Some Generalizations

Uday P. Khedker

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

May 2011

Part 1

About These Slides

Copyright

These slides constitute the lecture notes for

- MACS L111 Advanced Data Flow Analysis course at Cambridge University, and
- CS 618 Program Analysis course at IIT Bombay.

They have been made available under GNU FDL v1.2 or later (purely for academic or research use) as teaching material accompanying the book:

- Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis: Theory and Practice. CRC Press (Taylor and Francis Group). 2009.

Apart from the above book, some slides are based on the material from the following books

- M. S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland Inc. 1977.
- F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag. 1998.

Outline

- Partial Redundancy Elimination
- Introduction to Constant Propagation
- Theoretical Abstractions in Data Flow Analysis
- The world of data flow values
- The world of functions and operations that compute data values (Not today)
- Results of data flow analysis (Not today)
- Algorithms for performing data flow analysis (Not today)

Part 2

Partial Redundancy Elimination

Precursor: Common Subexpression Elimination

Precursor: Common Subexpression Elimination

- a and b are not modified along paths $1 \rightarrow 3$ and $2 \rightarrow 3$

Precursor: Common Subexpression Elimination

- a and b are not modified along paths $1 \rightarrow 3$ and $2 \rightarrow 3$
- Computation of $a * b$ in 3 is redundant

Precursor: Common Subexpression Elimination

- a and b are not modified along paths $1 \rightarrow 3$ and $2 \rightarrow 3$
- Computation of $a * b$ in 3 is redundant
- Previous value can be used

Partial Redundancy Elimination

Partial Redundancy Elimination

- Computation of $a * b$ in 3 is

Partial Redundancy Elimination

- Computation of $a * b$ in 3 is
- redundant along path $1 \rightarrow 3$, but...

Partial Redundancy Elimination

- Computation of $a * b$ in 3 is
- redundant along path $1 \rightarrow 3$, but...
- not redundant along path $2 \rightarrow 3$

Code Hoisting for Partial Redundancy Elimination

- Computation of $a * b$ in 3 becomes totally redundant
- Can be deleted

PRE Subsumes Loop Invariant Movement

PRE Subsumes Loop Invariant Movement

PRE Subsumes Loop Invariant Movement

PRE Can be Used for Strength Reduction

PRE Can be Used for Strength Reduction

- * and + in the loop have been replaced by +
- $i=i+1$ in the loop has been eliminated

PRE Can be Used for Strength Reduction

- Delete $i=i+1$

PRE Can be Used for Strength Reduction

- Delete $i=i+1$
- Expression $t 0+i * 4$ becomes loop invariant

PRE Can be Used for Strength Reduction

- Delete $i=i+1$
- Expression $t 0+i * 4$ becomes loop invariant
- Hoist it and increment $t 1$ in the loop

PRE Can be Used for Strength Reduction

- * and + in the loop have been replaced by +
- $i=i+1$ in the loop has been eliminated

Performing Partial Redundancy Elimination

1. Identify partial redundancies
2. Identify program points where computations can be inserted
3. Insert expressions
4. Partial redundancies become total redundancies
\Longrightarrow Delete them.
Morel-Renvoise Algorithm (CACM, 1979.)

Defining Hoisting Criteria

- An expression can be safely inserted at a program point p if it is

Available at p

Defining Hoisting Criteria

- An expression can be safely inserted at a program point p if it is

Available at $p \quad$ Anticipable at p

Defining Hoisting Criteria

- An expression can be safely inserted at a program point p if it is

Available at $p \quad$ Anticipable at p

- If it is available at p, then there is no need to insert it at p.

Defining Hoisting Criteria

- An expression can be safely inserted at a program point p if it is

Available at $p \quad$ Anticipable at p

- If it is available at p, then there is no need to insert it at p.
- If it is anticipable at p then all such occurrence should be hoisted to p.

Defining Hoisting Criteria

- An expression can be safely inserted at a program point p if it is

Available at $p \quad$ Anticipable at p

- If it is available at p, then there is no need to insert it at p.
- If it is anticipable at p then all such occurrence should be hoisted to p.
- An expression should be hoisted to p provided it can be hoisted to p along all paths from p to exit.

Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors

Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors

Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or

Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if

S. 2 it is upwards exposed, or

Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if

S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block

Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block

Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
D. 1 it is partially available, and
D. 2 For each predecessor

Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
D. 1 it is partially available, and
D. 2 For each predecessor
D.2.a it is hoisted to its exit, or

Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
D. 1 it is partially available, and
D. 2 For each predecessor
D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors

- Safety of hoisting to the entry of a block. Should be hoisted only if

S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block

- Desirability of hoisting to the entry of a block. Should be hoisted only if
D. 1 it is partially available, and
D. 2 For each predecessor
D.2.a it is hoisted to its exit, or

D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of What What does this slide show? Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit an in the block
- Desirability of hoisting to the en Should be hoisted only if
- Four examples
- For each example
- statements in blue enable hoisting
- statements in red prohibit hoisting
D. 1 it is partially available, and
D. 2 For each predecessor
D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
D. 1 it is partially available, and

