

Graph G

Classification of Edges in a Graph

Graph G

A depth first spanning tree of G

Classification of Edges in a Graph

Graph G

A depth first spanning tree of G

Back edges
Forward edges
Tree edges
Cross edges

\longrightarrow

Classification of Edges in a Graph

Graph G

Back edges
Forward edges \longrightarrow

A depth first spanning tree of G

For data flow analysis, we club tree, forward, and cross edges into forward edges. Thus we have just forward or back edges in a control flow graph

Reverse Post Order Traversal

- A reverse post order (rpo) is a topological sort of the graph obtained after removing back edges

Graph G

G^{\prime} obtained after removing back edges of G

- Some possible RPOs for G are: $(1,2,3,4,5,6,7,8)$, $(1,6,7,2,3,4,5,8),(1,6,2,7,4,3,5,8)$, and (1, 2, 6, 7, 3, 4, 5, 8)

Round Robin Iterative Algorithm

Round Robin Iterative Algorithm

1	$1 n_{0}=B 1$
2	for all $j \neq 0$ do
3	$l n_{j}=\top$
4	change $=$ true
5	while change do
6	\{ change $=$ false
7	for $j=1$ to $N-1$ do
8	$\left\{\text { temp }=\prod_{p \in \operatorname{pred}(j)} f_{p}\left(\ln n_{p}\right)\right.$
9	if temp $\neq I n_{j}$ then
10	$\left\{1 n_{j}=\right.$ temp
11	change $=$ true
12	\}
13	\}
14	\}

- Computation of Out $_{j}$ has been left implicit
Works fine for unidirectional frameworks

Round Robin Iterative Algorithm

1	$1 n_{0}=B 1$
2	for all $j \neq 0$ do
3	$l n_{j}=\top$
4	change $=$ true
5	while change do
6	\{ change $=$ false
7	for $j=1$ to $N-1$ do
8	$\left\{\text { temp }=\prod_{p \in \operatorname{pred}(j)} f_{p}\left(\ln n_{p}\right)\right.$
9	if temp $\neq I n_{j}$ then
10	$\left\{1 n_{j}=\right.$ temp
11	change $=$ true
12	\}
13	\}
14	\}

Round Robin Iterative Algorithm

```
\(1 \quad I n_{0}=B I\)
```

2 for all $j \neq 0$ do $I n_{j}=\top$
4 change $=$ true
5 while change do
$6 \quad\{\quad$ change $=$ false
$7 \quad$ for $j=1$ to $N-1$ do
$8 \quad\left\{\right.$ temp $=\prod_{p \in \operatorname{pred}(j)} f_{p}(\ln)$
9 if temp $\neq I n_{j}$ then
10
11
12
13
14 \}

- Computation of Out ${ }_{j}$ has been left implicit
Works fine for unidirectional frameworks
- T is the identity of Π
(line 3)
- Reverse postorder (rpo) traversal for efficiency (line 7)

Round Robin Iterative Algorithm

1	$l n_{0}=B 1$
2	for all $j \neq 0$ do
3	$l n_{j}=\top$
4	change $=$ true
5	while change do
6	\{ change $=$ false
7	for $j=1$ to $N-1$ do
8	$\left\{\text { temp }=\prod_{p \in \operatorname{pred}(j)} f_{p}(\ln)\right.$
9	if temp $\neq I n_{j}$ then
10	$\left\{1 n_{j}=\right.$ temp
11	change $=$ true
12	\}
13	\}
14	\}

- Computation of Out ${ }_{j}$ has been left implicit
Works fine for unidirectional frameworks
- T is the identity of \sqcap
(line 3)
- Reverse postorder (rpo) traversal for efficiency (line 7)
- rpo traversal AND no loops
\Rightarrow no need of initialization

Complexity of Round Robin Iterative Algorithm

- Unidirectional bit vector frameworks
- Construct a spaning tree T of G to identify postorder traversal
- Traverse G in reverse postorder for forward problems and Traverse G in postorder for backward problems
- Depth $d(G, T)$: Maximum number of back edges in any acyclic path

Task	Number of iterations
First computation of In and Out	1
Convergence (until change remains true)	$d(G, T)$
Verifying convergence (change becomes false)	1

Complexity of Round Robin Iterative Algorithm

- Unidirectional bit vector frameworks
- Construct a spaning tree T of G to identify postorder traversal
- Traverse G in reverse postorder for forward problems and Traverse G in postorder for backward problems
- Depth $d(G, T)$: Maximum number of back edges in any acyclic path

Task	Number of iterations
First computation of In and Out	1
Convergence (until change remains true)	$d(G, T)$
Verifying convergence (change becomes false)	1

- What about bidirectional bit vector frameworks?

Complexity of Round Robin Iterative Algorithm

- Unidirectional bit vector frameworks
- Construct a spaning tree T of G to identify postorder traversal
- Traverse G in reverse postorder for forward problems and Traverse G in postorder for backward problems
- Depth $d(G, T)$: Maximum number of back edges in any acyclic path

Task	Number of iterations
First computation of In and Out	1
Convergence (until change remains true)	$d(G, T)$
Verifying convergence (change becomes false)	1

- What about bidirectional bit vector frameworks?
- What about other frameworks?

Example C Program with $\mathrm{d}(\mathrm{G}, \mathrm{T})=2$

Example C Program with $\mathrm{d}(\mathrm{G}, \mathrm{T})=2$

$3+1$ iterations for available expressions analysis

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

- Node numbers are in reverse post order

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

- Node numbers are in reverse post order
- Back edges in the graph are $n_{5} \rightarrow n_{2}$ and $n_{10} \rightarrow n_{9}$.

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

- Node numbers are in reverse post order
- Back edges in the graph are $n_{5} \rightarrow n_{2}$ and $n_{10} \rightarrow n_{9}$.
- $d(G, T)=1$

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

- Node numbers are in reverse post order
- Back edges in the graph are $n_{5} \rightarrow n_{2}$ and $n_{10} \rightarrow n_{9}$.
- $d(G, T)=1$
- Actual iterations: 5

Complexity of Bidirectional Bit Vector Frameworks

	Pairs of Out, In Values							
	Initialization	Changes in Iterations					Final values \& transformation	
		\#1	\#2	\#3	\#4	\#5		
	O,I							
12	0,1							
11	1,1							
10	1,1							
9	1,1							
8	1,1							
7	1,1							
6	1,1							
5	1,1							
4	1,1							
3	1,1							
2	1,1							
1	1,1							

Complexity of Bidirectional Bit Vector Frameworks

	Pairs of Out, In Values							
	Initia- lization	Changes in Iterations					 transformation	
		O,I	O,I	O,I	O,I	O,I	O,I	
12	0,1	0,0						
11	1,1	0,1						
10	1,1							
9	1,1							
8	1,1							
7	1,1							
6	1,1	1,0						
5	1,1							
4	1,1							
3	1,1							
2	1,1							
1	1,1	0,0						

