
Some Generalizations

Uday P. Khedker

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

May 2011



Part 1

About These Slides



MACS L111 Generalizations-1: About These Slides 1/57

Copyright

These slides constitute the lecture notes for

• MACS L111 Advanced Data Flow Analysis course at Cambridge
University, and

• CS 618 Program Analysis course at IIT Bombay.

They have been made available under GNU FDL v1.2 or later (purely for
academic or research use) as teaching material accompanying the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow

Analysis: Theory and Practice. CRC Press (Taylor and Francis
Group). 2009.

Apart from the above book, some slides are based on the material from
the following books

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

• F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag. 1998.

May 2011 Uday Khedker



MACS L111 Generalizations-1: About These Slides 2/57

Outline

• Partial Redundancy Elimination

• Introduction to Constant Propagation

• Theoretical Abstractions in Data Flow Analysis
◮ The world of data flow values
◮ The world of functions and operations that compute data values

(Not today)
◮ Results of data flow analysis (Not today)
◮ Algorithms for performing data flow analysis (Not today)

May 2011 Uday Khedker



Part 2

Partial Redundancy Elimination



MACS L111 Generalizations-1: Partial Redundancy Elimination 3/57

Precursor: Common Subexpression Elimination

1 a ∗ b 1 2 a ∗ b 2

3 a ∗ b 3

0 if () 0

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 3/57

Precursor: Common Subexpression Elimination

1 a ∗ b 1 2 a ∗ b 2

3 a ∗ b 3

0 if () 0 • a and b are not modified along
paths 1 → 3 and 2 → 3

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 3/57

Precursor: Common Subexpression Elimination

1 a ∗ b 1 2 a ∗ b 2

3 a ∗ b 3

0 if () 0 • a and b are not modified along
paths 1 → 3 and 2 → 3

• Computation of a ∗ b in 3 is
redundant

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 3/57

Precursor: Common Subexpression Elimination

1 t = a ∗ b 12 t = a ∗ b 2

3 t 3

0 if () 0 • a and b are not modified along
paths 1 → 3 and 2 → 3

• Computation of a ∗ b in 3 is
redundant

• Previous value can be used

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 4/57

Partial Redundancy Elimination

1 a ∗ b 1 2 a = 5 2

3 a ∗ b 3

0 if () 0

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 4/57

Partial Redundancy Elimination

1 a ∗ b 1 2 a = 5 2

3 a ∗ b 3

0 if () 0
• Computation of a ∗ b in 3 is

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 4/57

Partial Redundancy Elimination

1 a ∗ b 1 2 a = 5 2

3 a ∗ b 3

0 if () 0
• Computation of a ∗ b in 3 is

◮ redundant along path 1 → 3,
but . . .

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 4/57

Partial Redundancy Elimination

1 a ∗ b 1 2 a = 5 2

3 a ∗ b 3

0 if () 0
• Computation of a ∗ b in 3 is

◮ redundant along path 1 → 3,
but . . .

◮ not redundant along path 2 → 3

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 5/57

Code Hoisting for Partial Redundancy Elimination

1 a ∗ b 1 2 a = 5 2

3 a ∗ b 3

0 if () 0

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 5/57

Code Hoisting for Partial Redundancy Elimination

1 a ∗ b 1 2
a = 5
a ∗ b 2

3 a ∗ b 3

0 if () 0

• Computation of a ∗ b in 3
becomes totally redundant

• Can be deleted

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 6/57

PRE Subsumes Loop Invariant Movement

1 a = b ∗ c 1

2 a = b ∗ c 1

3 a = b ∗ c 3

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 6/57

PRE Subsumes Loop Invariant Movement

1 a = b ∗ c 1

2 a = b ∗ c 1

3 a = b ∗ c 3

1 a = b ∗ c 1

2 a = b ∗ c 1

2 a = b ∗ c 3

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 6/57

PRE Subsumes Loop Invariant Movement

1 a = b ∗ c 1

2 a = b ∗ c 1

3 a = b ∗ c 3

1 a = b ∗ c 1

2 a = b ∗ c 1

2 a = b ∗ c 3

1 t = b ∗ c 1

2 a = t 1

3 a = b ∗ c 3

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 7/57

PRE Can be Used for Strength Reduction

i = 0
t0 = base(A)

t1 = t0 + i ∗ 4
a = mem[t1]
i = i + 1

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 7/57

PRE Can be Used for Strength Reduction

i = 0
t0 = base(A)

t1 = t0 + i ∗ 4
a = mem[t1]
i = i + 1

⇒

i = 0
t0 = base(A)
t1 = t0 + i ∗ 4

t1 = t1 + 4
a = mem[t1]
i = i + 1

• ∗ and + in the loop have been replaced by +

• i = i + 1 in the loop has been eliminated

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 7/57

PRE Can be Used for Strength Reduction

i = 0
t0 = base(A)

t1 = t0 + i ∗ 4
a = mem[t1]
i = i + 1

• Delete i = i + 1

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 7/57

PRE Can be Used for Strength Reduction

i = 0
t0 = base(A)

t1 = t0 + i ∗ 4
a = mem[t1]
i = i + 1

• Delete i = i + 1

• Expression t0 + i ∗ 4
becomes loop invariant

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 7/57

PRE Can be Used for Strength Reduction

i = 0
t0 = base(A)
t1 = t0 + i ∗ 4

t1 = t1 + 4
a = mem[t1]
i = i + 1

• Delete i = i + 1

• Expression t0 + i ∗ 4
becomes loop invariant

• Hoist it and increment t1
in the loop

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 7/57

PRE Can be Used for Strength Reduction

i = 0
t0 = base(A)
t1 = t0 + i ∗ 4

t1 = t1 + 4
a = mem[t1]
i = i + 1

⇒

i = 0
t0 = base(A)
t1 = t0 + i ∗ 4

t1 = t1 + 4
a = mem[t1]
i = i + 1

• ∗ and + in the loop have been replaced by +

• i = i + 1 in the loop has been eliminated

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 8/57

Performing Partial Redundancy Elimination

1. Identify partial redundancies

2. Identify program points where computations can be inserted

3. Insert expressions

4. Partial redundancies become total redundancies
=⇒ Delete them.

Morel-Renvoise Algorithm (CACM, 1979.)

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 9/57

Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

Available at p Anticipable at p
Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 9/57

Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

Available at p Anticipable at p
Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

Start

a ∗ b

a ∗ b

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 9/57

Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

Available at p Anticipable at p
Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

Start

a ∗ b

a ∗ b

◮ If it is available at p, then
there is no need to insert
it at p.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 9/57

Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

Available at p Anticipable at p
Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

Start

a ∗ b

a ∗ b

◮ If it is available at p, then
there is no need to insert
it at p.

◮ If it is anticipable at p
then all such occurrence
should be hoisted to p.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 9/57

Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

Available at p Anticipable at p
Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

Start

a ∗ b

a ∗ b

◮ If it is available at p, then
there is no need to insert
it at p.

