Some Generalizations

Uday P. Khedker

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

May 2011

(日) (四) (코) (코) (코) (코)

Part 1

About These Slides

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Copyright

These slides constitute the lecture notes for

- MACS L111 Advanced Data Flow Analysis course at Cambridge University, and
- CS 618 Program Analysis course at IIT Bombay.

They have been made available under GNU FDL v1.2 or later (purely for academic or research use) as teaching material accompanying the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. *Data Flow Analysis: Theory and Practice*. CRC Press (Taylor and Francis Group). 2009.

Apart from the above book, some slides are based on the material from the following books

- M. S. Hecht. *Flow Analysis of Computer Programs*. Elsevier North-Holland Inc. 1977.
- F. Nielson, H. R. Nielson, and C. Hankin. *Principles of Program Analysis.* Springer-Verlag. 1998.

May 2011

Outline

- Partial Redundancy Elimination
- Introduction to Constant Propagation
- Theoretical Abstractions in Data Flow Analysis
 - The world of data flow values
 - The world of functions and operations that compute data values (Not today)
 - Results of data flow analysis (Not today)
 - Algorithms for performing data flow analysis (Not today)

Part 2

Partial Redundancy Elimination

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Precursor: Common Subexpression Elimination

Precursor: Common Subexpression Elimination

• *a* and *b* are not modified along paths $1 \rightarrow 3$ and $2 \rightarrow 3$

Precursor: Common Subexpression Elimination

- *a* and *b* are not modified along paths $1 \rightarrow 3$ and $2 \rightarrow 3$
- Computation of a * b in 3 is redundant

Precursor: Common Subexpression Elimination

- *a* and *b* are not modified along paths $1 \rightarrow 3$ and $2 \rightarrow 3$
- Computation of a * b in 3 is redundant
- Previous value can be used

Partial Redundancy Elimination

Partial Redundancy Elimination

• Computation of a * b in 3 is

Partial Redundancy Elimination

- Computation of *a* * *b* in 3 is
 - \blacktriangleright redundant along path $1 \rightarrow 3,$ but . . .

Partial Redundancy Elimination

- Computation of *a* * *b* in 3 is
 - \blacktriangleright redundant along path 1 \rightarrow 3, but . . .
 - \blacktriangleright not redundant along path $2 \rightarrow 3$

Code Hoisting for Partial Redundancy Elimination

Code Hoisting for Partial Redundancy Elimination

- Computation of *a* * *b* in 3 becomes totally redundant
- Can be deleted

PRE Subsumes Loop Invariant Movement

PRE Subsumes Loop Invariant Movement

Uday Khedker

PRE Subsumes Loop Invariant Movement

$$i = 0$$

$$t0 = base(A)$$

$$t1 = t0 + i * 4$$

$$a = mem[t1]$$

$$i = i + 1$$

- * and + in the loop have been replaced by +
- i = i + 1 in the loop has been eliminated

Uday Khedker

$$i = 0$$

$$t0 = base(A)$$

$$t1 = t0 + i * 4$$

$$a = mem[t1]$$

$$i = i + 1$$

• Delete i = i + 1

PRE Can be Used for Strength Reduction

$$i = 0$$

$$t0 = base(A)$$

$$t1 = t0 + i * 4$$

$$a = mem[t1]$$

$$i = i + 1$$

- Delete i = i + 1
- Expression t0 + i * 4becomes loop invariant

PRE Can be Used for Strength Reduction

$$i = 0$$

 $t0 = base(A)$
 $t1 = t0 + i * 4$

$$t1 = t1 + 4$$

 $a = mem[t1]$
 $i = i + 1$

- Delete i = i + 1
- Expression t0 + i * 4becomes loop invariant
- Hoist it and increment *t*1 in the loop

- * and + in the loop have been replaced by +
- i = i + 1 in the loop has been eliminated

Uday Khedker

Uday Khed

Performing Partial Redundancy Elimination

- 1. Identify partial redundancies
- 2. Identify program points where computations can be inserted
- 3. Insert expressions
- Partial redundancies become total redundancies ⇒ Delete them.

Morel-Renvoise Algorithm (CACM, 1979.)

Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

Available at *p*

Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

Uday Khedker

Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

If it is available at p, then there is no need to insert it at p.

Uday Khedker

May 2011

Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

- If it is available at p, then there is no need to insert it at p.
- If it is anticipable at p then all such occurrence should be hoisted to p.

May 2011

Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

- If it is available at p, then there is no need to insert it at p.
- If it is anticipable at p then all such occurrence should be hoisted to p.
- An expression should be hoisted to p provided it can be hoisted to p along all paths from p to exit.

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors

Uday Khedk

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if S.2 it is upwards exposed, or

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 S.2 it is upwards exposed, or

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - S.2 it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - S.2 it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block

Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - S.2 it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
 D.1 it is partially available, and
 - D.2 For each predecessor

Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - S.2 it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
 D.1 it is partially available, and
 D.2 For each predecessor
 D.2.a it is hoisted to its exit, or

Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - $\mathsf{S.2}$ it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
 D.1 it is partially available, and
 D.2 For each predecessor
 D.2.a it is hoisted to its exit, or
 D.2.b is available at its exit.

Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - $\mathsf{S.2}$ it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block

Udav Khedke

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of Should be hoisted only if
 - S.2 it is upwards exposed, or
 - S.3 it can be hoisted to its exit an in the block
- Desirability of hoisting to the en Should be hoisted only if
 - D.1 it is partially available, and D.2 For each predecessor
 - D.2 For each predecessor

May 2011

- D.2.a it is hoisted to its exit, or D.2.b is suscitable
- D.2.b is available at its exit.

What does this slide show?

- Four examples
- For each example
 - statements in blue enable hoisting
 - statements in red prohibit hoisting

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - S.2 it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
 - D.1 it is partially available, and
 - D.2 For each predecessor
 - D.2.a it is hoisted to its exit, or
 - D.2.b is available at its exit.

(Example 1)

MACS L111

11/57

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - $\mathsf{S.2}$ it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block

- D.1 it is partially available, and
- D.2 For each predecessor
 - $\mathsf{D.2.a}$ it is hoisted to its exit, or
 - D.2.b is available at its exit.

Uday Khedke

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors

Uday Khedke

MACS L111

11/57

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - $\mathsf{S.2}$ it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
 - D.1 it is partially available, and
 - D.2 For each predecessor
 - D.2.a it is hoisted to its exit, or
 - D.2.b is available at its exit.

(Example 2)

MACS L111

11/57

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - $\mathsf{S.2}$ it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block
- *Desirability of hoisting to the entry of a block.* Should be hoisted only if
 - D.1 it is partially available, and
 - D.2 For each predecessor
 - $\mathsf{D.2.a}$ it is hoisted to its exit, or
 - D.2.b is available at its exit.

(Example 2)

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - S.2 it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
 - D.1 it is partially available, and
 - D.2 For each predecessor
 - D.2.a it is hoisted to its exit, or
 - D.2.b is available at its exit.

MACS L111

11/57

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - $\mathsf{S.2}$ it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block

- D.2 For each predecessor
 - D.2.a it is hoisted to its exit, or
 - D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - S.2 it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block

- D.1 it is partially available, and
- D.2 For each predecessor
 - D.2.a it is hoisted to its exit, or
 - D.2.b is available at its exit.

(Example 3)

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - S.2 it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block

- D.1 it is partially available, and
- D.2 For each predecessor
 - $\mathsf{D.2.a}$ it is hoisted to its exit, or
 - D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - $\mathsf{S.2}$ it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
 - D.1 it is partially available, and
 - D.2 For each predecessor

May 2011

- D.2.a it is hoisted to its exit, or
- D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
 - S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
 - S.2 it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
 - D.1 it is partially available, and
 - D.2 For each predecessor
 - D.2.a it is hoisted to its exit, or
 - D.2.b is available at its exit.

Applying the Hoisting Criteria

- S.1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Should be hoisted only if
 - S.2 it is upwards exposed, or
 - S.3 it can be hoisted to its exit and is transparent in the block

Should be hoisted only if

• D.1 it is partially available, and D.2 For each predecessor

May 2011

D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

(Example 4)

MACS L111

Uday Khedke

First Level Global Data Flow Properties in PRE

• Partial Availability.

$$PavIn_n = \begin{cases} BI & n \text{ is } Start \text{ block} \\ \bigcup_{p \in pred(n)} PavOut_p & \text{otherwise} \end{cases}$$

$$PavOut_n = Gen_n \cup (PavIn_n - Kill_n)$$

• Total Availability.

$$AvIn_n = \begin{cases} BI & n \text{ is } Start \text{ block} \\ \bigcap_{p \in pred(n)} AvOut_p & \text{ otherwise} \end{cases}$$

$$AvOut_n = Gen_n \cup (AvIn_n - Kill_n)$$

PRE Data Flow Equations

Desirability: D.1 $ln_n = \operatorname{Pavln}_n \cap \left(\operatorname{AntGen}_n \cup \left(\operatorname{Out}_n - \operatorname{Kill}_n \right) \right)$ $\bigcap_{\substack{\in pred(n)}} \left(Out_p \cup AvOut_p \right)$ $p \in pred(n)$ $Out_n = \begin{cases} BI & n \text{ is } End \text{ block} \\ \bigcap_{s \in succ(n)} In_s & \text{otherwise} \end{cases}$

Expressions should be partially available, and

$$Safety: S.2$$

$$In_n = PavIn_n \cap \left(AntGen_n \cup (Out_n - Kill_n)\right)$$

$$\bigcap_{p \in pred(n)} \left(Out_p \cup AvOut_p\right)$$

$$Out_n = \begin{cases} BI & n \text{ is } End \text{ block} \\ \bigcap_{s \in succ(n)} In_s & \text{ otherwise} \end{cases}$$

Expressions should be upwards exposed, or

Expressions can be hoisted to the exit and are transparent in the block

For every predecessor, expressions can be hoisted to its exit, or

PRE Data Flow Equations

... expressions are available at the exit of the same predecessor

Expressions should be hoisted to the exit of a block if they can be hoisted to the entry of all succesors

Uday Khedker

PRE Data Flow Equations

$$In_{n} = PavIn_{n} \cap \left(AntGen_{n} \cup (Out_{n} - Kill_{n})\right)$$
$$\bigcap_{p \in pred(n)} \left(Out_{p} \cup AvOut_{p}\right)$$
$$Out_{n} = \begin{cases}BI & n \text{ is } End \text{ block}\\ \bigcap_{s \in succ(n)} In_{s} & \text{ otherwise}\end{cases}$$

Deletion Criteria in PRE

- An expression is redundant in node *n* if
 - ▶ it can be placed at the entry (i.e. can be "hoisted" out) of n, AND
 - it is upwards exposed in node *n*.