Complexity of Bidirectional Bit Vector Frameworks

	Pairs of Out, In Values							
	Initia- lization	Changes in Iterations					 transformation	
		O,I	O,I	O,I	O,I	O,I	O,I	
12	0,1	0,0						
11	1,1	0,1						
10	1,1							
9	1,1							
8	1,1							
7	1,1							
6	1,1	1,0						
5	1,1							
4	1,1							
3	1,1							
2	1,1		1,0					
1	1,1	0,0						

Complexity of Bidirectional Bit Vector Frameworks

Complexity of Bidirectional Bit Vector Frameworks

Complexity of Bidirectional Bit Vector Frameworks

Complexity of Bidirectional Bit Vector Frameworks

	Pairs of Out, In Values							
	Initialization	Changes in Iterations					Final values \& transformation	
		\#1	\#2	\#3	\#4	\#5		
	O,I							
12	0,1	0,0					0,0	
11	1,1	0,1			0,0		0,0	
10	1,1				0,1		0,1	
9	1,1				1,0		1,0	
8	1,1					1,0	1,0	
7	1,1				0,0		0,0	
6	1,1	1,0			0,0		0,0	
5	1,1			0,0			0,0	
4	1,1			0,1	0,0		0,0	
3	1,1			0,0			0,0	
2	1,1		1,0	0,0			0,0	
1	1,1	0,0					0,0	

Complexity of Bidirectional Bit Vector Frameworks

				Pairs	of	Out,	$n \mathrm{~V}$	ues	
(1)		Initia-			hang erat	es in ions			
			\#1	\#2	\#3	\#4	\#5		rmation
$\text { (6) } b * c$		O,I							
	12	0,1	0,0					0,0	
(2) 7	11	1,1	0,1			0,0		0,0	
	10	1,1				0,1		0,1	Delete
(3) 4 8	9	1,1				1,0		1,0	Insert
	8	1,1					1,0	1,0	Insert
5 $b=10$	7	1,1				0,0		0,0	
	6	1,1	1,0			0,0		0,0	
(11) $b * c$	5	1,1			0,0			0,0	
	4	1,1			0,1	0,0		0,0	
(12)	3	1,1			0,0			0,0	
	2	1,1		1,0	0,0			0,0	
	1	1,1	0,0					0,0	

An Example of Information Flow in Our PRE Analysis

- Pavln 6 becomes 0 in the first itereation
- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

An Example of Information Flow in Our PRE Analysis

- Pavln 6 becomes 0 in the first itereation
- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

An Example of Information Flow in Our PRE Analysis

- Pavln 6 becomes 0 in the first itereation
- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

An Example of Information Flow in Our PRE Analysis

- Pavln 6 becomes 0 in the first itereation
- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

An Example of Information Flow in Our PRE Analysis

- Pavln 6 becomes 0 in the first itereation
- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

An Example of Information Flow in Our PRE Analysis

- Pavln 6 becomes 0 in the first itereation
- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

An Example of Information Flow in Our PRE Analysis

- Pavln 6 becomes 0 in the first itereation
- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

An Example of Information Flow in Our PRE Analysis

- Pavln 6 becomes 0 in the first itereation
- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

An Example of Information Flow in Our PRE Analysis

- Pavln 6 becomes 0 in the first itereation
- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

Information Flow and Information Flow Paths

- Default value at each program point: \top
- Information flow path

Information Flow and Information Flow Paths

- Default value at each program point: \top
- Information flow path

Sequence of adjacent program points

Information Flow and Information Flow Paths

- Default value at each program point: \top
- Information flow path

Sequence of adjacent program points along which data flow values change

Information Flow and Information Flow Paths

- Default value at each program point: \top
- Information flow path

Sequence of adjacent program points along which data flow values change

- A change in the data flow at a program point could be
- Generation of information

Change from T to a non- T due to local effect (i.e. $f(T) \neq T$)

- Propagation of information

Change from x to y such that $y \sqsubseteq x$ due to global effect

Information Flow and Information Flow Paths

- Default value at each program point: \top
- Information flow path

Sequence of adjacent program points along which data flow values change

- A change in the data flow at a program point could be
- Generation of information

Change from T to a non- T due to local effect (i.e. $f(T) \neq T$)

- Propagation of information

Change from x to y such that $y \sqsubseteq x$ due to global effect

- Information flow path (ifp) need not be a graph theoretic path

Edge and Node Flow Functions

Edge and Node Flow Functions

Forward Node Flow Function

Edge and Node Flow Functions

Forward Node Flow Function

Forward Edge Flow Function

Edge and Node Flow Functions

Forward Node Flow Function

Forward Edge Flow Function

Backward Node Flow Function

Edge and Node Flow Functions

Forward Node Flow Function

Forward Edge Flow Function

Backward Node Flow Function

Backward Edge Flow Function

General Data Flow Equations

$$
\begin{aligned}
I n_{n} & = \begin{cases}B I_{\text {Start }} \sqcap f_{n}^{b}\left(\text { Out }_{n}\right) & n=\text { Start } \\
\left(\prod_{m \in \operatorname{pred}(n)} f_{m \rightarrow n}^{f}\left(\text { Out }_{m}\right)\right) \sqcap f_{n}^{b}\left(\text { Out }_{n}\right) & \text { otherwise }\end{cases} \\
\text { Out }_{n} & = \begin{cases}B I_{\text {End }} \sqcap f_{n}^{f}(\ln) & n=\text { End } \\
\left(\prod_{m \in \operatorname{succ}(n)} f_{m \rightarrow n}^{b}\left(I n_{m}\right)\right) \sqcap f_{n}^{f}\left(I n_{n}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

- Edge flow functions are typically identity

$$
\forall x \in L, f(x)=x
$$

- If particular flows are absent, the correponding flow functions are

$$
\forall x \in L, f(x)=\top
$$

Modelling Information Flows Using Edge and Node Flow Functions

Bidirectional

Bidirectional

Information Flow Paths in PRE

- Information could flow along arbitrary paths

Information Flow Paths in PRE

- Information could flow along arbitrary paths

Information Flow Paths in PRE

- Information could flow along arbitrary paths

Information Flow Paths in PRE

- Information could flow along arbitrary paths

Information Flow Paths in PRE

- Information could flow along arbitrary paths

Information Flow Paths in PRE

- Information could flow along arbitrary paths

Information Flow Paths in PRE

- Information could flow along arbitrary paths

Information Flow Paths in PRE

- Information could flow along arbitrary paths

Information Flow Paths in PRE

Information Flow Paths in PRE

Information Flow Paths in PRE

- Information could flow along arbitrary paths
- Theoretically predicted number : 144
- Actual iterations: 5
- Not related to depth (1)

Lacuna with PRE Complexity

- Lacuna with PRE : Complexity $O\left(n^{2}\right)$ traversals. Practical graphs may have upto 50 nodes.
- Predicted number of traversals: 2,500.
- Practical number of traversals : ≤ 5.
- No explanation for about 14 years despite dozens of efforts.
- Not much experimentation with performing advanced optimizations involving bidirectional dependency.