◮ If it is anticipable at p
then all such occurrence
should be hoisted to p.

◮ An expression should be

hoisted to p provided it

can be hoisted to p along

all paths from p to exit.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 10/57

Hoisting Criteria

• Safety of hoisting to the exit of a block .

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 10/57

Hoisting Criteria

• Safety of hoisting to the exit of a block .

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

b ∗ c

b ∗ c b ∗ c

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 10/57

Hoisting Criteria

• Safety of hoisting to the exit of a block .

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block .
Should be hoisted only if

S.2 it is upwards exposed, or

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 10/57

Hoisting Criteria

• Safety of hoisting to the exit of a block .

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block .
Should be hoisted only if

S.2 it is upwards exposed, or

a ∗ c a ∗ c
a =

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 10/57

Hoisting Criteria

• Safety of hoisting to the exit of a block .

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block .
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

a ∗ c a ∗ c
a =

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 10/57

Hoisting Criteria

• Safety of hoisting to the exit of a block .

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block .
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block b ∗ c

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 10/57

Hoisting Criteria

• Safety of hoisting to the exit of a block .

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block .
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 10/57

Hoisting Criteria

• Safety of hoisting to the exit of a block .

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block .
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 10/57

Hoisting Criteria

• Safety of hoisting to the exit of a block .

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block .
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

b ∗ c b ∗ c

b ∗ c b ∗ c

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 10/57

Hoisting Criteria

• Safety of hoisting to the exit of a block .

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block .
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

b ∗ c

b ∗ c b ∗ c

a ∗ c a ∗ c
a =

b ∗ c

b ∗ c b ∗ c

b ∗ c b ∗ c

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 11/57

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

What does this slide show?

• Four examples

• For each example
◮ statements in blue

enable hoisting
◮ statements in red

prohibit hoisting

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 11/57

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(Example 1)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 11/57

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(Example 1)

1

2

3

4

D.2.b

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 11/57

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(Example 1)

1

2

3

4
What if we insert

• a = 2 in 3?

• a = 2 in 3 and a ∗ b in 4?

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 11/57

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(Example 2)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 11/57

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(Example 2)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 11/57

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(Example 2)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 11/57

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

a ∗ b

a = 5

a ∗ b

a ∗ b

(Example 3)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 11/57

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

a ∗ b

a = 5

a ∗ b

a ∗ b

(Example 3)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 11/57

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

a ∗ b

a = 5

a ∗ b

a ∗ b

(Example 4)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 11/57

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

a ∗ b

a = 5

a ∗ b

a ∗ b

(Example 4)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 11/57

Applying the Hoisting Criteria

• Safety of hoisting to the exit of a block.

S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Safety of hoisting to the entry of a block.
Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

• Desirability of hoisting to the entry of a block.
Should be hoisted only if

D.1 it is partially available, and
D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

a ∗ b

a = 5

a ∗ b

a ∗ b

(Example 4)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 11/57

Applying the Hoisting Criteria

• S.1 Should be hoisted only if it can be hoisted to
the entry of all succesors

• Should be hoisted only if

S.2 it is upwards exposed, or
S.3 it can be hoisted to its exit and is transparent

in the block

Should be hoisted only if
• D.1 it is partially available, and

D.2 For each predecessor

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

a ∗ b

a = 5

a ∗ b

a ∗ b

(Example 4)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 12/57

First Level Global Data Flow Properties in PRE

• Partial Availability.

PavInn =





BI n is Start block⋃

p∈pred(n)

PavOutp otherwise

PavOutn = Genn ∪ (PavInn − Killn)

• Total Availability.

AvInn =





BI n is Start block⋂

p∈pred(n)

AvOutp otherwise

AvOutn = Genn ∪ (AvInn − Killn)

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 13/57

PRE Data Flow Equations

Inn = PavInn ∩
(
AntGenn ∪ (Outn − Killn)

)

⋂

p∈pred(n)

(
Outp ∪ AvOutp

)

Outn =





BI n is End block⋂

s∈succ(n)

Ins otherwise

Desirability: D.1

Expressions should be partially available, and

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 13/57

PRE Data Flow Equations

Inn = PavInn ∩
(
AntGenn ∪ (Outn − Killn)

)

⋂

p∈pred(n)

(
Outp ∪ AvOutp

)

Outn =





BI n is End block⋂

s∈succ(n)

Ins otherwise

Safety: S.2

Expressions should be upwards exposed, or

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 13/57

PRE Data Flow Equations

Inn = PavInn ∩
(
AntGenn ∪ (Outn − Killn)

)

⋂

p∈pred(n)

(
Outp ∪ AvOutp

)

Outn =





BI n is End block⋂

s∈succ(n)

Ins otherwise

Safety: S.3

Expressions can be hoisted to the exit and are transparent in the block

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 13/57

PRE Data Flow Equations

Inn = PavInn ∩
(
AntGenn ∪ (Outn − Killn)

)

⋂

p∈pred(n)

(
Outp ∪ AvOutp

)

Outn =





BI n is End block⋂

s∈succ(n)

Ins otherwise

Desirability: D.2.a

For every predecessor, expressions can be hoisted to its exit, or

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 13/57

PRE Data Flow Equations

Inn = PavInn ∩
(
AntGenn ∪ (Outn − Killn)

)

⋂

p∈pred(n)

(
Outp ∪ AvOutp

)

Outn =





BI n is End block⋂

s∈succ(n)

Ins otherwise

Desirability: D.2.b

. . . expressions are available at the exit of the same predecessor

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 13/57

PRE Data Flow Equations

Inn = PavInn ∩
(
AntGenn ∪ (Outn − Killn)

)

⋂

p∈pred(n)

(
Outp ∪ AvOutp

)

Outn =





BI n is End block⋂

s∈succ(n)

Ins otherwise

Safety: S.1

Expressions should be hoisted to the exit of a block
if they can be hoisted to the entry of all succesors

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 13/57

PRE Data Flow Equations

Inn = PavInn ∩
(
AntGenn ∪ (Outn − Killn)

)

⋂

p∈pred(n)

(
Outp ∪ AvOutp

)

Outn =





BI n is End block⋂

s∈succ(n)

Ins otherwise

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 14/57

Deletion Criteria in PRE

• An expression is redundant in node n if

◮ it can be placed at the entry (i.e. can be “hoisted” out) of n, AND
◮ it is upwards exposed in node n.

Redundantn = Inn ∩ AntGenn

• A hoisting path for an expression e begins at n if e ∈ Redundantn

• This hoisting path extends against the control flow.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 15/57

Insertion Criteria in PRE

• An expression is inserted at the exit of node n is

◮ it can be placed at the exit of n, AND
◮ it is not available at the exit of n, AND
◮ it cannot be hoisted out of n, OR it is modified in n.