 $Redundant_n = In_n \cap AntGen_n$

- A hoisting path for an expression e begins at n if $e \in Redundant_n$
- This hoisting path extends against the control flow.

Insertion Criteria in PRE

- An expression is inserted at the exit of node n is
 - it can be placed at the exit of n, AND
 - it is not available at the exit of n, AND
 - ▶ it cannot be hoisted out of *n*, OR it is modified in *n*.

$$Insert_n = Out_n \cap (\neg AvOut_n) \cap (\neg In_n \cup Kill_n)$$

• A hoisting path for an expression e ends at n if $e \in Insert_n$

Performing PRE by Computing *In/Out*: **Simple Cases**

Performing PRE by Computing *In/Out*: **Simple Cases**

Performing PRE by Computing *In/Out*: **Simple Cases**

Uday Khedker

Tutorial Problems for PRE

Uday Khedker

Uday Khedker

Uday Khedker

Further Tutorial Problem for PRE

Let
$$\{a*b, b*c\} \equiv$$
 bit string 11

Node n	Kill _n	AntGen _n	Pavln _n	AvOut _n
1	00	00	00	00
2	00	10	11	10
3	10	00	11	00
4	00	00	11	10
5	00	01	11	01
6	00	00	11	01

- Compute $In_n/Out_n/Redundant_n/Insert_n$
- Identify hoisting paths

Result of PRE Data Flow Analysis of the Running Example

Bit vector
$$a * b$$
 $a + b$ $a - b$ $a - c$ $b + c$

<u>×</u>	Global Information							
Block		stant nation	Iteratio	on # 1	Changes in iteration # 2		Changes in iteration # 3	
	PavIn _n	AvOut _n	Outn	Inn	Outn	Inn	Outn	Inn
<i>n</i> 8	11111	00011	00000	00011				00001
n ₇	11101	11000	00011	01001	00001			
<i>n</i> ₆	11101	11001	01001	01001			01000	
<i>n</i> 5	11101	11000	01001	01001		01000		
<i>n</i> 4	11100	10100	01001	11100		11000		
<i>n</i> ₃	11101	10000	01000	01001		00001		
<i>n</i> ₂	10001	00010	00011	00000			00001	
n_1	00000	10001	00000	00000				

Uday Khedker

MACS L111

Optimized Version of the Running Example $n_1 \begin{bmatrix} b = 4; \\ t_2 = b + c; \\ a = t_2; \\ t_0 = a * b; \\ d = t_0; \end{bmatrix}$ $c = t_2 \\ t_1 = a + b;$ n3 | $d = t_1;$ $t_2 = b + c;$ n₅ $n_2 \begin{vmatrix} b = c; \\ f(a-c); \\ t_2 = b + c; \end{vmatrix}$ $n_4 \begin{vmatrix} c = t_0; \\ f(a-b); \\ t_2 = b + c; \end{vmatrix}$ $n_6 | f(t_2);$ $g(t_1);$ n_7 (a – c); *n*8 May 2011 Uday Khedker

Part 3

The Need for a More General Setting

What We Have Seen So Far ...

Analysis	Entity	Attribute at <i>p</i>	Paths	
Live variables	Variables	Use	Starting at p	Some
Available expressions	Expressions	Availability	Reaching <i>p</i>	All
Partially available expressions	Expressions	Availability	Reaching <i>p</i>	Some
Anticipable expressions	Expressions	Use	Starting at <i>p</i>	All
Reaching definitions	Definitions	Availability	Reaching <i>p</i>	Some
Partial redundancy elimination	Expressions	Profitable hoistability	Involving <i>p</i>	All

May 2011

May 2011

Uday Khedker

May 2011

23/57

MACS L111

Data Flow Values for Constant Propagation

• Tuples of the form $\langle \xi_1, \xi_2, \dots, \xi_k \rangle$ where ξ_i is the data flow value for i^{th} variable.

Unlike bit vector frameworks, value ξ_i is not 0 or 1 (i.e. true or false). Instead, it is one of the following:

- ? indicating that not much is known about the constantness of variable v_i
- \blacktriangleright × indicating that variable v_i does not have a constant value
- ► An integer constant c₁ if the value of v_i is known to be c₁ at compile time
- Alternatively, sets of pairs $\langle v_i, \xi_j \rangle$ for each variable v_i .

Confluence Operation for Constant Propagation

• Confluence operation $\langle a, c_1
angle \sqcap \langle a, c_2
angle$

	$\langle a, ? angle$	$\langle a, \times angle$	$\langle a, c_1 angle$
$\langle a, ? angle$	$\langle a, ? angle$	$\langle a, \times angle$	$\langle a, c_1 angle$
$\langle a, \times \rangle$	$\langle a, imes angle$	$\langle a, \times \rangle$	$\langle \pmb{a}, imes angle$
$\langle a, c_2 \rangle$	$\langle a, c_2 \rangle$	$\langle a, imes angle$	$\begin{array}{ll} lf \ c_1 = c_2 & \langle a, c_1 \rangle \\ Otherwise & \langle a, \times \rangle \end{array}$

• This is neither \cap nor \cup .

What are its properties?