(Example 1)
D. 2 For each predecessor
D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
D. 1 it is partially available, and

D. 2 For each predecessor
D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoistino to the entry of a hlock Should be hoiste, What if we insert
D. 1 it is partially
- $a=2$ in 3 ?
D. 2 For each pred
D.2.a it is hoisturn
D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
D. 1 it is partially available, and

(Example 2)
D. 2 For each predecessor
D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
D. 1 it is partially available, and

(Example 2)
D. 2 For each predecessor
D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
D. 1 it is partially available, and

(Example 2)
D. 2 For each predecessor
D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
D. 1 it is partially available, and

D. 2 For each predecessor
D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
D. 1 it is partially available, and

(Example 3)
D. 2 For each predecessor
D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
D. 1 it is partially available, and

(Example 4)
D. 2 For each predecessor
D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
D. 1 it is partially available, and

(Example 4)
D. 2 For each predecessor
D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

Applying the Hoisting Criteria

- Safety of hoisting to the exit of a block.
S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors
- Safety of hoisting to the entry of a block. Should be hoisted only if
S. 2 it is upwards exposed, or
S. 3 it can be hoisted to its exit and is transparent in the block
- Desirability of hoisting to the entry of a block. Should be hoisted only if
D. 1 it is partially available, and

(Example 4)
D. 2 For each predecessor
D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

Applying the Hoisting Criteria

- S. 1 Should be hoisted only if it can be hoisted to the entry of all succesors

Should be hoisted only if

- D. 1 it is partially available, and
(Example 4)
D. 2 For each predecessor
D.2.a it is hoisted to its exit, or
D.2.b is available at its exit.

First Level Global Data Flow Properties in PRE

- Partial Availability.

$$
\begin{aligned}
\text { Pavln }_{n} & =\left\{\begin{array}{cl}
\bigcup_{p \in \operatorname{pred}(n)}^{B I} \text { PavOut }_{p} & n \text { is Start block } \\
\text { otherwise }
\end{array}\right. \\
\text { PavOut }_{n} & =\operatorname{Gen}_{n} \cup\left(\text { Pavln }_{n}-\text { Kill }_{n}\right)
\end{aligned}
$$

- Total Availability.

$$
\begin{aligned}
\text { AvIn }_{n} & =\left\{\begin{array}{cl}
\bigcap_{p \in \operatorname{pred}(n)}^{B I} A v O u t_{p} & n \text { is Start block } \\
\text { otherwise }
\end{array}\right. \\
\text { AvOut }{ }_{n} & =\operatorname{Gen}_{n} \cup\left(A v / n_{n}-\text { Kill }_{n}\right)
\end{aligned}
$$

PRE Data Flow Equations

Expressions should be partially available, and

PRE Data Flow Equations

$$
\begin{aligned}
& \text { Safety: S.2 } \\
& I n_{n}=\operatorname{PavIn}_{n} \cap\left(\text { AntGen }_{n} \cup\left(\text { Out }_{n}-\text { Kill }_{n}\right)\right) \\
& \text { Out }_{n}= \begin{cases}\bigcap_{p \in \operatorname{pred}(n)}\left(\text { Out }_{p} \cup \text { AvOut }_{p}\right) \\
\bigcap_{s \in \operatorname{succ}(n)} I n_{s} & \text { otherwise }\end{cases}
\end{aligned}
$$

Expressions should be upwards exposed, or

PRE Data Flow Equations

$$
\begin{aligned}
& \text { Safety: S.3 } \\
& I n_{n}= \operatorname{PavIn}_{n} \cap\left(\text { AntGen }_{n} \cup\left(\text { Out }_{n}-\text { Kill }_{n}\right)\right) \\
& \text { Out }_{n}= \begin{cases} & \left(\text { Out }_{p} \cup \text { AvOut }_{p}\right) \\
\bigcap_{s \in \operatorname{succ}(n)} I n_{s} & \text { otherwise }\end{cases}
\end{aligned}
$$

Expressions can be hoisted to the exit and are transparent in the block

PRE Data Flow Equations

For every predecessor, expressions can be hoisted to its exit, or

PRE Data Flow Equations

$$
\begin{aligned}
& \text { Desirability: D.2.b } \\
& I n_{n}= \text { Pavln }_{n} \cap\left(\text { AntGen }_{n} \cup\left(\text { Out }_{n}-\text { Kill }_{n}\right)\right) \\
& \bigcap_{p \in \operatorname{pred}(n)}\left(\text { Out }_{p} \cup \text { AvOut }_{p}\right)
\end{aligned}\left\{_{\text {Out }_{n}= \begin{cases}n \text { is End block } \\
\bigcap_{s \in \operatorname{succ}(n)} I n_{s} & \text { otherwise }\end{cases} }\right.
$$

...expressions are available at the exit of the same predecessor

PRE Data Flow Equations

Expressions should be hoisted to the exit of a block if they can be hoisted to the entry of all succesors