Complexity of Round Robin Iterative Method

- Buy OTC (Over-The-Counter) medicine.

No U-Turn 1 Trip

Complexity of Round Robin Iterative Method

- Buy OTC (Over-The-Counter) medicine.

No U-Turn 1 Trip

- Buy cloth. Give it to the tailor for stitching.

Complexity of Round Robin Iterative Method

- Buy OTC (Over-The-Counter) medicine.

No U-Turn 1 Trip

- Buy cloth. Give it to the tailor for stitching.
- Buy medicine with doctor's prescription.

No U-Turn 1 Trip
1 U-Turn
2 Trips

Complexity of Round Robin Iterative Method

- Buy OTC (Over-The-Counter) medicine.

No U-Turn 1 Trip

- Buy cloth. Give it to the tailor for stitching.
- Buy medicine with doctor's prescription.
- Buy medicine with doctor's prescription.

No U-Turn
1 Trip
1 U-Turn
2 Trips
2 U-Turns
3 Trips

Information Flow Paths and Width of a Graph

- A traversal $u \rightarrow v$ in an ifp is
- Compatible if u is visited before v in the chosen graph traversal
- Incompatible if u is visited after v in the chosen graph traversal

Information Flow Paths and Width of a Graph

- A traversal $u \rightarrow v$ in an ifp is
- Compatible if u is visited before v in the chosen graph traversal
- Incompatible if u is visited after v in the chosen graph traversal
- Every incompatible edge traversal requires one additional iteration

Information Flow Paths and Width of a Graph

- A traversal $u \rightarrow v$ in an ifp is
- Compatible if u is visited before v in the chosen graph traversal
- Incompatible if u is visited after v in the chosen graph traversal
- Every incompatible edge traversal requires one additional iteration
- Width of a program flow graph with respect to a data flow framework
Maximum number of incompatible traversals in any ifp, no part of which is bypassed

Information Flow Paths and Width of a Graph

- A traversal $u \rightarrow v$ in an ifp is
- Compatible if u is visited before v in the chosen graph traversal
- Incompatible if u is visited after v in the chosen graph traversal
- Every incompatible edge traversal requires one additional iteration
- Width of a program flow graph with respect to a data flow framework
Maximum number of incompatible traversals in any ifp, no part of which is bypassed
- Width +1 iterations are sufficient to converge on MFP solution (1 additional iteration may be required for verifying convergence)

Complexity of Bidirectional Bit Vector Frameworks

- Every "incompatible" edge traversal \Rightarrow One additional graph traversal

Complexity of Bidirectional Bit Vector Frameworks

- Every "incompatible" edge traversal \Rightarrow One additional graph traversal
- Max. Incompatible edge traversals $=$ Width of the graph $=0$?
- Maximum number of traversals $=$ $1+$ Max. incompatible edge traversals

Complexity of Bidirectional Bit Vector Frameworks

- Every "incompatible" edge traversal \Rightarrow One additional graph traversal
- Max. Incompatible edge traversals $=$ Width of the graph $=1$?
- Maximum number of traversals $=$ $1+$ Max. incompatible edge traversals

Complexity of Bidirectional Bit Vector Frameworks

- Every "incompatible" edge traversal \Rightarrow One additional graph traversal
- Max. Incompatible edge traversals $=$ Width of the graph $=2$?
- Maximum number of traversals $=$ $1+$ Max. incompatible edge traversals

Complexity of Bidirectional Bit Vector Frameworks

- Every "incompatible" edge traversal \Rightarrow One additional graph traversal
- Max. Incompatible edge traversals $=$ Width of the graph $=3$?
- Maximum number of traversals $=$ $1+$ Max. incompatible edge traversals

Complexity of Bidirectional Bit Vector Frameworks

- Every "incompatible" edge traversal \Rightarrow One additional graph traversal
- Max. Incompatible edge traversals $=$ Width of the graph $=3$?
- Maximum number of traversals $=$ $1+$ Max. incompatible edge traversals

Complexity of Bidirectional Bit Vector Frameworks

- Every "incompatible" edge traversal \Rightarrow One additional graph traversal
- Max. Incompatible edge traversals $=$ Width of the graph $=3$?
- Maximum number of traversals $=$ $1+$ Max. incompatible edge traversals

Complexity of Bidirectional Bit Vector Frameworks

- Every "incompatible" edge traversal \Rightarrow One additional graph traversal
- Max. Incompatible edge traversals $=$ Width of the graph $=3$?
- Maximum number of traversals $=$ $1+$ Max. incompatible edge traversals

Complexity of Bidirectional Bit Vector Frameworks

- Every "incompatible" edge traversal \Rightarrow One additional graph traversal
- Max. Incompatible edge traversals $=$ Width of the graph $=4$
- Maximum number of traversals $=$ $1+$ Max. incompatible edge traversals

Complexity of Bidirectional Bit Vector Frameworks

- Every "incompatible" edge traversal \Rightarrow One additional graph traversal
- Max. Incompatible edge traversals $=$ Width of the graph $=4$
- Maximum number of traversals $=$ $1+4=5$

Width Subsumes Depth

- Depth is applicable only to unidirectional data flow frameworks
- Width is applicable to both unidirectional and bidirectional frameworks
- For a given graph, Width \leq Depth Width provides a tighter bound

Comparison Between Width and Depth

- Depth is purely a graph theoretic property whereas width depends on control flow graph as well as the data framework
- Comparison between width and depth is meaningful only
- For unidirectional frameworks
- When the direction of traversal for computing width is the natural direction of traversal
- Since width excludes bypassed path segments, width can be smaller than depth

Width and Depth

Assuming reverse postorder traversal for available expressions analysis

- Depth $=2$

Width and Depth

Assuming reverse postorder traversal for available expressions analysis

- Depth $=2$
- Information generation point n_{5} kills expression "a +b "

Width and Depth

Assuming reverse postorder traversal for available expressions analysis

- Depth $=2$
- Information generation point n_{5} kills expression "a +b "
- Information propagation path $n_{5} \rightarrow n_{4} \rightarrow n_{6} \rightarrow n_{2}$ No Gen or Kill for "a +b " along this path

Width and Depth

Assuming reverse postorder traversal for available expressions analysis

- Depth $=2$
- Information generation point n_{5} kills expression "a +b "
- Information propagation path $n_{5} \rightarrow n_{4} \rightarrow n_{6} \rightarrow n_{2}$ No Gen or Kill for "a + b" along this path
- Width = 2

Width and Depth

Assuming reverse postorder traversal for available expressions analysis

- Depth $=2$
- Information generation point n_{5} kills expression "a +b "
- Information propagation path $n_{5} \rightarrow n_{4} \rightarrow n_{6} \rightarrow n_{2}$ No Gen or Kill for "a + b" along this path
- Width = 2
- What about "j + 1"?