Flow Functions for Constant Propagation

• Flow function for $r = a_1 * a_2$

mult	$\langle a_1, ? angle$	$\langle a_1, imes angle$	$\langle a_1, c_1 angle$
$\langle a_2, ? \rangle$	$\langle r, ? \rangle$	$\langle r, \times \rangle$	$\langle r, ? angle$
$\langle a_2, \times \rangle$	$\langle r, \times \rangle$	$\langle r, \times \rangle$	$\langle r, \times angle$
$\langle a_2, c_2 \rangle$	$\langle r, ? \rangle$	$\langle r, \times \rangle$	$\langle r, (c_1 * c_2) \rangle$

• This cannot be expressed in the form

$$f_n(X) = Gen_n \cup (X - Kill_n)$$

where Gen_n and $Kill_n$ are constant effects of block n.

Uday Khedker

Round Robin Iterative Analysis for Constant Propagation

Uday Khedker

Round Robin Iterative Analysis for Constant Propagation

May 2011

Round Robin Iterative Analysis for Constant Propagation

Uday Khedker

May 2011

27/57 **Round Robin Iterative Analysis for Constant Propagation**

Round Robin Iterative Analysis for Constant Propagation

			Iteration $\#2$	Iteration #3	Desired solution		
<i>n</i> 1	a=1 b=2	$\langle \textbf{?}, \textbf{?}, \textbf{?}, \textbf{?} \rangle$	$\langle \textbf{?},\textbf{?},\textbf{?},\textbf{?}\rangle$	$\langle \textbf{?},\textbf{?},\textbf{?},\textbf{?}\rangle$	$\langle \textbf{?},\textbf{?},\textbf{?},\textbf{?}\rangle$		
	c = a + b	$\langle 1,2,3,\textbf{?}\rangle$	$\langle 1,2,3,\textbf{?} angle$	$\langle 1,2,3,\textbf{?}\rangle$	$\langle 1,2,3,\textbf{?} angle$		
<i>n</i> ₂	c = a + b $d = a * b$	$\langle 1,2,3,\textbf{?} angle$	$\langle \times, \times, 3, 2 \rangle$	$\langle \times, \times, 3, \times \rangle$	$\langle \times, \times, 3, 2 \rangle$		
	d = a * b	$\langle 1,2,3,2\rangle$	$\langle \times, \times, \times, \times \rangle$	$\langle \times, \times, \times, \times \rangle$	$\langle \times, \times, 3, 2 \rangle$		
n ₃	d = c - 1	$\langle 1,2,3,2\rangle$	$\langle \times, \times, \times, \times \rangle$	$\langle \times, \times, \times, \times \rangle$	$\langle\times,\times,3,2\rangle$		
	a = 2 b = 1 c = a + b	$\langle 2, 1, 3, 2 \rangle$	$\langle 2, 1, 3, imes angle$	$\langle 2, 1, 3, \times \rangle$	$\langle 2, 1, 3, 2 \rangle$		
May 2011 Uday Khedker							

Round Robin Iterative Analysis for Constant Propagation

		Iteration $\#1$	Iteration #2	Iteration #3	Desired solution	
<i>n</i> 1	a = 1 $b = 2$	$\langle \textbf{?},\textbf{?},\textbf{?},\textbf{?}\rangle$	$\langle \textbf{?},\textbf{?},\textbf{?},\textbf{?}\rangle$	$\langle \textbf{?},\textbf{?},\textbf{?},\textbf{?}\rangle$	$\langle \textbf{?}, \textbf{?}, \textbf{?}, \textbf{?} \rangle$	
	c = a + b	$\langle 1,2,3,\textbf{?} angle$	$\langle 1,2,3,\textbf{?} angle$	$\langle 1,2,3,\textbf{?} angle$	$\langle 1,2,3,\textbf{?} angle$	
n ₂	c = a + b $d = a * b$	$\langle 1,2,3,\textbf{?}\rangle$	$\langle \times, \times, 3, 2 \rangle$	$\langle \times, \times, 3, \times \rangle$	$\langle \times, \times, 3, 2 \rangle$	
	d = a * b	$\langle 1,2,3,2\rangle$	$\langle \times, \times, \times, \times \rangle$	$\langle \times, \times, \times, \times \rangle$	$\langle \times, \times, 3, 2 \rangle$	
n ₃	d = c - 1	$\langle 1,2,3,2\rangle$	$\langle \times, \times, \times, \times \rangle$	$\langle \times, \times, \times, \times \rangle$	$\langle \times, \times, 3, 2 \rangle$	
	$ \begin{array}{c} a = 2\\ b = 1\\ c = a + b \end{array} $	$\langle 2, 1, 3, 2 \rangle$	$\langle 2, 1, 3, imes angle$	$\langle 2, 1, 3, \times \rangle$	$\langle 2, 1, 3, 2 \rangle$	
May 2011 Uday Khedker						

Uday Khedker

Part 4

Data Flow Values: An Overview

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 - のへで

Data Flow Values: An Outline of Our Discussion

- The need to define the notion of abstraction
- Lattices, variants of lattices
- Relevance of lattices for data flow analysis
 - Partial order relation as approximation of data flow values
 - Meet operations as confluence of data flow values
- Cartesian product of lattices
- Example of lattices