PRE Data Flow Equations

$$
\begin{aligned}
& I n_{n}= \text { Pavln }_{n} \cap\left(\text { AntGen }_{n} \cup\left(\text { Out }_{n}-\text { Kill }_{n}\right)\right) \\
& \bigcap_{p \in \operatorname{pred}(n)}\left(\text { Out }_{p} \cup \text { AvOut }_{p}\right) \\
& \text { Out }_{n}= \begin{cases}\bigcap_{s \in \operatorname{succ}(n)}^{B I} & n \text { is End block }\end{cases}
\end{aligned}
$$

Deletion Criteria in PRE

- An expression is redundant in node n if
- it can be placed at the entry (i.e. can be "hoisted" out) of n, AND
- it is upwards exposed in node n.

$$
\text { Redundant }_{n}=\operatorname{In}_{n} \cap \text { AntGen }_{n}
$$

- A hoisting path for an expression e begins at n if $e \in$ Redundant $_{n}$
- This hoisting path extends against the control flow.

Insertion Criteria in PRE

- An expression is inserted at the exit of node n is
- it can be placed at the exit of n, AND
- it is not available at the exit of n, AND
- it cannot be hoisted out of n, OR it is modified in n.

$$
\text { Insert }_{n}=\text { Out }_{n} \cap\left(\neg A v O u t_{n}\right) \cap\left(\neg I n_{n} \cup \text { Kill }_{n}\right)
$$

- A hoisting path for an expression e ends at n if $e \in$ Insert $_{n}$

Performing PRE by Computing In/Out: Simple Cases

Performing PRE by Computing In/Out: Simple Cases

Performing PRE by Computing In/Out: Simple Cases

Insertion
Redundancy

Tutorial Problems for PRE

(a)

Tutorial Problems for PRE

(a)

Tutorial Problems for PRE

(a)

(b)

Tutorial Problems for PRE

(a)
(b)

Tutorial Problems for PRE

(a)

(b)

(c)

Tutorial Problems for PRE

(a)

(b)
(c)

Tutorial Problems for PRE

Tutorial Problems for PRE

(a)

(b)

(c)

(d)

Tutorial Problems for PRE

(a)

(b)

(c)

(d)

Tutorial Problems for PRE

(a)

(b)

(c)

(d)

(e)

Tutorial Problems for PRE

Redundancy
Insertion

(a)

Further Tutorial Problem for PRE

$$
\text { Let }\{a * b, b * c\} \equiv \text { bit string } 11
$$

Node n	Kill $_{n}$	AntGen $_{n}$	Pavln $_{n}$	AvOut $_{n}$
1	00	00	00	00
2	00	10	11	10
3	10	00	11	00
4	00	00	11	10
5	00	01	11	01
6	00	00	11	01

- Compute In $_{n} /$ Out $_{n} /$ Redundant $_{n} /$ Insert $_{n}$
- Identify hoisting paths

Result of PRE Data Flow Analysis of the Running Example

Bit vector | $a * b$ | $a+b$ | $a-b$ | $a-c$ | $b+c$ |
| :--- | :--- | :--- | :--- | :--- |

$\frac{\stackrel{\rightharpoonup}{0}}{\stackrel{\circ}{0}}$	Global Information							
	Constant information		Iteration \# 1		Changes in iteration \# 2		Changes in iteration \# 3	
	Pavln n	AvOut_{n}	Out ${ }_{n}$	$1 n_{n}$	Out ${ }_{n}$	$1 n_{n}$	Out ${ }_{n}$	$1 n_{n}$
n_{8}	11111	00011	00000	00011				00001
n_{7}	11101	11000	00011	01001	00001			
n_{6}	11101	11001	01001	01001			01000	
n_{5}	11101	11000	01001	01001		01000		
n_{4}	11100	10100	01001	11100		11000		
n_{3}	11101	10000	01000	01001		00001		
n_{2}	10001	00010	00011	00000			00001	
n_{1}	00000	10001	00000	00000				

Hoisting Paths for Some Expressions in the Running Example

Hoisting Paths for Some Expressions in the Running Example

$$
n_{1} \begin{aligned}
& b=4 \\
& a=b+c \\
& d=a * b
\end{aligned}
$$

Hoisting Paths for Some Expressions in the Running Example

$$
n_{1} \begin{aligned}
& b=4 \\
& a=b+c \\
& d=a * b
\end{aligned}
$$

Hoisting Paths for Some Expressions in the Running Example

$$
n_{1} \begin{aligned}
& b=4 \\
& a=b+c \\
& d=a * b
\end{aligned}
$$

$$
n_{8} \begin{aligned}
& h(a-c) \\
& f(b+c)
\end{aligned}
$$

Hoisting Paths for Some Expressions in the Running Example

$$
n_{1} \begin{aligned}
& b=4 \\
& a=b+c \\
& d=a * b
\end{aligned}
$$

Hoisting Paths for Some Expressions in the Running Example

$$
n_{1} \begin{aligned}
& b=4 \\
& a=b+c \\
& d=a * b
\end{aligned}
$$

Optimized Version of the Running Example

Part 3

The Need for a More General Setting

What We Have Seen So Far ...