Width and Depth

Assuming reverse postorder traversal for available expressions analysis

- Depth $=2$
- Information generation point n_{5} kills expression "a +b "
- Information propagation path $n_{5} \rightarrow n_{4} \rightarrow n_{6} \rightarrow n_{2}$ No Gen or Kill for "a + b" along this path
- Width = 2
- What about "j + 1"?
- Not available on entry to the loop

Width and Depth

Structures resulting from repeat-until loops with premature exits

- Depth $=3$

Width and Depth

Structures resulting from repeat-until loops with premature exits

- Depth $=3$
- However, any unidirectional bit vector is guaranteed to converge in $2+1$ iterations

Width and Depth

Structures resulting from repeat-until loops with premature exits

- Depth $=3$
- However, any unidirectional bit vector is guaranteed to converge in $2+1$ iterations
- ifp $5 \rightarrow 4 \rightarrow 6$ is bypassed by the edge $5 \rightarrow 6$

Width and Depth

Structures resulting from repeat-until loops with premature exits

- Depth $=3$
- However, any unidirectional bit vector is guaranteed to converge in $2+1$ iterations
- ifp $5 \rightarrow 4 \rightarrow 6$ is bypassed by the edge $5 \rightarrow 6$
- ifp $6 \rightarrow 3 \rightarrow 6$ is bypassed by the edge $6 \rightarrow 7$

Width and Depth

Structures resulting from repeat-until loops with premature exits

- Depth $=3$
- However, any unidirectional bit vector is guaranteed to converge in $2+1$ iterations
- ifp $5 \rightarrow 4 \rightarrow 6$ is bypassed by the edge $5 \rightarrow 6$
- ifp $6 \rightarrow 3 \rightarrow 6$ is bypassed by the edge $6 \rightarrow 7$
- ifp $7 \rightarrow 2 \rightarrow 8$ is bypassed by the edge $7 \rightarrow 8$

Width and Depth

Structures resulting from repeat-until loops with premature exits

- Depth $=3$
- However, any unidirectional bit vector is guaranteed to converge in $2+1$ iterations
- ifp $5 \rightarrow 4 \rightarrow 6$ is bypassed by the edge $5 \rightarrow 6$
- ifp $6 \rightarrow 3 \rightarrow 6$ is bypassed by the edge $6 \rightarrow 7$
- ifp $7 \rightarrow 2 \rightarrow 8$ is bypassed by the edge $7 \rightarrow 8$
- For forward unidirectional frameworks, width is 1

Width and Depth

Structures resulting from repeat-until loops with premature exits

- Depth $=3$
- However, any unidirectional bit vector is guaranteed to converge in $2+1$ iterations
- ifp $5 \rightarrow 4 \rightarrow 6$ is bypassed by the edge $5 \rightarrow 6$
- ifp $6 \rightarrow 3 \rightarrow 6$ is bypassed by the edge $6 \rightarrow 7$
- ifp $7 \rightarrow 2 \rightarrow 8$ is bypassed by the edge $7 \rightarrow 8$
- For forward unidirectional frameworks, width is 1
- Splitting the bypassing edges and inserting nodes along those edges increases the width

Work List Based Iterative Algorithm

Directly traverses information flow paths

```
1 In0 = BI
f for all j}\not=0\mathrm{ do
3 { Inj = T
    Add j to LIST
}
while LIST is not empty do
{ Let j be the first node in LIST. Remove it from LIST
        temp =}\mp@subsup{\prod}{p\in\operatorname{pred}(j)}{}\mp@subsup{f}{p}{}(I\mp@subsup{n}{p}{}
        if temp }\not=|\mp@subsup{n}{j}{}\mathrm{ then
        { Inj = temp
            Add all successors of j to LIST
        }
    }
```


Tutorial Problem

Perform work list based iterative analysis for earlier examples. Assume that the work list follows FIFO (First in First Out) policy.

Show the trace of the analysis in the folloing format:

Step No.	Program Point Selected	Remaining Work list	Data Flow Value	Program Point(s) Added	Resulting Work list

Part 5

Precise Modelling of General Flows

Complexity of Constant Propagation?

Complexity of Constant Propagation?

Iteration \#1

Complexity of Constant Propagation?

Iteration \#1

Iteration \#2

Complexity of Constant Propagation?

Iteration \#1

Iteration \#3

Iteration \#2

Complexity of Constant Propagation?

Iteration \#1

Iteration \#3

Iteration \#2

Iteration \#4

Loop Closures of Flow Functions

Paths Terminating at p_{2}	Data Flow Value
p_{1}, p_{2}	x
$p_{1}, p_{2}, p_{3}, p_{2}$	$f(x)$
$p_{1}, p_{2}, p_{3}, p_{2}, p_{3}, p_{2}$	$f(f(x))=f^{2}(x)$
$p_{1}, p_{2}, p_{3}, p_{2}, p_{3}, p_{2}, p_{3}, p_{2}$	$f(f(f(x)))=f^{3}(x)$
\ldots	\ldots

Loop Closures of Flow Functions

Paths Terminating at p_{2}	Data Flow Value
p_{1}, p_{2}	x
$p_{1}, p_{2}, p_{3}, p_{2}$	$f(x)$
$p_{1}, p_{2}, p_{3}, p_{2}, p_{3}, p_{2}$	$f(f(x))=f^{2}(x)$
$p_{1}, p_{2}, p_{3}, p_{2}, p_{3}, p_{2}, p_{3}, p_{2}$	$f(f(f(x)))=f^{3}(x)$
\ldots	\ldots

- For static analysis we need to summarize the value at p_{2} by a value which is safe after any iteration.

$$
f^{*}(x)=x \sqcap f(x) \sqcap f^{2}(x) \sqcap f^{3}(x) \sqcap f^{4}(x) \sqcap \ldots
$$

Loop Closures of Flow Functions

Paths Terminating at p_{2}	Data Flow Value
p_{1}, p_{2}	x
$p_{1}, p_{2}, p_{3}, p_{2}$	$f(x)$
$p_{1}, p_{2}, p_{3}, p_{2}, p_{3}, p_{2}$	$f(f(x))=f^{2}(x)$
$p_{1}, p_{2}, p_{3}, p_{2}, p_{3}, p_{2}, p_{3}, p_{2}$	$f(f(f(x)))=f^{3}(x)$
\ldots	\ldots

- For static analysis we need to summarize the value at p_{2} by a value which is safe after any iteration.

$$
f^{*}(x)=x \sqcap f(x) \sqcap f^{2}(x) \sqcap f^{3}(x) \sqcap f^{4}(x) \sqcap \ldots
$$

- f^{*} is called the loop closure of f.