Insertn = Outn ∩ (¬AvOutn) ∩ (¬Inn ∪ Killn)

• A hoisting path for an expression e ends at n if e ∈ Insertn

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 16/57

Performing PRE by Computing In/Out : Simple Cases

2 c = a ∗ b 2 3 a = 5 3

4 d = a ∗ b 3

1 c = a ∗ b 1

⇒ 2 t = a ∗ b
c = t 2 3 a = 5

t = a ∗ b 3

4 d = t 4

1 c = a ∗ b 1

1 a = b ∗ c 1

2 a = b ∗ c 2

3 a = b ∗ c 3

⇒

1 t = b ∗ c 1

2 a = t 1

3 a = b ∗ c 3

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 16/57

Performing PRE by Computing In/Out : Simple Cases

2 c = a ∗ b 2 3 a = 5 3

4 d = a ∗ b 3

1 c = a ∗ b 1

0

0
0

1

0

1
1

0

⇒ 2 t = a ∗ b
c = t 2 3 a = 5

t = a ∗ b 3

4 d = t 4

1 c = a ∗ b 1

1 a = b ∗ c 1

2 a = b ∗ c 2

3 a = b ∗ c 3

0

1
1

0
0

0

⇒

1 t = b ∗ c 1

2 a = t 1

3 a = b ∗ c 3

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 16/57

Performing PRE by Computing In/Out : Simple Cases

2 c = a ∗ b 2 3 a = 5 3

4 d = a ∗ b 3

1 c = a ∗ b 1

0

0
0

1

0

1
1

0

⇒ 2 t = a ∗ b
c = t 2 3 a = 5

t = a ∗ b 3

4 d = t 4

1 c = a ∗ b 1

1 a = b ∗ c 1

2 a = b ∗ c 2

3 a = b ∗ c 3

0

1
1

0
0

0

RedundancyInsertion

⇒

1 t = b ∗ c 1

2 a = t 1

3 a = b ∗ c 3

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 17/57

Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 17/57

Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

0

0

0

0

0

0

0

0

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 17/57

Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

0

0

0

0

0

0

0

0

a ∗ b

a = 5

a ∗ b

a ∗ b

(b)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 17/57

Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

0

0

0

0

0

0

0

0

a ∗ b

a = 5

a ∗ b

a ∗ b

(b)

1

2

3

4

0

0

0

1

1

0

0

0

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 17/57

Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

0

0

0

0

0

0

0

0

a ∗ b

a = 5

a ∗ b

a ∗ b

(b)

1

2

3

4

0

0

0

1

1

0

0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(c)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 17/57

Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

0

0

0

0

0

0

0

0

a ∗ b

a = 5

a ∗ b

a ∗ b

(b)

1

2

3

4

0

0

0

1

1

0

0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(c)

1

2

3

4

0

0

0

0
1

0
0

0

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 17/57

Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

0

0

0

0

0

0

0

0

a ∗ b

a = 5

a ∗ b

a ∗ b

(b)

1

2

3

4

0

0

0

1

1

0

0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(c)

1

2

3

4

0

0

0

0
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(d)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 17/57

Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

0

0

0

0

0

0

0

0

a ∗ b

a = 5

a ∗ b

a ∗ b

(b)

1

2

3

4

0

0

0

1

1

0

0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(c)

1

2

3

4

0

0

0

0
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(d)

1

2

3

4

0

0

0

0
1

0
0

0

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 17/57

Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

0

0

0

0

0

0

0

0

a ∗ b

a = 5

a ∗ b

a ∗ b

(b)

1

2

3

4

0

0

0

1

1

0

0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(c)

1

2

3

4

0

0

0

0
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(d)

1

2

3

4

0

0

0

0
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(e)

1

2

3

4

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 17/57

Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

0

0

0

0

0

0

0

0

a ∗ b

a = 5

a ∗ b

a ∗ b

(b)

1

2

3

4

0

0

0

1

1

0

0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(c)

1

2

3

4

0

0

0

0
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(d)

1

2

3

4

0

0

0

0
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(e)

1

2

3

4

0

1

1

1
1

1
1

0

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 17/57

Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

0

0

0

0

0

0

0

0

a ∗ b

a = 5

a ∗ b

a ∗ b

(b)

1

2

3

4

0

0

0

1

1

0

0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(c)

1

2

3

4

0

0

0

0
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(d)

1

2

3

4

0

0

0

0
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(e)

1

2

3

4

0

1

1

1
1

1
1

0

Redundancy Insertion

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 18/57

Further Tutorial Problem for PRE

1 b ∗ c 1

2 a ∗ b 2

3 a = . . . 34 d = . . . 4

5 b ∗ c 5

6 b ∗ c 6

Let {a ∗ b, b ∗ c} ≡ bit string 11

Node n Killn AntGenn PavInn AvOutn

1 00 00 00 00

2 00 10 11 10

3 10 00 11 00

4 00 00 11 10

5 00 01 11 01

6 00 00 11 01

• Compute Inn/Outn/Redundantn/Insertn

• Identify hoisting paths

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 19/57

Result of PRE Data Flow Analysis of the Running Example

Bit vector a ∗ b a + b a − b a − c b + c

B
lo
ck

Global Information

Constant
information

Iteration # 1 Changes in
iteration # 2

Changes in
iteration # 3

PavInn AvOutn Outn Inn Outn Inn Outn Inn

n8 11111 00011 00000 00011 00001

n7 11101 11000 00011 01001 00001

n6 11101 11001 01001 01001 01000

n5 11101 11000 01001 01001 01000

n4 11100 10100 01001 11100 11000

n3 11101 10000 01000 01001 00001

n2 10001 00010 00011 00000 00001

n1 00000 10001 00000 00000

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 20/57

Hoisting Paths for Some Expressions in the Running Example

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a − c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b ;
f (a − b);

n4

n5 d = a + b ; n5

n6 f ( b + c ); n6

n7 g( a + b ); n7

n8
h(a − c);
f ( b + c );

n8

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 20/57

Hoisting Paths for Some Expressions in the Running Example

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a − c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b ;
f (a − b);

n4

n5 d = a + b ; n5

n6 f ( b + c ); n6

n7 g( a + b ); n7

n8
h(a − c);
f ( b + c );

n8

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 20/57

Hoisting Paths for Some Expressions in the Running Example

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a − c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b ;
f (a − b);

n4

n5 d = a + b ; n5

n6 f ( b + c ); n6

n7 g( a + b ); n7

n8
h(a − c);
f ( b + c );

n8

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 20/57

Hoisting Paths for Some Expressions in the Running Example

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a − c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b ;
f (a − b);

n4

n5 d = a + b ; n5

n6 f ( b + c ); n6

n7 g( a + b ); n7

n8
h(a − c);
f ( b + c );

n8

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 20/57

Hoisting Paths for Some Expressions in the Running Example

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a − c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b ;
f (a − b);

n4

n5 d = a + b ; n5

n6 f ( b + c ); n6

n7 g( a + b ); n7

n8
h(a − c);
f ( b + c );

n8

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 20/57

Hoisting Paths for Some Expressions in the Running Example

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a − c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b ;
f (a − b);

n4

n5 d = a + b ; n5

n6 f ( b + c ); n6

n7 g( a + b ); n7

n8
h(a − c);
f ( b + c );

n8

May 2011 Uday Khedker



MACS L111 Generalizations-1: Partial Redundancy Elimination 21/57

Optimized Version of the Running Example

n1

b = 4;
t2 = b + c ;
a = t2;
t0 = a ∗ b;
d = t0;

n1

n2

b = c ;
f (a − c);
t2 = b + c ;

n2

n3
c = t2
t1 = a + b; n3

n4

c = t0;
f (a − b);
t2 = b + c ;

n4

n5
d = t1;
t2 = b + c ; n5

n6 f (t2); n6

n7 g(t1); n7

n8
h(a − c);
f (t2);

n8

May 2011 Uday Khedker



Part 3

The Need for a More General Setting



MACS L111 Generalizations-1: The Need for a More General Setting 22/57

What We Have Seen So Far . . .