Analysis	Entity	Attribute at p	Paths	
Live variables	Variables	Use	Starting at p	Some
Available expressions	Expressions	Availability	Reaching p	All
Partially available expressions	Expressions	Availability	Reaching p	Some
Anticipable expressions	Expressions	Use	Starting at p	All
Reaching definitions	Definitions	Availability	Reaching p	Some
Partial redundancy elimination	Expressions	Profitable hoistability	Involving p	All

An Introduction to Constant Propagation

An Introduction to Constant Propagation

An Introduction to Constant Propagation

$\langle a, b, c, d\rangle$

Execution
$\downarrow \downarrow \downarrow \downarrow$

$\langle ?, ?, ?, ?\rangle \stackrel{\text { IN }}{ }$
$\langle 1,2,3, ?\rangle \stackrel{\text { OUT }}{ } n_{1}$

An Introduction to Constant Propagation

An Introduction to Constant Propagation

Summary Values

Data Flow Values for Constant Propagation

- Tuples of the form $\left\langle\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right\rangle$ where ξ_{i} is the data flow value for $i^{t h}$ variable.

Unlike bit vector frameworks, value ξ_{i} is not 0 or 1 (i.e. true or false). Instead, it is one of the following:

- ? indicating that not much is known about the constantness of variable v_{i}
- \times indicating that variable v_{i} does not have a constant value
- An integer constant c_{1} if the value of v_{i} is known to be c_{1} at compile time
- Alternatively, sets of pairs $\left\langle v_{i}, \xi_{i}\right\rangle$ for each variable v_{i}.

Confluence Operation for Constant Propagation

- Confluence operation $\left\langle a, c_{1}\right\rangle \sqcap\left\langle a, c_{2}\right\rangle$

\sqcap	$\langle a, \boldsymbol{?}\rangle$	$\langle a, \times\rangle$	$\left\langle a, c_{1}\right\rangle$
$\langle a, \boldsymbol{?}\rangle$	$\langle a, \boldsymbol{?}\rangle$	$\langle a, \times\rangle$	$\left\langle a, c_{1}\right\rangle$
$\langle a, \times\rangle$	$\langle a, \times\rangle$	$\langle a, \times\rangle$	$\langle a, \times\rangle$
$\left\langle a, c_{2}\right\rangle$	$\left\langle a, c_{2}\right\rangle$	$\langle a, \times\rangle$	If $c_{1}=c_{2}$ Otherwise$\left\langle a, c_{1}\right\rangle$

- This is neither \cap nor \cup.

What are its properties?

Flow Functions for Constant Propagation

- Flow function for $r=a_{1} * a_{2}$

mult	$\left\langle a_{1}, \boldsymbol{?}\right\rangle$	$\left\langle a_{1}, \times\right\rangle$	$\left\langle a_{1}, c_{1}\right\rangle$
$\left\langle a_{2}, \boldsymbol{?}\right\rangle$	$\langle r, \boldsymbol{?}\rangle$	$\langle r, \times\rangle$	$\langle r, \boldsymbol{?}\rangle$
$\left\langle a_{2}, \times\right\rangle$	$\langle r, \times\rangle$	$\langle r, \times\rangle$	$\langle r, \times\rangle$
$\left\langle a_{2}, c_{2}\right\rangle$	$\langle r, \boldsymbol{?}\rangle$	$\langle r, \times\rangle$	$\left\langle r,\left(c_{1} * c_{2}\right)\right\rangle$

- This cannot be expressed in the form

$$
f_{n}(X)=\operatorname{Gen}_{n} \cup\left(X-\text { Kill }_{n}\right)
$$

where Gen $_{n}$ and Kill ${ }_{n}$ are constant effects of block n.

Round Robin Iterative Analysis for Constant Propagation

Round Robin Iterative Analysis for Constant Propagation Iteration
\#1

Round Robin Iterative Analysis for Constant Propagation

		Iteration \#1	Iteration $\# 2$
n_{1}	$\begin{gathered} a=1 \\ b=2 \\ c=a+b \end{gathered}$	$\langle ?, ?, ?, ?\rangle$ $\langle 1,2,3, ?\rangle$	$\langle\boldsymbol{?}, ?, ?, ?\rangle$ $\langle 1,2,3, ?\rangle$
n_{2}	$\begin{aligned} & c=a+b \\ & d=a * b \end{aligned}$	$\begin{aligned} & \langle 1,2,3, ?\rangle \\ & \langle 1,2,3,2\rangle \end{aligned}$	$\begin{aligned} & \langle\times, \times, 3,2\rangle \\ & \langle\times, \times, \times, \times\rangle \end{aligned}$
n_{3}	$\begin{gathered} d=c-1 \\ a=2 \\ b=1 \\ c=a+b \end{gathered}$	$\langle 1,2,3,2\rangle$ $\langle 2,1,3,2\rangle$	$\langle\times, \times, \times, \times\rangle$ $\langle 2,1,3, \times\rangle$