Partially Ordered Sets and Lattices

Partially Ordered Sets and Lattices

Partially Ordered Sets and Lattices

30/57

Uday Khedke

Partially Ordered Sets

Set $\{1, 2, 3, 4, 9\}$ with \sqsubseteq relation as "divides" (i.e. $a \sqsubseteq b$ iff a divides b)

Partially Ordered Sets

Set $\{1, 2, 3, 4, 9\}$ with \sqsubseteq relation as "divides" (i.e. $a \sqsubseteq b$ iff a divides b)

Partially Ordered Sets

Set $\{1, 2, 3, 4, 9\}$ with \sqsubseteq relation as "divides" (i.e. $a \sqsubseteq b$ iff a divides b)

Subsets $\{4,9\}$ and $\{2,3\}$ do not have an upper bound in the set

Lattice

Set $\{1, 2, 3, 4, 9, 36\}$ with \sqsubseteq relation as "divides" (i.e. $a \sqsubseteq b$ iff a divides b)

• Lattice: A partially ordered set such that every non-empty finite subset has a glb and a lub.

Example:

Lattice $\mathbb Z$ of integers under \leq relation. All finite subsets have a glb and a lub. Infinite subsets do not have a glb or a lub.

• Lattice: A partially ordered set such that every non-empty finite subset has a glb and a lub.

Example: Lattice $\mathbb Z$ of integers under \leq relation. All finite subsets have a glb and a lub. Infinite subsets do not have a glb or a lub.

 Complete Lattice: A lattice in which even Ø and infinite subsets have a glb and a lub.

• Lattice: A partially ordered set such that every non-empty finite subset has a glb and a lub.

Example: Lattice $\mathbb Z$ of integers under \leq relation. All finite subsets have a glb and a lub. Infinite subsets do not have a glb or a lub.

 Complete Lattice: A lattice in which even Ø and infinite subsets have a glb and a lub.

Example: Lattice $\mathbb Z$ of integers under \leq relation with ∞ and $-\infty.$

• Lattice: A partially ordered set such that every non-empty finite subset has a glb and a lub.

Example: Lattice $\mathbb Z$ of integers under \leq relation. All finite subsets have a glb and a lub. Infinite subsets do not have a glb or a lub.

- Complete Lattice: A lattice in which even \emptyset and infinite subsets have a glb and a lub.

Example:

Lattice $\mathbb Z$ of integers under \leq relation with ∞ and $-\infty.$

- ∞ is the top element denoted \top : $\forall i \in \mathbb{Z}, i \leq \top$.
- ▶ $-\infty$ is the bottom element denoted \perp : $\forall i \in \mathbb{Z}, \perp \leq i$.

- Infinite subsets of $\mathbb{Z}\cup\{\infty,-\infty\}$ have a glb and lub.

- Infinite subsets of $\mathbb{Z}\cup\{\infty,-\infty\}$ have a glb and lub.
- What about the empty set?

- Infinite subsets of $\mathbb{Z}\cup\{\infty,-\infty\}$ have a glb and lub.
- What about the empty set?
 - ▶ glb(\emptyset) is \top

- Infinite subsets of $\mathbb{Z}\cup\{\infty,-\infty\}$ have a glb and lub.
- What about the empty set?
 - ▶ glb(\emptyset) is \top

Every element of $\mathbb{Z} \cup \{\infty, -\infty\}$ is vacuously a lower bound of an element in \emptyset (because there is no element in \emptyset).

Uday Khed

$\mathbb{Z} \cup \{\infty, -\infty\}$ is a Complete Lattice

- Infinite subsets of $\mathbb{Z}\cup\{\infty,-\infty\}$ have a glb and lub.
- What about the empty set?
 - ▶ glb(\emptyset) is \top

Every element of $\mathbb{Z} \cup \{\infty, -\infty\}$ is vacuously a lower bound of an element in \emptyset (because there is no element in \emptyset). The greatest among these lower bounds is \top .

- Infinite subsets of $\mathbb{Z}\cup\{\infty,-\infty\}$ have a glb and lub.
- What about the empty set?
 - $\mathsf{glb}(\emptyset)$ is \top

Every element of $\mathbb{Z} \cup \{\infty, -\infty\}$ is vacuously a lower bound of an element in \emptyset (because there is no element in \emptyset). The greatest among these lower bounds is \top .

Iub(∅) is ⊥

Finite Lattices are Complete

• Any given set of elements has a glb and a lub

Lattice for May-Must Analysis

There is no ⊤ among the natural values

Must Interpreting data flow values

- An artificial ⊤ can be added However, a lub may not exist for arbitrary sets

Some Variants of Lattices

A poset L is

- A lattice iff each non-empty finite subset of *L* has a glb and lub.
- A complete lattice iff each subset of *L* has a glb and lub.
- A meet semilattice iff each non-empty finite subset of *L* has a glb.
- A join semilattice iff each non-empty finite subset of *L* has a lub.

Ascending and Descending Chains

- Strictly ascending chain. $x \sqsubset y \sqsubset \cdots \sqsubset z$
- Strictly descending chain. $x \sqsupset y \sqsupset \cdots \sqsupset z$
- DCC: Descending Chain Condition All strictly descending chains are finite.
- ACC: Ascending Chain Condition All strictly ascending chains are finite.

Complete Lattice and Ascending and Descending Chains

- If L satisfies acc and dcc, then
 - L has finite height, and
 - L is complete.
- A complete lattice need not have finite height (i.e. strict chains may not be finite).