Analysis Entity
Attribute

Paths
at p

Live variables Variables Use Starting at p Some

Available
Expressions Availability Reaching p All

expressions

Partially available
Expressions Availability Reaching p Some

expressions

Anticipable
Expressions Use Starting at p All

expressions

Reaching
Definitions Availability Reaching p Some

definitions

Partial redundancy
Expressions

Profitable
Involving p All

elimination hoistability

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Summary Values

〈?, ?, ?, ?〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Summary Values

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Summary Values

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉〈×,×, 3, 2〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Summary Values

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Summary Values

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Summary Values

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈2, 1, 3, 2〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 23/57

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Summary Values

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈2, 1, 3, 2〉

Desired Solution

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 24/57

Data Flow Values for Constant Propagation

• Tuples of the form 〈ξ1, ξ2, . . . , ξk〉 where ξi is the data flow value
for i th variable.

Unlike bit vector frameworks, value ξi is not 0 or 1 (i.e. true or
false). Instead, it is one of the following:

◮ ? indicating that not much is known about the constantness of
variable vi

◮ × indicating that variable vi does not have a constant value
◮ An integer constant c1 if the value of vi is known to be c1 at compile

time

• Alternatively, sets of pairs 〈vi , ξ i〉 for each variable vi .

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 25/57

Confluence Operation for Constant Propagation

• Confluence operation 〈a, c1〉 ⊓ 〈a, c2〉

⊓ 〈a, ?〉 〈a,×〉 〈a, c1〉

〈a, ?〉 〈a, ?〉 〈a,×〉 〈a, c1〉
〈a,×〉 〈a,×〉 〈a,×〉 〈a,×〉

〈a, c2〉 〈a, c2〉 〈a,×〉
If c1 = c2 〈a, c1〉
Otherwise 〈a,×〉

• This is neither ∩ nor ∪.

What are its properties?

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 26/57

Flow Functions for Constant Propagation

• Flow function for r = a1 ∗ a2

mult 〈a1, ?〉 〈a1,×〉 〈a1, c1〉

〈a2, ?〉 〈r , ?〉 〈r ,×〉 〈r , ?〉
〈a2,×〉 〈r ,×〉 〈r ,×〉 〈r ,×〉
〈a2, c2〉 〈r , ?〉 〈r ,×〉 〈r , (c1 ∗ c2)〉

• This cannot be expressed in the form

fn(X ) = Genn ∪ (X − Killn)

where Genn and Killn are constant effects of block n.

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 27/57

Round Robin Iterative Analysis for Constant Propagation

n1

a = 1
b = 2

c = a + b

n1

n2
c = a + b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a + b

n3

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 27/57

Round Robin Iterative Analysis for Constant Propagation

n1

a = 1
b = 2

c = a + b

n1

n2
c = a + b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a + b

n3

Iteration
#1

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, 2〉

〈1, 2, 3, 2〉

〈2, 1, 3, 2〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 27/57

Round Robin Iterative Analysis for Constant Propagation

n1

a = 1
b = 2

c = a + b

n1

n2
c = a + b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a + b

n3

Iteration
#1

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, 2〉

〈1, 2, 3, 2〉

〈2, 1, 3, 2〉

Iteration
#2

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 27/57

Round Robin Iterative Analysis for Constant Propagation

n1

a = 1
b = 2

c = a + b

n1

n2
c = a + b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a + b

n3

Iteration
#1

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, 2〉

〈1, 2, 3, 2〉

〈2, 1, 3, 2〉

Iteration
#2

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

Iteration
#3

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3,×〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 27/57

Round Robin Iterative Analysis for Constant Propagation

n1

a = 1
b = 2

c = a + b

n1

n2
c = a + b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a + b

n3

Desired
solution

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈2, 1, 3, 2〉

Iteration
#1

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, 2〉

〈1, 2, 3, 2〉

〈2, 1, 3, 2〉

Iteration
#2

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

Iteration
#3

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3,×〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 27/57

Round Robin Iterative Analysis for Constant Propagation

n1

a = 1
b = 2

c = a + b

n1

n2
c = a + b

d = a ∗ b
n2

n3

d = c − 1
a = 2
b = 1

c = a + b

n3

Desired
solution

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈2, 1, 3, 2〉

Iteration
#1

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, 2〉

〈1, 2, 3, 2〉

〈2, 1, 3, 2〉

Iteration
#2

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

Iteration
#3

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3,×〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 28/57

Issues in Data Flow Analysis

A
cceptable

O
p
erations

Desired

Solutions

Pra
ct

ic
a
l

Alg
or

it
h
m
s

D
at
a

Flo
w

V
al

ue
s

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 28/57

Issues in Data Flow Analysis

A
cceptable

O
p
erations

Desired

Solutions

Pra
ct

ic
a
l

Alg
or

it
h
m
s

D
at
a

Flo
w

V
al

ue
s

• Representation

• Approximation: Partial
Order, Lattices

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 28/57

Issues in Data Flow Analysis

A
cceptable

O
p
erations

Desired

Solutions

Pra
ct

ic
a
l

Alg
or

it
h
m
s

D
at
a

Flo
w

V
al

ue
s

• Representation

• Approximation: Partial
Order, Lattices

• Merge: Commutativity,
Associativity, Idempotence

• Flow Functions: Monotonicity,
Distributivity, Boundedness,
Separability

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 28/57

Issues in Data Flow Analysis

A
cceptable

O
p
erations

Desired

Solutions

Pra
ct

ic
a
l

Alg
or

it
h
m
s

D
at
a

Flo
w

V
al

ue
s

• Representation

• Approximation: Partial
Order, Lattices

• Merge: Commutativity,
Associativity, Idempotence

• Flow Functions: Monotonicity,
Distributivity, Boundedness,
Separability

• Existence

• Safety (soundness)