Round Robin Iterative Analysis for Constant Propagation

		Iteration \#1	Iteration $\# 2$	Iteration \#3
n_{1}	$a=1$	$\langle\mathbf{?}, \mathbf{?}, \mathbf{?}, \mathbf{?}\rangle$	$\langle\boldsymbol{?}, \boldsymbol{?}, \boldsymbol{?}, \mathbf{?}\rangle$	$\langle\boldsymbol{?}$, ?, ?, ? \rangle
	$b=2$ $c=a+b$	$\langle 1,2,3, ?\rangle$	$\langle 1,2,3, ?\rangle$	$\langle 1,2,3, ?\rangle$
n_{2}	$c=a+b$	$\langle 1,2,3, ?\rangle$	$\langle\times, \times, 3,2\rangle$	$\langle\times, \times, 3, \times\rangle$
	$d=a * b$	$\langle 1,2,3,2\rangle$	$\langle\times, \times, \times, \times\rangle$	$\langle\times, \times, \times, \times\rangle$
n_{3}	$d=c-1$	$\langle 1,2,3,2\rangle$	$\langle\times, \times, \times, \times\rangle$	$\langle\times, \times, \times, \times\rangle$
	$c=a+b$	$\langle 2,1,3,2\rangle$	$\langle 2,1,3, \times\rangle$	$\langle 2,1,3, \times\rangle$

Round Robin Iterative Analysis for Constant Propagation

		Iteration \#1	Iteration \#2	Iteration \#3	Desired solution
n_{1}	$\begin{gathered} a=1 \\ b=2 \\ c=a+b \end{gathered}$	\langle <, ?, ?, ? \rangle	$\langle ?, ?, ?, ?\rangle$	$\langle ?, ?, ?, ?\rangle$	$\langle\boldsymbol{?}$, ?, ?, ? \rangle
		$\langle 1,2,3, ?\rangle$	$\langle 1,2,3, ?\rangle$	$\langle 1,2,3, ?\rangle$	$\langle 1,2,3, ?\rangle$
n_{2}	\cdots	$\langle 1,2,3, ?\rangle$	$\langle\times, \times, 3,2\rangle$	$\langle\times, \times, 3, x\rangle$	$\langle\times, \times, 3,2\rangle$
	$\begin{aligned} & c=a+b \\ & d=a * b \end{aligned}$	〈1, 2, 3, ? ${ }^{\text {, }}$	$\langle\times, \times, 3,2\rangle$		$\langle\times, \times, 3,2\rangle$
		2, 3, 2>	$\langle\times, \times, \times, \times\rangle$	$\langle\times, \times, \times, \times\rangle$	$\langle\times, \times, 3,2\rangle$
n_{3}	$\begin{gathered} d=c-1 \\ a=2 \\ b=1 \\ c=a+b \end{gathered}$	$\langle 1,2,3,2\rangle$	$\langle\times, \times, \times, \times\rangle$	$\langle\times, \times, \times, \times\rangle$	$\langle\times, \times, 3,2\rangle$
		$\langle 2,1,3,2\rangle$	$\langle 2,1,3, \times\rangle$	$\langle 2,1,3, \times\rangle$	$\langle 2,1,3,2\rangle$

Round Robin Iterative Analysis for Constant Propagation

		Iteration \#1	Iteration \#2	Iteration \#3	Desired solution
n_{1}	$\begin{gathered} a=1 \\ b=2 \\ c=a+b \end{gathered}$	$\langle\boldsymbol{?}$, ?, ?, ? \rangle	$\langle ?, ?, ?, ?\rangle$	$\langle ?, ?, ?, ?\rangle$	\langle ?, ?, ?, ? \rangle
		$\langle 1,2,3, ?\rangle$	$\langle 1,2,3$, ? \rangle	$\langle 1,2,3, ?\rangle$	$\langle 1,2,3, ?\rangle$
n_{2}		$\langle 1,2,3, ?\rangle$	$\langle\times, \times, 3,2\rangle$	$\langle\times, \times, 3$,	$\langle\times, \times, 3,2\rangle$
	$c=a+b$$d=a * b$		$(\times, \times, 3,2\rangle$		$\langle\times, \times, 3,2\rangle$
		$\langle 1,2,3,2\rangle$	$\langle\times, \times, \times, \times\rangle$	$\langle\times, \times, \times, \times\rangle$	$\langle\times, \times, 3,2\rangle$
n_{3}	$\begin{gathered} d=c-1 \\ a=2 \\ b=1 \\ c=a+b \end{gathered}$	$\langle 1,2,3,2\rangle$	$\langle\times, \times, \times, \times\rangle$	$\langle\times, \times, \times, \times\rangle$	$\langle\times, \times, 3,2\rangle$
		$\langle 2,1,3,2\rangle$	$\langle 2,1,3, \times\rangle$	$\langle 2,1,3, \times\rangle$	$\langle 2,1,3,2\rangle$

Issues in Data Flow Analysis

Issues in Data Flow Analysis

- Representation
- Approximation: Partial Order, Lattices

Issues in Data Flow Analysis

- Representation
- Approximation: Partial Order, Lattices
- Merge: Commutativity, Associativity, Idempotence
- Flow Functions: Monotonicity, Distributivity, Boundedness, Separability