Example:

Lattice of integers under \leq relation with ∞ as \top and $-\infty$ as $\bot.$

Operations on Lattices

• Meet (\Box) and Join (\sqcup)

Operations on Lattices

• Meet (\sqcap) and Join (\sqcup)

• $x \sqcap y$ computes the glb of x and y.

$$z = x \sqcap y \Rightarrow z \sqsubseteq x \land z \sqsubseteq y$$

- Meet (\sqcap) and Join (\sqcup)
 - $x \sqcap y$ computes the glb of x and y.
 - $z = x \sqcap y \Rightarrow z \sqsubseteq x \land z \sqsubseteq y$
 - $x \sqcup y$ computes the lub of x and y. $z = x \sqcup y \Rightarrow z \sqsupseteq x \land z \sqsupseteq y$

- Meet (\sqcap) and Join (\sqcup)
 - $x \sqcap y$ computes the glb of x and y.
 - $z = x \sqcap y \Rightarrow z \sqsubseteq x \land z \sqsubseteq y$
 - $x \sqcup y$ computes the lub of x and y. $z = x \sqcup y \Rightarrow z \sqsupseteq x \land z \sqsupseteq y$
 - ► □ and □ are commutative, associative, and idempotent.

• Meet (\sqcap) and Join (\sqcup)

- $x \sqcap y$ computes the glb of x and y.
 - $z = x \sqcap y \Rightarrow z \sqsubseteq x \land z \sqsubseteq y$
- $x \sqcup y$ computes the lub of x and y. $z = x \sqcup y \Rightarrow z \sqsupseteq x \land z \sqsupseteq y$
- ► □ and □ are commutative, associative, and idempotent.
- Top (\top) and Bottom (\bot) elements

Udav Khedke

Greatest common divisor (or highest common factor) **in the lattice**

• Meet (\Box) and Join (\sqcup)

- $x \sqcap y$ computes the glb of x and y. $z = x \sqcap y \Rightarrow z \sqsubset x \land z \sqsubset y$
- ► $x \sqcup y$ computes the lub of x and y. $z = x \sqcup y \Rightarrow z \sqsupseteq x \land z \sqsupseteq y$
- ► □ and □ are commutative, associative, and idempotent.
- Top (\top) and Bottom (\bot) elements

$$\begin{aligned} \forall x \in L, \ x \sqcap \top &= x \\ \forall x \in L, \ x \sqcup \top &= \top \\ \forall x \in L, \ x \sqcap \bot &= \bot \\ \forall x \in L, \ x \sqcup \bot &= x \end{aligned}$$

May 2011

Operations on Lattices

Greatest common divisor (or highest common factor) **in the lattice**

• Meet (\sqcap) and Join (\sqcup)

- $x \sqcap y$ computes the glb of x and y.
 - $z = x \sqcap y \Rightarrow z \sqsubseteq x \land z \sqsubseteq y$
- $x \sqcup y$ computes the lub of x and y. $z = x \sqcup y \Rightarrow z \sqsupseteq x \land z \sqsupseteq y$
- ► □ and □ are commutative, associative, and idempotent.
- Top (\top) and Bottom (\bot) elements

Uday Khedke

Uday Khedker

Meet semilattices satisfying the descending chain condition

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- \perp must exist

What guarantees the presence of \perp ?

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- \perp must exist

What guarantees the presence of \perp ?

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- \perp must exist

What guarantees the presence of \perp ?

Assume that two maximal descending chains terminate at two incomparable elements x₁ and x₂

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- \perp must exist

What guarantees the presence of \perp ?

- Assume that two maximal descending chains terminate at two incomparable elements x₁ and x₂
- ▶ Since this is a meet semilattice, glb of {*x*₁, *x*₂} must exist (say *z*).

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- \perp must exist

What guarantees the presence of \perp ?

- Assume that two maximal descending chains terminate at two incomparable elements x₁ and x₂
- Since this is a meet semilattice, glb of $\{x_1, x_2\}$ must exist (say z).
 - \Rightarrow Neither of the chains is maximal.

Both of them can be extended to include z.

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- \perp must exist

What guarantees the presence of \perp ?

- Assume that two maximal descending chains terminate at two incomparable elements x₁ and x₂
- Since this is a meet semilattice, glb of $\{x_1, x_2\}$ must exist (say z).
 - \Rightarrow Neither of the chains is maximal.

Both of them can be extended to include z.

- \blacktriangleright Extending this argument to all strictly descending chains, it is easy to see that \bot must exist.
- \top may not exist. Can be added artificially.

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- \perp must exist

What guarantees the presence of \perp ?

- Assume that two maximal descending chains terminate at two incomparable elements x₁ and x₂
- Since this is a meet semilattice, glb of $\{x_1, x_2\}$ must exist (say z).
 - \Rightarrow Neither of the chains is maximal.

Both of them can be extended to include z.