Loop Closures in Bit Vector Frameworks

- Flow functions in bit vector frameworks have constant Gen and Kill

$$
\begin{aligned}
f^{*}(x) & =x \sqcap f(x) \sqcap f^{2}(x) \sqcap f^{3}(x) \sqcap \ldots \\
f^{2}(x) & =f(G e n \cup(x-\text { Kill })) \\
& =G e n \cup((G e n \cup(x-\text { Kill }))-\text { Kill }) \\
& =G e n \cup((\text { Gen }- \text { Kill }) \cup(x-\text { Kill })) \\
& =\text { Gen } \cup(\text { Gen }- \text { Kill }) \cup(x-\text { Kill }) \\
& =\text { Gen } \cup(x-\text { Kill })=f(x) \\
f^{*}(x) & =x \sqcap f(x)
\end{aligned}
$$

Loop Closures in Bit Vector Frameworks

- Flow functions in bit vector frameworks have constant Gen and Kill

$$
\begin{aligned}
f^{*}(x) & =x \sqcap f(x) \sqcap f^{2}(x) \sqcap f^{3}(x) \sqcap \ldots \\
f^{2}(x) & =f(\text { Gen } \cup(x-\text { Kill })) \\
& =G e n \cup((G e n \cup(x-\text { Kill }))-\text { Kill }) \\
& =\text { Gen } \cup((\text { Gen }- \text { Kill }) \cup(x-\text { Kill })) \\
& =\text { Gen } \cup(\text { Gen }- \text { Kill }) \cup(x-\text { Kill }) \\
& =\text { Gen } \cup(x-\text { Kill })=f(x) \\
f^{*}(x) & =x \sqcap f(x)
\end{aligned}
$$

- Loop Closures of Bit Vector Frameworks are 2-bounded.

Loop Closures in Bit Vector Frameworks

- Flow functions in bit vector frameworks have constant Gen and Kill

$$
\begin{aligned}
f^{*}(x) & =x \sqcap f(x) \sqcap f^{2}(x) \sqcap f^{3}(x) \sqcap \ldots \\
f^{2}(x) & =f(\text { Gen } \cup(x-\text { Kill })) \\
& =G e n \cup((\text { Gen } \cup(x-\text { Kill }))-\text { Kill }) \\
& =\text { Gen } \cup((\text { Gen }- \text { Kill }) \cup(x-\text { Kill })) \\
& =\text { Gen } \cup(\text { Gen }- \text { Kill }) \cup(x-\text { Kill }) \\
& =\text { Gen } \cup(x-\text { Kill })=f(x) \\
f^{*}(x) & =x \sqcap f(x)
\end{aligned}
$$

- Loop Closures of Bit Vector Frameworks are 2-bounded.
- Intuition: Since Gen and Kill are constant, same things are generated or killed in every application of f.
Multiple applications of f are not required unless the input value changes.

Larger Values of Loop Closure Bounds

- Fast Frameworks \equiv 2-bounded frameworks (eg. bit vector frameworks)
Both these conditions must be satisfied
- Separability

Data flow values of different entities are independent

- Constant or Identity Flow Functions

Flow functions for an entity are either constant or identity

- Non-fast frameworks

At least one of the above conditions is violated

Separability

$f: L \mapsto L$ is $\left\langle\widehat{h}_{1}, \widehat{h}_{2}, \ldots, \widehat{h}_{m}\right\rangle$ where \widehat{h}_{i} computes the value of \widehat{x}_{i}

Separability

$f: L \mapsto L$ is $\left\langle\widehat{h}_{1}, \widehat{h}_{2}, \ldots, \widehat{h}_{m}\right\rangle$ where \widehat{h}_{i} computes the value of \widehat{x}_{i}

Separable

Non-Separable

Example: All bit vector frameworks
Example: Constant Propagation

Separability

$f: L \mapsto L$ is $\left\langle\widehat{h}_{1}, \widehat{h}_{2}, \ldots, \widehat{h}_{m}\right\rangle$ where \widehat{h}_{i} computes the value of \widehat{x}_{i}
Separable
$\left\langle\widehat{x}_{1}, \widehat{x}_{2}, \ldots, \widehat{x}_{m}\right\rangle$

Non-Separable

Separability

$f: L \mapsto L$ is $\left\langle\widehat{h}_{1}, \widehat{h}_{2}, \ldots, \widehat{h}_{m}\right\rangle$ where \widehat{h}_{i} computes the value of \widehat{x}_{i}
Separable
$\left\langle\widehat{x}_{1}, \widehat{x}_{2}, \ldots, \widehat{x}_{m}\right\rangle$

Non-Separable

Example: All bit vector frameworks

Example: Constant Propagation

Separability

$f: L \mapsto L$ is $\left\langle\widehat{h}_{1}, \widehat{h}_{2}, \ldots, \widehat{h}_{m}\right\rangle$ where \widehat{h}_{i} computes the value of \widehat{x}_{i}
Separable
$\left\langle\widehat{x}_{1}, \widehat{x}_{2}, \ldots, \widehat{x}_{m}\right\rangle$

$$
\hat{h}: \hat{L} \mapsto \hat{L}
$$

Non-Separable

Example: Constant Propagation

Separability

$f: L \mapsto L$ is $\left\langle\widehat{h}_{1}, \widehat{h}_{2}, \ldots, \widehat{h}_{m}\right\rangle$ where \widehat{h}_{i} computes the value of \widehat{x}_{i}
Separable
$\left\langle\widehat{x}_{1}, \widehat{x}_{2}, \ldots, \widehat{x}_{m}\right\rangle$

$$
\widehat{h}: \widehat{L} \mapsto \widehat{L}
$$

Non-Separable

Example: Constant Propagation

Separability

$f: L \mapsto L$ is $\left\langle\widehat{h}_{1}, \widehat{h}_{2}, \ldots, \widehat{h}_{m}\right\rangle$ where \widehat{h}_{i} computes the value of \widehat{x}_{i}
Separable
$\left\langle\widehat{x}_{1}, \widehat{x}_{2}, \ldots, \widehat{x}_{m}\right\rangle$

$$
\hat{h}: \hat{L} \mapsto \hat{L}
$$

Example: All bit vector frameworks

Non-Separable

$\hat{h}: L \mapsto \hat{L}$
Example: Constant Propagation

Separability of Bit Vector Frameworks

- \widehat{L} is $\{0,1\}, L$ is $\{0,1\}^{m}$
- $\hat{\Pi}$ is either boolean AND or boolean OR
- \hat{T} and $\hat{\perp}$ are 0 or 1 depending on $\hat{\Pi}$.
- \widehat{h} is a bit function and could be one of the following:

Raise	Lower	Propagate	Negate

Separability of Bit Vector Frameworks

- \widehat{L} is $\{0,1\}, L$ is $\{0,1\}^{m}$
- $\hat{\Pi}$ is either boolean AND or boolean OR
- \hat{T} and $\hat{\perp}$ are 0 or 1 depending on $\hat{\Pi}$.
- \widehat{h} is a bit function and could be one of the following:

Boundedness of Constant Propagation

Boundedness of Constant Propagation

Summary flow function:
(data flow value at node 7)

$$
\begin{aligned}
f\left(\left\langle v_{a}, v_{b}, v_{c}\right\rangle\right)=\quad & \begin{array}{l}
1 \sqcap\left(v_{b}+1\right), \\
\\
\\
\\
\\
\left(v_{c}+1\right), \\
\left.v_{a}+1\right)
\end{array},
\end{aligned}
$$

Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

$$
\begin{aligned}
f\left(\left\langle v_{a}, v_{b}, v_{c}\right\rangle\right)= & \begin{array}{l}
\left\langle 1 \sqcap\left(v_{b}+1\right),\right. \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\left.v_{c}+1\right), \\
\left.f_{a}+1\right)
\end{array} \\
f^{0}(T)= & \langle\hat{T}, \hat{T}, \hat{T}\rangle \\
f^{1}(T)= & \langle 1, \hat{T}, \hat{T}\rangle
\end{aligned}
$$

Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

$$
\begin{aligned}
& f\left(\left\langle v_{a}, v_{b}, v_{c}\right\rangle\right)=\left\langle 1 \sqcap\left(v_{b}+1\right),\right. \\
& \left(v_{c}+1\right) \text {, } \\
& \left(v_{a}+1\right) \\
& \rangle \\
& f^{0}(T)=\langle\hat{T}, \hat{T}, \widehat{\uparrow}\rangle \\
& f^{1}(\mathrm{~T})=\langle 1, \widehat{\mathrm{~T}}, \widehat{\uparrow}\rangle \\
& f^{2}(T)=\langle 1, \widehat{\top}, 2\rangle
\end{aligned}
$$

Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

$$
\begin{aligned}
f\left(\left\langle v_{a}, v_{b}, v_{c}\right\rangle\right)= & \left\langle\begin{array}{l}
1 \sqcap\left(v_{b}+1\right), \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\left.v_{c}+1\right), \\
\left.v_{a}+1\right)
\end{array}\right. \\
f^{0}(T)= & \langle\hat{\uparrow}, \hat{T}, \hat{T}\rangle \\
f^{1}(T)= & \langle 1, \widehat{\hat{T}}, \widehat{T}\rangle \\
f^{2}(T)= & \langle 1, \hat{T}, 2\rangle \\
f^{3}(T)= & \langle 1,3,2\rangle
\end{aligned}
$$

Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

$$
\begin{aligned}
& f\left(\left\langle v_{a}, v_{b}, v_{c}\right\rangle\right)=\left\langle 1 \sqcap\left(v_{b}+1\right),\right. \\
& \left(v_{c}+1\right) \text {, } \\
& \left(v_{a}+1\right) \\
& f^{0}(T)=\langle\hat{T}, \widehat{\uparrow}, \widehat{\uparrow}\rangle \\
& f^{1}(\mathrm{~T})=\langle 1, \widehat{\mathrm{~T}}, \widehat{\mathrm{~T}}\rangle \\
& f^{2}(T)=\langle 1, \widehat{\top}, 2\rangle \\
& f^{3}(T)=\langle 1,3,2\rangle \\
& f^{4}(T)=\langle\hat{\perp}, 3,2\rangle
\end{aligned}
$$

Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

$$
\begin{aligned}
& f\left(\left\langle v_{a}, v_{b}, v_{c}\right\rangle\right)=\left\langle 1 \sqcap\left(v_{b}+1\right),\right. \\
& \left(v_{c}+1\right) \text {, } \\
& \left(v_{a}+1\right) \\
& f^{0}(\top)=\langle\widehat{\uparrow}, \widehat{\top}, \widehat{\top}\rangle \\
& f^{1}(\top)=\langle 1, \widehat{\top}, \widehat{\top}\rangle \\
& f^{2}(\top)=\langle 1, \widehat{\top}, 2\rangle \\
& f^{3}(\top)=\langle 1,3,2\rangle \\
& f^{4}(\top)=\langle\hat{\perp}, 3,2\rangle \\
& f^{5}(\top)=\langle\widehat{\perp}, 3, \widehat{\perp}\rangle
\end{aligned}
$$

Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

$$
\left.\begin{array}{rl}
f\left(\left\langle v_{a}, v_{b}, v_{c}\right\rangle\right)= & \begin{array}{r}
\left\langle\Gamma\left(v_{b}+1\right),\right. \\
\\
\\
\\
\\
\\
\\
\\
\left(v_{c}+1\right)
\end{array} \\
& \\
\left.v_{a}+1\right)
\end{array}\right\}
$$

Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

$$
\begin{aligned}
& f\left(\left\langle v_{a}, v_{b}, v_{c}\right\rangle\right)=\left\langle 1 \sqcap\left(v_{b}+1\right),\right. \\
&\left(v_{c}+1\right), \\
&\left(v_{a}+1\right) \\
&\rangle \\
& f^{0}(\top)=\langle\hat{\top}, \widehat{\top}, \widehat{T}\rangle \\
& f^{1}(\top)=\langle 1, \widehat{\top}, \widehat{\top}\rangle \\
& f^{2}(\top)=\langle 1, \widehat{\top}, 2\rangle \\
& f^{3}(\top)=\langle 1,3,2\rangle \\
& f^{4}(\top)=\langle\hat{\perp}, 3,2\rangle \\
& f^{5}(\top)=\langle\widehat{\perp}, 3, \widehat{\perp}\rangle \\
& f^{6}(\top)=\langle\widehat{\perp}, \widehat{\perp}, \widehat{\perp}\rangle \\
& f^{7}(\top)=\langle\widehat{\perp}, \widehat{\perp}, \widehat{\perp}\rangle
\end{aligned}
$$

Boundedness of Constant Propagation

$$
f^{*}(T)=\prod_{i=0}^{6} f^{i}(T)
$$

Boundedness of Constant Propagation

The moral of the story:

- The data flow value of every variable could change twice

Boundedness of Constant Propagation

The moral of the story:

- The data flow value of every variable could change twice
- In the worst case, only one change may happen in every step of a function application

Boundedness of Constant Propagation

The moral of the story:

- The data flow value of every variable could change twice
- In the worst case, only one change may happen in every step of a function application
- Maximum number of steps: $2 \times|\operatorname{Var}|$

Boundedness of Constant Propagation

The moral of the story:

- The data flow value of every variable could change twice
- In the worst case, only one change may happen in every step of a function application
- Maximum number of steps: $2 \times|\operatorname{Var}|$
- Boundedness parameter k is $(2 \times|\operatorname{Var}|)+1$

Modelling Flow Functions for General Flows

- General flow functions can be written as

$$
f_{n}(X)=\left(X-\operatorname{Kill}_{n}(X)\right) \cup \operatorname{Gen}_{n}(X)
$$

where Gen and Kill have constant and dependent parts

$$
\begin{aligned}
\operatorname{Gen}_{n}(X) & =\operatorname{ConstGen}_{n} \cup \operatorname{DepGen}_{n}(X) \\
\operatorname{Kill}_{n}(X) & =\operatorname{ConstKill}_{n} \cup \operatorname{DepKill}_{n}(X)
\end{aligned}
$$