Issues in Data Flow Analysis

- Representation
- Approximation: Partial Order, Lattices
- Merge: Commutativity, Associativity, Idempotence
- Flow Functions: Monotonicity, Distributivity, Boundedness, Separability

Issues in Data Flow Analysis

- Representation
- Approximation: Partial Order, Lattices
- Merge: Commutativity, Associativity, Idempotence
- Flow Functions: Monotonicity, Distributivity, Boundedness, Separability

Part 4

Data Flow Values: An Overview

Data Flow Values: An Outline of Our Discussion

- The need to define the notion of abstraction
- Lattices, variants of lattices
- Relevance of lattices for data flow analysis
- Partial order relation as approximation of data flow values
- Meet operations as confluence of data flow values
- Cartesian product of lattices
- Example of lattices

Partially Ordered Sets and Lattices

Partially Ordered Sets and Lattices

Partially Ordered Sets and Lattices

Every non-empty finite subset has a greatest lower bound (glb) and a least upper bound (lub)

Partially Ordered Sets

Set $\{1,2,3,4,9\}$ with \sqsubseteq relation as "divides" (i.e. $a \sqsubseteq b$ iff a divides b)

Partially Ordered Sets

Set $\{1,2,3,4,9\}$ with \sqsubseteq relation as "divides" (i.e. $a \sqsubseteq b$ iff a divides b)

Partially Ordered Sets

Set $\{1,2,3,4,9\}$ with \sqsubseteq relation as "divides" (i.e. $a \sqsubseteq b$ iff a divides b)

Subsets $\{4,9\}$ and $\{2,3\}$ do not have an upper bound in the set

Lattice

Set $\{1,2,3,4,9,36\}$ with \sqsubseteq relation as "divides" (i.e. $a \sqsubseteq b$ iff a divides b)

Complete Lattice

- Lattice: A partially ordered set such that every non-empty finite subset has a glb and a lub.

Example:
Lattice \mathbb{Z} of integers under \leq relation. All finite subsets have a glb and a lub. Infinite subsets do not have a glb or a lub.

Complete Lattice

- Lattice: A partially ordered set such that every non-empty finite subset has a glb and a lub.

Example:
Lattice \mathbb{Z} of integers under \leq relation. All finite subsets have a glb and a lub. Infinite subsets do not have a glb or a lub.

- Complete Lattice: A lattice in which even \emptyset and infinite subsets have a glb and a lub.

Complete Lattice

- Lattice: A partially ordered set such that every non-empty finite subset has a glb and a lub.

Example:
Lattice \mathbb{Z} of integers under \leq relation. All finite subsets have a glb and a lub. Infinite subsets do not have a glb or a lub.

- Complete Lattice: A lattice in which even \emptyset and infinite subsets have a glb and a lub.

Example:
Lattice \mathbb{Z} of integers under \leq relation with ∞ and $-\infty$.

Complete Lattice

- Lattice: A partially ordered set such that every non-empty finite subset has a glb and a lub.

Example:
Lattice \mathbb{Z} of integers under \leq relation. All finite subsets have a glb and a lub. Infinite subsets do not have a glb or a lub.

- Complete Lattice: A lattice in which even \emptyset and infinite subsets have a glb and a lub.

Example:
Lattice \mathbb{Z} of integers under \leq relation with ∞ and $-\infty$.

- ∞ is the top element denoted $\top: \forall i \in \mathbb{Z}, i \leq \top$.
- $-\infty$ is the bottom element denoted $\perp: \forall i \in \mathbb{Z}, \perp \leq i$.
- Infinite subsets of $\mathbb{Z} \cup\{\infty,-\infty\}$ have a glb and lub.
- Infinite subsets of $\mathbb{Z} \cup\{\infty,-\infty\}$ have a glb and lub.
- What about the empty set?
- Infinite subsets of $\mathbb{Z} \cup\{\infty,-\infty\}$ have a glb and lub.
- What about the empty set?
- $\operatorname{glb}(\emptyset)$ is T
- Infinite subsets of $\mathbb{Z} \cup\{\infty,-\infty\}$ have a glb and lub.
- What about the empty set?
- $\operatorname{glb}(\emptyset)$ is T

Every element of $\mathbb{Z} \cup\{\infty,-\infty\}$ is vacuously a lower bound of an element in \emptyset (because there is no element in \emptyset).

- Infinite subsets of $\mathbb{Z} \cup\{\infty,-\infty\}$ have a glb and lub.
- What about the empty set?
- $\operatorname{glb}(\emptyset)$ is T

Every element of $\mathbb{Z} \cup\{\infty,-\infty\}$ is vacuously a lower bound of an element in \emptyset (because there is no element in \emptyset). The greatest among these lower bounds is T.

$\mathbb{Z} \cup\{\infty,-\infty\}$ is a Complete Lattice

- Infinite subsets of $\mathbb{Z} \cup\{\infty,-\infty\}$ have a glb and lub.
- What about the empty set?
- $\operatorname{glb}(\emptyset)$ is T

Every element of $\mathbb{Z} \cup\{\infty,-\infty\}$ is vacuously a lower bound of an element in \emptyset (because there is no element in \emptyset).
The greatest among these lower bounds is T.