- \blacktriangleright Extending this argument to all strictly descending chains, it is easy to see that \bot must exist.
- \top may not exist. Can be added artificially.
 - lub of arbitrary elements may not exist

Uday Khedke

The Set of Data Flow Values For Available Expressions Analysis

- The powerset of the universal set of expressions
- Partial order is the subset relation

Set View of the Lattice

Uday Khedke

The Set of Data Flow Values For Available Expressions Analysis

- The powerset of the universal set of expressions
- Partial order is the subset relation

Set View of the Lattice

The Set of Data Flow Values For Available Expressions Analysis

- The powerset of the universal set of expressions
- Partial order is the subset relation

Set View of the Latti

May 2011

The Concept of Approximation

- x approximates y iff
 - x can be used in place of y without causing any problems.
- Validity of approximation is context specific
 x may be approximated by y in one context and by z in another
 - Earnings : Rs. 1050 can be safely approximated by Rs. 1000.
 - Expenses : Rs. 1050 can be safely approximated by Rs. 1100.

Uday Khedk

Two Important Objectives in Data Flow Analysis

- The discovered data flow information should be
 - *Exhaustive*. No optimization opportunity should be missed.
 - Safe. Optimizations which do not preserve semantics should not be enabled.

Two Important Objectives in Data Flow Analysis

- The discovered data flow information should be
 - *Exhaustive*. No optimization opportunity should be missed.
 - Safe. Optimizations which do not preserve semantics should not be enabled.
- Conservative approximations of these objectives are allowed

Uday Khed

Two Important Objectives in Data Flow Analysis

- The discovered data flow information should be
 - *Exhaustive*. No optimization opportunity should be missed.
 - Safe. Optimizations which do not preserve semantics should not be enabled.
- Conservative approximations of these objectives are allowed
- The intended use of data flow information (\equiv context) determines validity of approximations

May prohibit corre	ect optimization	May ena	able wrong optimization
		\rightarrow	
Analysis	Application	Safe	Exhaustive
		Approximation	Approximation
Live variables	Dead code elimination	A dead variable is considered live	A live variable is considered dead

May prohibit corre	ect optimization -	May enable wrong optimization	
		\rightarrow	
Analysis	Application	Safe Approximation	Exhaustive Approximation
Live variables	Dead code elimination	A dead variable is considered live	A live variable is considered dead
Available expressions	Common subexpression elimination	An available expression is considered non-available	A non-available expression is considered available

Uday Khedk

Partial Order Captures Approximation

- \Box captures valid approximations for safety
 - $x \sqsubseteq y \Rightarrow x$ is weaker than y
 - The data flow information represented by x can be safely used in place of the data flow information represented by y
 - It may be imprecise, though.

Partial Order Captures Approximation

- \sqsubseteq captures valid approximations for safety
 - $x \sqsubseteq y \Rightarrow x$ is weaker than y
 - The data flow information represented by x can be safely used in place of the data flow information represented by y
 - It may be imprecise, though.
- arr captures valid approximations for exhaustiveness
 - $x \sqsupseteq y \Rightarrow x$ is stronger than y
 - The data flow information represented by x contains every value contained in the data flow information represented by y
 - It may be unsafe, though.

Partial Order Captures Approximation

- \sqsubseteq captures valid approximations for safety
 - $x \sqsubseteq y \Rightarrow x$ is weaker than y
 - The data flow information represented by x can be safely used in place of the data flow information represented by y
 - It may be imprecise, though.
- arr captures valid approximations for exhaustiveness
 - $x \sqsupseteq y \Rightarrow x$ is stronger than y
 - The data flow information represented by x contains every value contained in the data flow information represented by y
 - It may be unsafe, though.

We want most exhaustive information which is also safe.

• Top. $\forall x \in L, x \sqsubseteq \top$. The most exhaustive value.

• Bottom. $\forall x \in L, \perp \sqsubseteq x$. The safest value.

- Top. $\forall x \in L, x \sqsubseteq \top$. The most exhaustive value.
 - \blacktriangleright Using \top in place of any data flow value will never miss out (or rule out) any possible value.
- Bottom. $\forall x \in L, \perp \sqsubseteq x$. The safest value.

- Top. $\forall x \in L, x \sqsubseteq \top$. The most exhaustive value.
 - \blacktriangleright Using \top in place of any data flow value will never miss out (or rule out) any possible value.
 - ► The consequences may be sematically *unsafe*, or *incorrect*.
- *Bottom*. $\forall x \in L, \perp \sqsubseteq x$. The safest value.

Udav Khed

- Top. $\forall x \in L, x \sqsubseteq \top$. The most exhaustive value.
 - \blacktriangleright Using \top in place of any data flow value will never miss out (or rule out) any possible value.
 - ► The consequences may be sematically *unsafe*, or *incorrect*.
- *Bottom*. $\forall x \in L, \perp \sqsubseteq x$. The safest value.
 - ► Using ⊥ in place of any data flow value will never be unsafe, or incorrect.

- Top. $\forall x \in L, x \sqsubseteq \top$. The most exhaustive value.
 - \blacktriangleright Using \top in place of any data flow value will never miss out (or rule out) any possible value.
 - ► The consequences may be sematically *unsafe*, or *incorrect*.
- *Bottom*. $\forall x \in L, \perp \sqsubseteq x$. The safest value.
 - ► Using ⊥ in place of any data flow value will never be unsafe, or incorrect.
 - ► The consequences may be *undefined* or *useless* because this replacement might miss out valid values.

- Top. $\forall x \in L, x \sqsubseteq \top$. The most exhaustive value.
 - \blacktriangleright Using \top in place of any data flow value will never miss out (or rule out) any possible value.
 - ► The consequences may be sematically *unsafe*, or *incorrect*.
- *Bottom*. $\forall x \in L, \perp \sqsubseteq x$. The safest value.
 - ► Using ⊥ in place of any data flow value will never be unsafe, or incorrect.
 - ► The consequences may be *undefined* or *useless* because this replacement might miss out valid values.