• Precision

May 2011 Uday Khedker



MACS L111 Generalizations-1: The Need for a More General Setting 28/57

Issues in Data Flow Analysis

A
cceptable

O
p
erations

Desired

Solutions

Pra
ct

ic
a
l

Alg
or

it
h
m
s

D
at
a

Flo
w

V
al

ue
s

• Representation

• Approximation: Partial
Order, Lattices

• Merge: Commutativity,
Associativity, Idempotence

• Flow Functions: Monotonicity,
Distributivity, Boundedness,
Separability

• Existence

• Safety (soundness)

• Precision

• Complexity, efficiency

• Convergence

• Initialization

May 2011 Uday Khedker



Part 4

Data Flow Values: An Overview



MACS L111 Generalizations-1: Data Flow Values: An Overview 29/57

Data Flow Values: An Outline of Our Discussion

• The need to define the notion of abstraction

• Lattices, variants of lattices

• Relevance of lattices for data flow analysis
◮ Partial order relation as approximation of data flow values
◮ Meet operations as confluence of data flow values

• Cartesian product of lattices

• Example of lattices

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 30/57

Partially Ordered Sets and Lattices

Partially ordered sets

Partial order ⊑ is
reflexive, transitive,
and antisymmetric

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 30/57

Partially Ordered Sets and Lattices

Partially ordered sets

Partial order ⊑ is
reflexive, transitive,
and antisymmetric

A lower bound of
x , y is u s.t. u ⊑ x

and u ⊑ y

An upper bound of
x , y is u s.t. x ⊑ u

and y ⊑ u

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 30/57

Partially Ordered Sets and Lattices

Partially ordered sets

Partial order ⊑ is
reflexive, transitive,
and antisymmetric

Lattices

Every non-empty finite
subset has a greatest
lower bound (glb) and a
least upper bound (lub)

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 31/57

Partially Ordered Sets

Set {1, 2, 3, 4, 9} with ⊑ relation as “divides” (i.e. a ⊑ b iff a divides b)

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 31/57

Partially Ordered Sets

Set {1, 2, 3, 4, 9} with ⊑ relation as “divides” (i.e. a ⊑ b iff a divides b)

4 9

2 3

1

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 31/57

Partially Ordered Sets

Set {1, 2, 3, 4, 9} with ⊑ relation as “divides” (i.e. a ⊑ b iff a divides b)

4 9

2 3

1

Subsets {4, 9} and {2, 3} do not have an upper bound in the set

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 32/57

Lattice

Set {1, 2, 3, 4, 9, 36} with ⊑ relation as “divides” (i.e. a ⊑ b iff a divides b)

36

4 9

2 3

1

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 33/57

Complete Lattice

• Lattice: A partially ordered set such that every non-empty finite
subset has a glb and a lub.

Example:
Lattice Z of integers under ≤ relation. All finite subsets have a glb
and a lub. Infinite subsets do not have a glb or a lub.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 33/57

Complete Lattice

• Lattice: A partially ordered set such that every non-empty finite
subset has a glb and a lub.

Example:
Lattice Z of integers under ≤ relation. All finite subsets have a glb
and a lub. Infinite subsets do not have a glb or a lub.

• Complete Lattice: A lattice in which even ∅ and infinite subsets
have a glb and a lub.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 33/57

Complete Lattice

• Lattice: A partially ordered set such that every non-empty finite
subset has a glb and a lub.

Example:
Lattice Z of integers under ≤ relation. All finite subsets have a glb
and a lub. Infinite subsets do not have a glb or a lub.

• Complete Lattice: A lattice in which even ∅ and infinite subsets
have a glb and a lub.

Example:
Lattice Z of integers under ≤ relation with ∞ and −∞.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 33/57

Complete Lattice

• Lattice: A partially ordered set such that every non-empty finite
subset has a glb and a lub.

Example:
Lattice Z of integers under ≤ relation. All finite subsets have a glb
and a lub. Infinite subsets do not have a glb or a lub.

• Complete Lattice: A lattice in which even ∅ and infinite subsets
have a glb and a lub.

Example:
Lattice Z of integers under ≤ relation with ∞ and −∞.

◮ ∞ is the top element denoted ⊤: ∀i ∈ Z, i ≤ ⊤.
◮ −∞ is the bottom element denoted ⊥: ∀i ∈ Z, ⊥ ≤ i .

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 34/57

Z ∪ {∞,−∞} is a Complete Lattice

• Infinite subsets of Z ∪ {∞,−∞} have a glb and lub.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 34/57

Z ∪ {∞,−∞} is a Complete Lattice

• Infinite subsets of Z ∪ {∞,−∞} have a glb and lub.

• What about the empty set?

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 34/57

Z ∪ {∞,−∞} is a Complete Lattice

• Infinite subsets of Z ∪ {∞,−∞} have a glb and lub.

• What about the empty set?

◮ glb(∅) is ⊤

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 34/57

Z ∪ {∞,−∞} is a Complete Lattice

• Infinite subsets of Z ∪ {∞,−∞} have a glb and lub.

• What about the empty set?

◮ glb(∅) is ⊤

Every element of Z ∪ {∞,−∞} is vacuously a lower bound of an
element in ∅ (because there is no element in ∅).

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 34/57

Z ∪ {∞,−∞} is a Complete Lattice

• Infinite subsets of Z ∪ {∞,−∞} have a glb and lub.

• What about the empty set?

◮ glb(∅) is ⊤

Every element of Z ∪ {∞,−∞} is vacuously a lower bound of an
element in ∅ (because there is no element in ∅).
The greatest among these lower bounds is ⊤.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 34/57

Z ∪ {∞,−∞} is a Complete Lattice

• Infinite subsets of Z ∪ {∞,−∞} have a glb and lub.

• What about the empty set?

◮ glb(∅) is ⊤

Every element of Z ∪ {∞,−∞} is vacuously a lower bound of an
element in ∅ (because there is no element in ∅).
The greatest among these lower bounds is ⊤.

◮ lub(∅) is ⊥

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 35/57

Finite Lattices are Complete

• Any given set of elements has a glb and a lub

Available Expressions Partially Available
Analysis Expressions Analysis

{e1, e2, e3}

(⊤)

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅
(⊥)

∅

(⊤)

{e1} {e2} {e3}

{e1, e2} {e1, e3} {e2, e3}

{e1, e2, e3}

(⊥)

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 36/57

Lattice for May-Must Analysis

• There is no ⊤ among the natural values

May

MustNo

⊥

Interpreting data flow values

− No. Information does not hold along any path

− Must. Information must hold along all paths

− May. Information may hold along some path

• An artificial ⊤ can be added
However, a lub may not exist for arbitrary sets

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 37/57

Some Variants of Lattices

A poset L is

• A lattice iff each non-empty finite subset of L has a glb and lub.

• A complete lattice iff each subset of L has a glb and lub.

• A meet semilattice iff each non-empty finite subset of L has a glb.