- $\operatorname{lub}(\emptyset)$ is \perp

Finite Lattices are Complete

- Any given set of elements has a glb and a lub

Lattice for May-Must Analysis

- There is no T among the natural values

- An artificial T can be added However, a lub may not exist for arbitrary sets

Some Variants of Lattices

A poset L is

- A lattice iff each non-empty finite subset of L has a glb and lub.
- A complete lattice iff each subset of L has a glb and lub.
- A meet semilattice iff each non-empty finite subset of L has a glb.
- A join semilattice iff each non-empty finite subset of L has a lub.

Ascending and Descending Chains

- Strictly ascending chain. $x \sqsubset y \sqsubset \cdots \sqsubset z$
- Strictly descending chain. $x \sqsupset y \sqsupset \cdots \sqsupset z$
- DCC: Descending Chain Condition All strictly descending chains are finite.
- ACC: Ascending Chain Condition All strictly ascending chains are finite.

Complete Lattice and Ascending and Descending Chains

- If L satisfies acc and dcc, then
- L has finite height, and
- L is complete.
- A complete lattice need not have finite height (i.e. strict chains may not be finite).
Example:
Lattice of integers under \leq relation with ∞ as T and $-\infty$ as \perp.

Operations on Lattices

- Meet (\square) and Join ($\sqcup)$

Operations on Lattices

- Meet (\square) and Join (\sqcup)
- $x \sqcap y$ computes the glb of x and y. $z=x \sqcap y \Rightarrow z \sqsubseteq x \wedge z \sqsubseteq y$

Operations on Lattices

- Meet (\square) and Join (\sqcup)
- $x \sqcap y$ computes the glb of x and y. $z=x \sqcap y \Rightarrow z \sqsubseteq x \wedge z \sqsubseteq y$
- $x \sqcup y$ computes the lub of x and y. $z=x \sqcup y \Rightarrow z \sqsupseteq x \wedge z \sqsupseteq y$

Operations on Lattices

- Meet (\square) and Join (\sqcup)
- $x \sqcap y$ computes the glb of x and y. $z=x \sqcap y \Rightarrow z \sqsubseteq x \wedge z \sqsubseteq y$
- $x \sqcup y$ computes the lub of x and y. $z=x \sqcup y \Rightarrow z \sqsupseteq x \wedge z \sqsupseteq y$
- \sqcap and \sqcup are commutative, associative, and idempotent.

Operations on Lattices

- Meet (\square) and Join (\sqcup)
- $x \sqcap y$ computes the glb of x and y. $z=x \sqcap y \Rightarrow z \sqsubseteq x \wedge z \sqsubseteq y$
- $x \sqcup y$ computes the lub of x and y. $z=x \sqcup y \Rightarrow z \sqsupseteq x \wedge z \sqsupseteq y$
- \sqcap and \sqcup are commutative, associative, and idempotent.

$$
\begin{aligned}
& \forall x \in L, x \sqcap \top=x \\
& \forall x \in L, x \sqcup \top=\top \\
& \forall x \in L, x \sqcap \perp=\perp \\
& \forall x \in L, x \sqcup \perp=x
\end{aligned}
$$

Operations on Lattices

Greatest common divisor (or highest common factor) in the lattice

- Meet (\square) and Join (\sqcup)
- $x \sqcap y$ computes the glb of x and y. $z=x \sqcap y \Rightarrow z \sqsubseteq x \wedge z \sqsubseteq y$
- $x \sqcup y$ computes the lub of x and y. $z=x \sqcup y \Rightarrow z \sqsupseteq x \wedge z \sqsupseteq y$
- \sqcap and \sqcup are commutative, associative, and idempotent.
- Top (T) and Bottom (\perp) elements

$$
\begin{aligned}
& \forall x \in L, x \sqcap \top=x \\
& \forall x \in L, x \sqcup \top=\top \\
& \forall x \in L, x \sqcap \perp=\perp \\
& \forall x \in L, x \sqcup \perp=x
\end{aligned}
$$

$x \sqcap y=\operatorname{gcd}^{\prime}(x, y)$

Operations on Lattices

Greatest common divisor (or highest

- Meet (\square) and Join (\sqcup) common factor) in the lattice
- $x \sqcap y$ computes the glb of x and y.

$$
z=x \sqcap y \Rightarrow z \sqsubseteq x \wedge z \sqsubseteq y
$$

- $x \sqcup y$ computes the lub of x and y. $z=x \sqcup y \Rightarrow z \sqsupseteq x \wedge z \sqsupseteq y$
- \sqcap and \sqcup are commutative, associative, and idempotent.
- Top (T) and Bottom (\perp) elements

$$
\begin{aligned}
& \forall x \in L, x \sqcap \top=x \\
& \forall x \in L, x \sqcup \top=\top \\
& \forall x \in L, x \sqcap \perp=\perp \\
& \forall x \in L, x \sqcup \perp=x
\end{aligned}
$$

$x \sqcap y=\operatorname{gcd}^{\prime}(x, y)$
$x \sqcup y=l^{\prime}(x, y)$

Lowest common multiple in the lattice

Cartesian Product of Lattice

Cartesian Product of Lattice

Cartesian Product of Lattice

Cartesian Product of Lattice

Cartesian Product of Lattice

Cartesian Product of Lattice

Cartesian Product of Lattice

Cartesian Product of Lattice

Cartesian Product of Lattice

$$
\begin{array}{ll}
\left\langle L_{N}, \sqsubseteq_{N}, \square_{N}, \sqcup_{N}\right\rangle
\end{array}
$$

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- \perp must exist What guarantees the presence of \perp ?