Appropriate orientation chosen by design.

Setting Up Lattices

49/57

Uday Khedker

Partial Order Relation

Partial Order Relation

Reflexive	$x \sqsubseteq x$	x can be safely used in place of x
Transitive	$x \sqsubseteq y, y \sqsubseteq z$ $\Rightarrow x \sqsubseteq z$	If x can be safely used in place of y and y can be safely used in place of z, then x can be safely used in place of z
Antisymmetric	$x \sqsubseteq y, y \sqsubseteq x$ $\Leftrightarrow x = y$	If x can be safely used in place of y and y can be safely used in place of x, then x must be same as y

51/57

Merging Information

 x □ y computes the greatest lower bound of x and y i.e. largest z such that z ⊑ x and z ⊑ y

The largest safe approximation of combining data flow information x and y

Merging Information

 x □ y computes the greatest lower bound of x and y i.e. largest z such that z ⊑ x and z ⊑ y

The largest safe approximation of combining data flow information x and y

• Commutative $x \sqcap y = y \sqcap x$

Associative $x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$

Idempotent $x \sqcap x = x$

Merging Information

 x □ y computes the greatest lower bound of x and y i.e. largest z such that z ⊑ x and z ⊑ y

The largest safe approximation of combining data flow information x and y

Commutative	$x \sqcap y = y \sqcap x$	The order in which the data flow information is merged, does not matter
Associative	$x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$	Allow n-ary merging without any restriction on the order
Idempotent	$x \sqcap x = x$	No loss of information if <i>x</i> is merged with itself

Merging Information

 x □ y computes the greatest lower bound of x and y i.e. largest z such that z ⊑ x and z ⊑ y

The largest safe approximation of combining data flow information x and y

Commutative	$x \sqcap y = y \sqcap x$	The order in which the data flow information is merged, does not matter
Associative	$x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$	Allow n-ary merging without any restriction on the order
Idempotent	$x \sqcap x = x$	No loss of information if <i>x</i> is merged with itself

- \top is the identity of \sqcap
 - \blacktriangleright Presence of loops \Rightarrow self dependence of data flow information
 - Using op as the initial value ensure exhaustiveness

More on Lattices in Data Flow Analysis

Uday Khedke

More on Lattices in Data Flow Analysis

Cartesian products if sets are used, vectors (or tuples) if bit are used.

•
$$L = \widehat{L} \times \widehat{L} \times \widehat{L}$$
 and $x = \langle \widehat{x}_1, \widehat{x}_2, \widehat{x}_3 \rangle \in L$ where $\widehat{x}_i \in \widehat{L}$

•
$$\sqsubseteq = \widehat{\sqsubseteq} \times \widehat{\sqsubseteq} \times \widehat{\sqsubseteq}$$
 and $\sqcap = \widehat{\sqcap} \times \widehat{\sqcap} \times \widehat{\sqcap}$

•
$$\top = \widehat{\top} \times \widehat{\top} \times \widehat{\top}$$
 and $\bot = \widehat{\bot} \times \widehat{\bot} \times \widehat{\bot}$

MACS L111

53/57

Component Lattice for Data Flow Information Represented By Bit Vectors

\sqcap is \cap or Boolean AND

 \sqcap is \cup or Boolean OR

Component Lattice for Integer Constant Propagation

- Overall lattice L is the product of \hat{L} for all variables.
- \sqcap and $\widehat{\sqcap}$ get defined by \sqsubseteq and $\widehat{\sqsubseteq}$.

Â	$\langle a, ud \rangle$	$\langle \textit{a},\textit{nc} \rangle$	$\langle a,c_1 angle$
$\langle a, ud \rangle$	$\langle a, ud \rangle$	$\langle a, nc \rangle$	$\langle a, c_1 angle$
$\langle a, nc \rangle$	$\langle a, nc \rangle$	$\langle a, nc \rangle$	$\langle \textit{a},\textit{nc} angle$
$\langle a, c_2 \rangle$	$\langle a, c_2 \rangle$	$\langle a, nc \rangle$	If $c_1=c_2$ then $\langle a,c_1 angle$ else $\langle a,nc angle$

Uday Khedker

Component Lattice for May Points-To Analysis

• Relation between pointer variables and locations in the memory.

Udav Khedke

Component Lattice for May Points-To Analysis

- Relation between pointer variables and locations in the memory.
- Assuming three locations l₁, l₂, and l₃, the component lattice for pointer p is.

Component Lattice for May Points-To Analysis

- Relation between pointer variables and locations in the memory.
- Assuming three locations l_1 , l_2 , and l_3 , the component lattice for pointer p is.

Uday Khedke

Component Lattice for Must Points-To Analysis

• A pointer can point to at most one location.

General Lattice for May-Must Analysis

Interpreting data flow values

- Unknown. Nothing is known as yet
- No. Information does not hold along any path
- Must. Information must hold along all paths
- May. Information may hold along some path

Possible Applications

- Pointer Analysis : No need of separate of May and Must analyses eg. (p → I, May), (p → I, Must), (p → I, No), or (p → I, Unknown).
- Type Inferencing for Dynamically Checked Languages