Modelling Flow Functions for General Flows

- General flow functions can be written as

$$
f_{n}(X)=\left(X-\operatorname{Kill}_{n}(X)\right) \cup \operatorname{Gen}_{n}(X)
$$

where Gen and Kill have constant and dependent parts

$$
\begin{aligned}
\operatorname{Gen}_{n}(X) & =\operatorname{ConstGen}_{n} \cup \operatorname{DepGen}_{n}(X) \\
\operatorname{Kill}_{n}(X) & =\operatorname{ConstKill}_{n} \cup \operatorname{DepKill}_{n}(X)
\end{aligned}
$$

- The dependent parts take care of
- dependence across different entities as well as
- dependence on the value of the same entity in the argument X

Modelling Flow Functions for General Flows

- General flow functions can be written as

$$
f_{n}(X)=\left(X-\operatorname{Kill}_{n}(X)\right) \cup \operatorname{Gen}_{n}(X)
$$

where Gen and Kill have constant and dependent parts

$$
\begin{aligned}
\operatorname{Gen}_{n}(X) & =\text { ConstGen }_{n} \cup \operatorname{DepGen}_{n}(X) \\
\operatorname{Kill}_{n}(X) & =\operatorname{ConstKill~}_{n} \cup \operatorname{DepKill~}_{n}(X)
\end{aligned}
$$

- The dependent parts take care of
- dependence across different entities as well as
- dependence on the value of the same entity in the argument X
- Bit vector frameworks are a special case

$$
\operatorname{DepGen}_{n}(X)=\operatorname{DepKill}_{n}(X)=\emptyset
$$

Component Lattice for Integer Constant Propagation

- Overall lattice L is the product of \widehat{L} for all variables.
- \sqcap and $\widehat{\Pi}$ get defined by \sqsubseteq and $\widehat{\sqsubseteq}$.

$\widehat{\Pi}$	$\langle v, \boldsymbol{?}\rangle$	$\langle v, \times\rangle$	$\left\langle v, c_{1}\right\rangle$
$\langle v, \boldsymbol{?}\rangle$	$\langle v, \boldsymbol{?}\rangle$	$\langle v, \times\rangle$	$\left\langle v, c_{1}\right\rangle$
$\langle v, \times\rangle$	$\langle v, \times\rangle$	$\langle v, \times\rangle$	$\langle v, \times\rangle$
$\left\langle v, c_{2}\right\rangle$	$\left\langle v, c_{2}\right\rangle$	$\langle v, \times\rangle$	If $c_{1}=c_{2}$ then $\left\langle v, c_{1}\right\rangle$ else $\langle v, \times\rangle$

Flow Functions for Constant Propagation

- Flow function for $r=a_{1} * a_{2}$

mult	$\left\langle a_{1}, \boldsymbol{?}\right\rangle$	$\left\langle a_{1}, \times\right\rangle$	$\left\langle a_{1}, c_{1}\right\rangle$
$\left\langle a_{2}, \boldsymbol{?}\right\rangle$	$\langle r, \boldsymbol{?}\rangle$	$\langle r, \times\rangle$	$\langle r, \boldsymbol{?}\rangle$
$\left\langle a_{2}, \times\right\rangle$	$\langle r, \times\rangle$	$\langle r, \times\rangle$	$\langle r, \times\rangle$
$\left\langle a_{2}, c_{2}\right\rangle$	$\langle r, \boldsymbol{?}\rangle$	$\langle r, \times\rangle$	$\left\langle r,\left(c_{1} * c_{2}\right)\right\rangle$

Defining Data Flow Equations for Constant Propagation

	ConstGen $_{n}$	$\operatorname{DepGen}_{n}(X)$	ConstKill $_{n}$	$\operatorname{DepKill~}_{n}(X)$
$v=c$, $c \in \mathbb{C o n s t}$	$\{\langle v, c\rangle\}$	\emptyset	\emptyset	$\{\langle v, d\rangle \mid\langle v, d\rangle \in X\}$
$v=e$, $e \in \mathbb{E x p r}$	\emptyset	$\{\langle v$, eval $(e, X)\rangle\}$	\emptyset	$\{\langle v, d\rangle \mid\langle v, d\rangle \in X\}$
read (v)	$\{\langle v, \times\rangle\}$	\emptyset	\emptyset	$\{\langle v, d\rangle \mid\langle v, d\rangle \in X\}$
other	\emptyset	\emptyset	\emptyset	\emptyset

Defining Data Flow Equations for Constant Propagation

	ConstGen $_{n}$	$\operatorname{DepGen}_{n}(X)$	ConstKill $_{n}$	$\operatorname{DepKill}_{n}(X)$
$v=c$, $c \in \mathbb{C o n s t}$	$\{\langle v, c\rangle\}$	\emptyset	\emptyset	$\{\langle v, d\rangle \mid\langle v, d\rangle \in X\}$
$v=e$, $e \in \mathbb{E} \times p r$	\emptyset	$\{\langle v$, eval $(e, X)\rangle\}$	\emptyset	$\{\langle v, d\rangle \mid\langle v, d\rangle \in X\}$
read (v)	$\{\langle v, \times\rangle\}$	\emptyset	\emptyset	$\{\langle v, d\rangle \mid\langle v, d\rangle \in X\}$
other	\emptyset	\emptyset	\emptyset	\emptyset

eval(a a_{1} op $\left.a_{2}, X\right)$			
	$\left\langle a_{1}, \boldsymbol{?}\right\rangle \in X$	$\left\langle a_{1}, \times\right\rangle \in X$	$\left\langle a_{1}, c_{1}\right\rangle \in X$
$\left\langle a_{2}, \boldsymbol{?}\right\rangle \in X$	$\boldsymbol{?}$	\times	$\boldsymbol{?}$
$\left\langle a_{2}, \times\right\rangle \in X$	\times	\times	\times
$\left\langle a_{2}, c_{2}\right\rangle \in X$	$\boldsymbol{?}$	\times	c_{1} op c_{2}