• A join semilattice iff each non-empty finite subset of L has a lub.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 38/57

Ascending and Descending Chains

• Strictly ascending chain. x ⊏ y ⊏ · · · ⊏ z

• Strictly descending chain. x ⊐ y ⊐ · · · ⊐ z

• DCC: Descending Chain Condition
All strictly descending chains are finite.

• ACC: Ascending Chain Condition
All strictly ascending chains are finite.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 39/57

Complete Lattice and Ascending and Descending Chains

• If L satisfies acc and dcc, then
◮ L has finite height, and
◮ L is complete.

• A complete lattice need not have finite height (i.e. strict chains may
not be finite).
Example:
Lattice of integers under ≤ relation with ∞ as ⊤ and −∞ as ⊥.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 40/57

Operations on Lattices

• Meet (⊓) and Join (⊔)
36

4 9

2 3

1

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 40/57

Operations on Lattices

• Meet (⊓) and Join (⊔)

◮ x ⊓ y computes the glb of x and y .
z = x ⊓ y ⇒ z ⊑ x ∧ z ⊑ y

36

4 9

2 3

1

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 40/57

Operations on Lattices

• Meet (⊓) and Join (⊔)

◮ x ⊓ y computes the glb of x and y .
z = x ⊓ y ⇒ z ⊑ x ∧ z ⊑ y

◮ x ⊔ y computes the lub of x and y .
z = x ⊔ y ⇒ z ⊒ x ∧ z ⊒ y

36

4 9

2 3

1

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 40/57

Operations on Lattices

• Meet (⊓) and Join (⊔)

◮ x ⊓ y computes the glb of x and y .
z = x ⊓ y ⇒ z ⊑ x ∧ z ⊑ y

◮ x ⊔ y computes the lub of x and y .
z = x ⊔ y ⇒ z ⊒ x ∧ z ⊒ y

◮ ⊓ and ⊔ are commutative, associative,
and idempotent.

36

4 9

2 3

1

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 40/57

Operations on Lattices

• Meet (⊓) and Join (⊔)

◮ x ⊓ y computes the glb of x and y .
z = x ⊓ y ⇒ z ⊑ x ∧ z ⊑ y

◮ x ⊔ y computes the lub of x and y .
z = x ⊔ y ⇒ z ⊒ x ∧ z ⊒ y

◮ ⊓ and ⊔ are commutative, associative,
and idempotent.

• Top (⊤) and Bottom (⊥) elements

∀x ∈ L, x ⊓ ⊤ = x

∀x ∈ L, x ⊔ ⊤ = ⊤
∀x ∈ L, x ⊓ ⊥ = ⊥
∀x ∈ L, x ⊔ ⊥ = x

36

4 9

2 3

1

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 40/57

Operations on Lattices

• Meet (⊓) and Join (⊔)

◮ x ⊓ y computes the glb of x and y .
z = x ⊓ y ⇒ z ⊑ x ∧ z ⊑ y

◮ x ⊔ y computes the lub of x and y .
z = x ⊔ y ⇒ z ⊒ x ∧ z ⊒ y

◮ ⊓ and ⊔ are commutative, associative,
and idempotent.

• Top (⊤) and Bottom (⊥) elements

∀x ∈ L, x ⊓ ⊤ = x

∀x ∈ L, x ⊔ ⊤ = ⊤
∀x ∈ L, x ⊓ ⊥ = ⊥
∀x ∈ L, x ⊔ ⊥ = x

36

4 9

2 3

1

x ⊓ y = gcd ′(x , y)

Greatest common divisor (or highest
common factor) in the lattice

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 40/57

Operations on Lattices

• Meet (⊓) and Join (⊔)

◮ x ⊓ y computes the glb of x and y .
z = x ⊓ y ⇒ z ⊑ x ∧ z ⊑ y

◮ x ⊔ y computes the lub of x and y .
z = x ⊔ y ⇒ z ⊒ x ∧ z ⊒ y

◮ ⊓ and ⊔ are commutative, associative,
and idempotent.

• Top (⊤) and Bottom (⊥) elements

∀x ∈ L, x ⊓ ⊤ = x

∀x ∈ L, x ⊔ ⊤ = ⊤
∀x ∈ L, x ⊓ ⊥ = ⊥
∀x ∈ L, x ⊔ ⊥ = x

36

4 9

2 3

1

x ⊓ y = gcd ′(x , y)

Greatest common divisor (or highest
common factor) in the lattice

x ⊔ y = lcm′(x , y)

Lowest common multiple in the lattice

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 41/57

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 41/57

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 41/57

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 41/57

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 41/57

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 41/57

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 41/57

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 41/57

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉

〈LC ,⊑C ,⊓C ,⊔C 〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 41/57

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉

〈LC ,⊑C ,⊓C ,⊔C 〉

〈x1, y1〉 ⊑C 〈x2, y2〉 ⇔ x1 ⊑N x2 ∧ y1 ⊑A y2

〈x1, y1〉 ⊓C 〈x2, y2〉 = 〈x1 ⊓N x2, y1 ⊓A y2〉

〈x1, y1〉 ⊔C 〈x2, y2〉 = 〈x1 ⊔N x2, y1 ⊔A y2〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 42/57

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 42/57

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 42/57

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

• ⊥ must exist
What guarantees the presence of ⊥?

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 42/57

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

• ⊥ must exist
What guarantees the presence of ⊥?

• ⊤ may not exist. Can be added artificially.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 42/57

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

• ⊥ must exist
What guarantees the presence of ⊥?

◮ Assume that two maximal descending chains terminate at
two incomparable elements x1 and x2

• ⊤ may not exist. Can be added artificially.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 42/57

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

• ⊥ must exist
What guarantees the presence of ⊥?

◮ Assume that two maximal descending chains terminate at
two incomparable elements x1 and x2

◮ Since this is a meet semilattice, glb of {x1, x2} must exist (say z).

• ⊤ may not exist. Can be added artificially.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 42/57

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

• ⊥ must exist
What guarantees the presence of ⊥?

◮ Assume that two maximal descending chains terminate at
two incomparable elements x1 and x2

◮ Since this is a meet semilattice, glb of {x1, x2} must exist (say z).
⇒ Neither of the chains is maximal.
⇒ Both of them can be extended to include z .

• ⊤ may not exist. Can be added artificially.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 42/57

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

• ⊥ must exist
What guarantees the presence of ⊥?

◮ Assume that two maximal descending chains terminate at
two incomparable elements x1 and x2

◮ Since this is a meet semilattice, glb of {x1, x2} must exist (say z).
⇒ Neither of the chains is maximal.
⇒ Both of them can be extended to include z .

◮ Extending this argument to all strictly descending chains,
it is easy to see that ⊥ must exist.

• ⊤ may not exist. Can be added artificially.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 42/57

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

• ⊥ must exist
What guarantees the presence of ⊥?

◮ Assume that two maximal descending chains terminate at
two incomparable elements x1 and x2

◮ Since this is a meet semilattice, glb of {x1, x2} must exist (say z).
⇒ Neither of the chains is maximal.
⇒ Both of them can be extended to include z .