Example Program for Constant Propagation

Result of Constant Propagation

	Iteration \#1	Changes in iteration \#2	Changes in iteration \#3	Changes in iteration \#4
$1 n_{n_{1}}$	$\hat{T}, \hat{T}, \hat{T}, \hat{T}, \hat{T}, \hat{\top}$			
Out ${ }_{n_{1}}$	$\hat{T}, \hat{T}, \hat{T}, \hat{T}, \hat{\perp}, \hat{T}$			
$l n_{n_{2}}$	$\hat{\top}, \hat{\top}, \hat{\top}, \hat{T}, \hat{\perp}, \hat{\top}$			
Out ${ }_{n_{2}}$	7,2, $\hat{\top}, \hat{\top}, \hat{\perp}, \hat{\perp}$			
$I n_{n_{3}}$	$7,2, \hat{\top}, \hat{T}, \hat{\perp}, \hat{\perp}$, $, 2, \hat{\top}, 3, \hat{\perp}, \hat{\perp}$		$\stackrel{\perp}{\perp}, \stackrel{\Lambda}{\perp}, 6,3, \stackrel{\perp}{\perp}, \stackrel{\perp}{\perp}$
Out ${ }_{n_{3}}$	2, 2, $\hat{\top}, \hat{T}, \hat{\perp}, \hat{\perp}$	2, $2, \hat{\top}, 3, \hat{\perp}, \hat{\perp}$	$2,2,6,3, \hat{\perp}, \stackrel{\perp}{\perp}$	$2, \frac{\perp}{\perp}, 6,3, \hat{\perp}, \hat{\perp}$
$1 n_{n_{4}}$	2, 2, $\hat{\top}, \hat{T}, \hat{\perp}, \hat{\perp}$	2, 2, $\widehat{\top}, 3, \hat{\perp}, \hat{\perp}$	$2,2,6,3, \hat{\perp}, \hat{\perp}$	$2, \stackrel{\perp}{\perp}, 6,3, \hat{\perp}, \hat{\perp}$
Out $_{n_{4}}$	2, $\widehat{\top}, \hat{\top}, \hat{\top}, \hat{\perp}, \hat{\perp}$	$2, \hat{\top}, \hat{T}, 3, \hat{\perp}, \hat{\perp}$	$2,7,6,3, \hat{\perp}, \hat{\perp}$	
$1 n_{n_{5}}$	2, $\widehat{\top}, \hat{T}, \hat{T}, \hat{\perp}, \hat{\perp}$	$2, \hat{T}, \hat{T}, 3, \hat{\perp}, \hat{\perp}$	$2,7,6,3, \hat{\perp}, \hat{\perp}$	
Out ${ }_{n_{5}}$	2, $\widehat{\top}, \hat{\top}, \hat{T}, \hat{\perp}, \hat{\perp}$	$2, \widehat{\top}, \hat{\top}, 3, \hat{\perp}, \hat{\perp}$	$2,7,6,3, \hat{\perp}, \hat{\perp}$	
$1 n_{n_{6}}$	2, 2, $\hat{\top}, \hat{T}, \hat{\perp}, \hat{\perp}$	2, 2, ¢, $, 3, \hat{\perp}, \hat{\perp}$	$2,2,6,3, \hat{\perp}, \hat{\perp}$	2, $\hat{\perp}, 6,3, \hat{\perp}, \hat{\perp}$
Out ${ }_{n_{6}}$	2, 2, $\hat{\top}, \hat{\top}, \hat{\perp}, \hat{\perp}$	2, 2, $\widehat{\top}, 3, \hat{\perp}, \hat{\perp}$	$2,2,6,3, \hat{\perp}, \hat{\perp}$	$2, \hat{\Lambda}, 6,3, \hat{\perp}, \hat{\perp}$
$1 n_{n 7}$	2, 2, $\hat{\top}, \hat{T}, \hat{\perp}, \hat{\perp}$	2, 2, $\hat{\top}, 3, \hat{\perp}, \hat{\perp}$	$2, \hat{\perp}, 6,3, \stackrel{\perp}{\perp}$,	
Out ${ }_{n_{7}}$	2, $2, \hat{\top}, \hat{\top}, \hat{\perp}, \hat{\perp}$	2, 2, 6, 3, $\stackrel{\perp}{\text {, }}$,	$2, \stackrel{\perp}{\text {, }} 6,3, \stackrel{\perp}{\perp}$,	
$1 n_{n_{8}}$	2, 2, $\hat{\top}, \hat{\top}, \hat{\perp}, \hat{\perp}$		$2,2,6,3, \hat{\perp}, \hat{\perp}$	$2, \hat{\perp}, 6,3, \hat{\perp}, \hat{\perp}$
Out ${ }_{n_{8}}$	2, 2, ¢, $, 4, \hat{\perp}, \hat{\perp}$	2, 2, $\hat{\top}, 4, \hat{\perp}, \hat{\perp}$	2, 2, 6, 4, , , ,	$2, \hat{\perp}, 6, \hat{\perp}, \hat{\perp}, \hat{\perp}$
$1 n_{n 9}$	2, 2, ¢, $, 4, \hat{\perp}, \hat{\perp}$	2, 2, 6, $\widehat{\perp}, \hat{\perp}, \hat{\perp}$	$2, \hat{\perp}, 6, \hat{\perp}, \hat{\perp}, \hat{\perp}$	
Out ${ }_{n 9}$	2, 2, ¢, , 3, ,, ,	$2,2,6,3, \hat{\perp}, \hat{\perp}$	$2, \hat{\perp}, 6,3, \hat{\perp}, \hat{\perp}$	
$1 n_{n_{10}}$	$\hat{\perp}, 2, \hat{\top}, \hat{\top}, \hat{\perp}, \hat{\perp}$	$\hat{\perp}, 2, \hat{T}, 3, \hat{\perp}, \hat{\perp}$	$\hat{\perp}, \hat{\perp}, 6,3, \hat{L}, \hat{\perp}$	
Out $t_{n 10}$	$\hat{\perp}, 2, \hat{\top}, \hat{\top}, \hat{\perp}, \hat{\perp}$	$\hat{\perp}, 2, \hat{\top}, 3, \hat{\perp}, \hat{\perp}$	$\hat{\perp}, \hat{\perp}, 6,3, \hat{\perp}, \hat{\perp}$	

Monotonicity of Constant Propagation

- Flow function $f_{n}(X)=\left(X-\operatorname{Kill}_{n}(X)\right) \cup \operatorname{Gen}_{n}(X)$ where

$$
\begin{aligned}
\operatorname{Gen}_{n}(X) & =\operatorname{ConstGen}_{n} \cup \operatorname{DepGen}_{n}(X) \\
\operatorname{Kill}_{n}(X) & =\operatorname{ConstKill}_{n} \cup \operatorname{DepKill}_{n}(X)
\end{aligned}
$$

- ConstGen ${ }_{n}$ and ConstKill ${ }_{n}$ are trivially monotonic
- To show $X_{1} \sqsubseteq X_{2} \Rightarrow \operatorname{DepGen}_{n}\left(X_{1}\right) \sqsubseteq \operatorname{DepGen}_{n}\left(X_{2}\right)$ we need to show that $X_{1} \sqsubseteq X_{2} \Rightarrow \operatorname{eval}\left(e, X_{1}\right) \sqsubseteq e v a l\left(e, X_{2}\right)$. This follows from definition of eval (e, X).
- To show $X_{1} \sqsubseteq X_{2} \Rightarrow\left(X_{1}-\operatorname{DepKill}_{n}\left(X_{1}\right)\right) \sqsubseteq\left(X_{2}-\operatorname{DepKill}_{n}\left(X_{2}\right)\right)$ observe that DepKill ${ }_{n}$ removes the pair corresponding to the variable modified in statement n. Data flow values of other variables remain unaffected.