◮ Extending this argument to all strictly descending chains,
it is easy to see that ⊥ must exist.

• ⊤ may not exist. Can be added artificially.

◮ lub of arbitrary elements may not exist

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 43/57

The Set of Data Flow Values For Available Expressions
Analysis

• The powerset of the universal set of expressions

• Partial order is the subset relation

{e1, e2, e3}

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅

Set View of the Lattice

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 43/57

The Set of Data Flow Values For Available Expressions
Analysis

• The powerset of the universal set of expressions

• Partial order is the subset relation

{e1, e2, e3}

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅

Set View of the Lattice

Y

X

⊑

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 43/57

The Set of Data Flow Values For Available Expressions
Analysis

• The powerset of the universal set of expressions

• Partial order is the subset relation

{e1, e2, e3}

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅

Set View of the Lattice

Y

X

⊑

111

110 101 011

100 010 001

000

Bit Vector View

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 44/57

The Concept of Approximation

• x approximates y iff

x can be used in place of y without causing any problems.

• Validity of approximation is context specific

x may be approximated by y in one context and by z in another

◮ Earnings : Rs. 1050 can be safely approximated by Rs. 1000.

◮ Expenses : Rs. 1050 can be safely approximated by Rs. 1100.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 45/57

Two Important Objectives in Data Flow Analysis

• The discovered data flow information should be

◮ Exhaustive. No optimization opportunity should be missed.

◮ Safe. Optimizations which do not preserve semantics should not be
enabled.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 45/57

Two Important Objectives in Data Flow Analysis

• The discovered data flow information should be

◮ Exhaustive. No optimization opportunity should be missed.

◮ Safe. Optimizations which do not preserve semantics should not be
enabled.

• Conservative approximations of these objectives are allowed

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 45/57

Two Important Objectives in Data Flow Analysis

• The discovered data flow information should be

◮ Exhaustive. No optimization opportunity should be missed.

◮ Safe. Optimizations which do not preserve semantics should not be
enabled.

• Conservative approximations of these objectives are allowed

• The intended use of data flow information (≡ context) determines
validity of approximations

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 46/57

Context Determines the Validity of Approximations

May prohibit correct optimization May enable wrong optimization

Analysis Application Safe
Approximation

Exhaustive
Approximation

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 46/57

Context Determines the Validity of Approximations

May prohibit correct optimization May enable wrong optimization

Analysis Application Safe
Approximation

Exhaustive
Approximation

Live variables Dead code
elimination

A dead variable
is considered live

A live variable is
considered dead

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 46/57

Context Determines the Validity of Approximations

May prohibit correct optimization May enable wrong optimization

Analysis Application Safe
Approximation

Exhaustive
Approximation

Live variables Dead code
elimination

A dead variable
is considered live

A live variable is
considered dead

Available
expressions

Common
subexpression
elimination

An available
expression is
considered
non-available

A non-available
expression is
considered
available

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 46/57

Context Determines the Validity of Approximations

May prohibit correct optimization May enable wrong optimization

Analysis Application Safe
Approximation

Exhaustive
Approximation

Live variables Dead code
elimination

A dead variable
is considered live

A live variable is
considered dead

Available
expressions

Common
subexpression
elimination

An available
expression is
considered
non-available

A non-available
expression is
considered
available

Spurious Inclusion Spurious Exclusion

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 47/57

Partial Order Captures Approximation

• ⊑ captures valid approximations for safety

x ⊑ y ⇒ x is weaker than y

◮ The data flow information represented by x can be safely used in
place of the data flow information represented by y

◮ It may be imprecise, though.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 47/57

Partial Order Captures Approximation

• ⊑ captures valid approximations for safety

x ⊑ y ⇒ x is weaker than y

◮ The data flow information represented by x can be safely used in
place of the data flow information represented by y

◮ It may be imprecise, though.

• ⊒ captures valid approximations for exhaustiveness

x ⊒ y ⇒ x is stronger than y

◮ The data flow information represented by x contains every value
contained in the data flow information represented by y

◮ It may be unsafe, though.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 47/57

Partial Order Captures Approximation

• ⊑ captures valid approximations for safety

x ⊑ y ⇒ x is weaker than y

◮ The data flow information represented by x can be safely used in
place of the data flow information represented by y

◮ It may be imprecise, though.

• ⊒ captures valid approximations for exhaustiveness

x ⊒ y ⇒ x is stronger than y

◮ The data flow information represented by x contains every value
contained in the data flow information represented by y

◮ It may be unsafe, though.

We want most exhaustive information which is also safe.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 48/57

Most Approximate Values in a Complete Lattice

• Top. ∀x ∈ L, x ⊑ ⊤. The most exhaustive value.

• Bottom. ∀x ∈ L, ⊥ ⊑ x . The safest value.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 48/57

Most Approximate Values in a Complete Lattice

• Top. ∀x ∈ L, x ⊑ ⊤. The most exhaustive value.

◮ Using ⊤ in place of any data flow value will never miss out (or rule
out) any possible value.

• Bottom. ∀x ∈ L, ⊥ ⊑ x . The safest value.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 48/57

Most Approximate Values in a Complete Lattice

• Top. ∀x ∈ L, x ⊑ ⊤. The most exhaustive value.

◮ Using ⊤ in place of any data flow value will never miss out (or rule
out) any possible value.

◮ The consequences may be sematically unsafe, or incorrect.

• Bottom. ∀x ∈ L, ⊥ ⊑ x . The safest value.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 48/57

Most Approximate Values in a Complete Lattice

• Top. ∀x ∈ L, x ⊑ ⊤. The most exhaustive value.

◮ Using ⊤ in place of any data flow value will never miss out (or rule
out) any possible value.

◮ The consequences may be sematically unsafe, or incorrect.

• Bottom. ∀x ∈ L, ⊥ ⊑ x . The safest value.

◮ Using ⊥ in place of any data flow value will never be unsafe, or
incorrect.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 48/57

Most Approximate Values in a Complete Lattice

• Top. ∀x ∈ L, x ⊑ ⊤. The most exhaustive value.

◮ Using ⊤ in place of any data flow value will never miss out (or rule
out) any possible value.

◮ The consequences may be sematically unsafe, or incorrect.

• Bottom. ∀x ∈ L, ⊥ ⊑ x . The safest value.

◮ Using ⊥ in place of any data flow value will never be unsafe, or
incorrect.

◮ The consequences may be undefined or useless because this
replacement might miss out valid values.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 48/57

Most Approximate Values in a Complete Lattice

• Top. ∀x ∈ L, x ⊑ ⊤. The most exhaustive value.

◮ Using ⊤ in place of any data flow value will never miss out (or rule
out) any possible value.

◮ The consequences may be sematically unsafe, or incorrect.

• Bottom. ∀x ∈ L, ⊥ ⊑ x . The safest value.

◮ Using ⊥ in place of any data flow value will never be unsafe, or
incorrect.

◮ The consequences may be undefined or useless because this
replacement might miss out valid values.

Appropriate orientation chosen by design.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 49/57

Setting Up Lattices

Available Expressions Analysis Live Variables Analysis

{e1, e2, e3}

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅

∅

{v1} {v2} {v3}

{v1, v2} {v1, v3} {v2, v3}

{v1, v2, v3}

⊑ is ⊆ ⊑ is ⊇

⊓ is ∩ ⊓ is ∪

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 50/57

Partial Order Relation

Reflexive x ⊑ x

Transitive x ⊑ y , y ⊑ z

⇒ x ⊑ z

Antisymmetric x ⊑ y , y ⊑ x

⇔ x = y

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 50/57

Partial Order Relation

Reflexive x ⊑ x x can be safely used in place of x

Transitive x ⊑ y , y ⊑ z

⇒ x ⊑ z

If x can be safely used in place of y

and y can be safely used in place of z ,

then x can be safely used in place of z

Antisymmetric x ⊑ y , y ⊑ x

⇔ x = y

If x can be safely used in place of y

and y can be safely used in place of x ,

then x must be same as y

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 51/57

Merging Information

• x ⊓ y computes the greatest lower bound of x and y i.e.
largest z such that z ⊑ x and z ⊑ y

The largest safe approximation of combining data flow information x and y

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 51/57

Merging Information

• x ⊓ y computes the greatest lower bound of x and y i.e.
largest z such that z ⊑ x and z ⊑ y

The largest safe approximation of combining data flow information x and y

• Commutative x ⊓ y = y ⊓ x

Associative x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z

Idempotent x ⊓ x = x

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 51/57

Merging Information

• x ⊓ y computes the greatest lower bound of x and y i.e.
largest z such that z ⊑ x and z ⊑ y

The largest safe approximation of combining data flow information x and y

• Commutative x ⊓ y = y ⊓ x The order in which the data

flow information is merged,

does not matter

Associative x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z Allow n-ary merging without

any restriction on the order

Idempotent x ⊓ x = x No loss of information if x is

merged with itself

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 51/57

Merging Information

• x ⊓ y computes the greatest lower bound of x and y i.e.
largest z such that z ⊑ x and z ⊑ y

The largest safe approximation of combining data flow information x and y

• Commutative x ⊓ y = y ⊓ x The order in which the data

flow information is merged,

does not matter

Associative x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z Allow n-ary merging without

any restriction on the order

Idempotent x ⊓ x = x No loss of information if x is

merged with itself

• ⊤ is the identity of ⊓

◮ Presence of loops ⇒ self dependence of data flow information
◮ Using ⊤ as the initial value ensure exhaustiveness

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 52/57

More on Lattices in Data Flow Analysis

L = Lattice for all expressions L̂ = Lattice for a single expression

111

110 101 011

100 010 001

000

(Expression e is available)

1 or {e}

0 or ∅

(Expressions e is not available)

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 52/57

More on Lattices in Data Flow Analysis

L = Lattice for all expressions L̂ = Lattice for a single expression

111

110 101 011

100 010 001

000

(Expression e is available)

1 or {e}

0 or ∅

(Expressions e is not available)

Cartesian products if sets are used, vectors (or tuples) if bit are used.

• L = L̂× L̂× L̂ and x = 〈x̂1, x̂2, x̂3〉 ∈ L where x̂ i ∈ L̂

• ⊑= ⊑̂ × ⊑̂ × ⊑̂ and ⊓ = ⊓̂ × ⊓̂ × ⊓̂

• ⊤ = ⊤̂ × ⊤̂ × ⊤̂ and ⊥ = ⊥̂ × ⊥̂ × ⊥̂

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 53/57

Component Lattice for Data Flow Information Represented
By Bit Vectors

(⊤̂)

1

0

(⊥̂)

⊓ is ∩ or Boolean AND

(⊤̂)

0

1

(⊥̂)

⊓ is ∪ or Boolean OR

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 54/57

Component Lattice for Integer Constant Propagation

(⊤̂)
undef or ud

−∞ . . . −1−2 0 1 2 . . . ∞

(⊥̂)

nonconst or nc

• Overall lattice L is the product of L̂ for all variables.

• ⊓ and ⊓̂ get defined by ⊑ and ⊑̂.

⊓̂ 〈a, ud〉 〈a, nc〉 〈a, c1〉

〈a, ud〉 〈a, ud〉 〈a, nc〉 〈a, c1〉
〈a, nc〉 〈a, nc〉 〈a, nc〉 〈a, nc〉
〈a, c2〉 〈a, c2〉 〈a, nc〉 If c1 = c2 then 〈a, c1〉 else 〈a, nc〉

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 55/57

Component Lattice for May Points-To Analysis

• Relation between pointer variables and locations in the memory.

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 55/57

Component Lattice for May Points-To Analysis

• Relation between pointer variables and locations in the memory.

• Assuming three locations l1, l2, and l3, the component lattice for
pointer p is.

(⊤̂)
∅

{p֌ l1} {p֌ l2} {p֌ l3}

{p֌ l1,p֌ l2} {p֌ l1 ,p֌ l3} {p֌ l2,p֌ l3}

{p֌ l1, p֌ l2, p֌ l2}

(⊥̂)

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 55/57

Component Lattice for May Points-To Analysis

• Relation between pointer variables and locations in the memory.

• Assuming three locations l1, l2, and l3, the component lattice for
pointer p is.

(⊤̂)
∅

{p֌ l1} {p֌ l2} {p֌ l3}

{p֌ l1,p֌ l2} {p֌ l1 ,p֌ l3} {p֌ l2,p֌ l3}

{p֌ l1, p֌ l2, p֌ l2}

(⊥̂)

(⊤̂)Alternatively,

∅

{l1} {l2} {l3}

{l1, l2} {l1, l3} {l2, l3}

{l1, l2, l2}

(⊥̂)

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 56/57

Component Lattice for Must Points-To Analysis

• A pointer can point to at most one location.

(⊤̂)
undef

p֌ l1 p֌ l2 p֌ l3

none

(⊥̂)

Alternatively, (⊤̂)
undef

l1 l2 l3

none

(⊥̂)

May 2011 Uday Khedker



MACS L111 Generalizations-1: Data Flow Values: An Overview 57/57

General Lattice for May-Must Analysis

Unknown

May

MustNo

⊤

⊥

Interpreting data flow values

− Unknown. Nothing is known as yet

− No. Information does not hold along any path

− Must. Information must hold along all paths

− May. Information may hold along some path

Possible Applications

• Pointer Analysis : No need of separate of May and Must analyses
eg. (p ֌ l ,May), (p ֌ l ,Must), (p ֌ l ,No), or (p ֌ l ,Unknown).

• Type Inferencing for Dynamically Checked Languages

May 2011 Uday Khedker


	About These Slides
	Partial Redundancy Elimination
	The Need for a More General Setting
	Data Flow Values: An Overview