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- \perp must exist What guarantees the presence of \perp ?
- T may not exist. Can be added artificially.

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- \perp must exist

What guarantees the presence of \perp ?

- Assume that two maximal descending chains terminate at two incomparable elements x_{1} and x_{2}
- T may not exist. Can be added artificially.

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- \perp must exist

What guarantees the presence of \perp ?

- Assume that two maximal descending chains terminate at two incomparable elements x_{1} and x_{2}
- Since this is a meet semilattice, glb of $\left\{x_{1}, x_{2}\right\}$ must exist (say z).
- T may not exist. Can be added artificially.

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- \perp must exist

What guarantees the presence of \perp ?

- Assume that two maximal descending chains terminate at two incomparable elements x_{1} and x_{2}
- Since this is a meet semilattice, glb of $\left\{x_{1}, x_{2}\right\}$ must exist (say z). \Rightarrow Neither of the chains is maximal. Both of them can be extended to include z.
- T may not exist. Can be added artificially.

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- \perp must exist

What guarantees the presence of \perp ?

- Assume that two maximal descending chains terminate at two incomparable elements x_{1} and x_{2}
- Since this is a meet semilattice, glb of $\left\{x_{1}, x_{2}\right\}$ must exist (say z). \Rightarrow Neither of the chains is maximal. Both of them can be extended to include z.
- Extending this argument to all strictly descending chains, it is easy to see that \perp must exist.
- T may not exist. Can be added artificially.

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- \perp must exist

What guarantees the presence of \perp ?

- Assume that two maximal descending chains terminate at two incomparable elements x_{1} and x_{2}
- Since this is a meet semilattice, glb of $\left\{x_{1}, x_{2}\right\}$ must exist (say z). \Rightarrow Neither of the chains is maximal. Both of them can be extended to include z.
- Extending this argument to all strictly descending chains, it is easy to see that \perp must exist.
- T may not exist. Can be added artificially.
- lub of arbitrary elements may not exist

The Set of Data Flow Values For Available Expressions Analysis

- The powerset of the universal set of expressions
- Partial order is the subset relation

Set View of the Lattice

The Set of Data Flow Values For Available Expressions Analysis

- The powerset of the universal set of expressions
- Partial order is the subset relation

Set View of the Lattice

The Set of Data Flow Values For Available Expressions Analysis

- The powerset of the universal set of expressions
- Partial order is the subset relation

Set View of the Lattice

Bit Vector View

The Concept of Approximation

- x approximates y iff
x can be used in place of y without causing any problems.
- Validity of approximation is context specific
x may be approximated by y in one context and by z in another
- Earnings : Rs. 1050 can be safely approximated by Rs. 1000.
- Expenses : Rs. 1050 can be safely approximated by Rs. 1100.

Two Important Objectives in Data Flow Analysis

- The discovered data flow information should be
- Exhaustive. No optimization opportunity should be missed.
- Safe. Optimizations which do not preserve semantics should not be enabled.

Two Important Objectives in Data Flow Analysis

- The discovered data flow information should be
- Exhaustive. No optimization opportunity should be missed.
- Safe. Optimizations which do not preserve semantics should not be enabled.
- Conservative approximations of these objectives are allowed

Two Important Objectives in Data Flow Analysis

- The discovered data flow information should be
- Exhaustive. No optimization opportunity should be missed.
- Safe. Optimizations which do not preserve semantics should not be enabled.
- Conservative approximations of these objectives are allowed
- The intended use of data flow information (\equiv context) determines validity of approximations

Context Determines the Validity of Approximations

Context Determines the Validity of Approximations

May prohibit correct optimization		May enable wrong optimization	
Analysis	Application	Safe Approximation	Exhaustive Approximation
Live variables	Dead code elimination	A dead variable is considered live	A live variable is considered dead

Context Determines the Validity of Approximations

Context Determines the Validity of Approximations

Partial Order Captures Approximation

- \sqsubseteq captures valid approximations for safety
$x \sqsubseteq y \Rightarrow x$ is weaker than y
- The data flow information represented by x can be safely used in place of the data flow information represented by y
- It may be imprecise, though.

Partial Order Captures Approximation

- \sqsubseteq captures valid approximations for safety
$x \sqsubseteq y \Rightarrow x$ is weaker than y
- The data flow information represented by x can be safely used in place of the data flow information represented by y
- It may be imprecise, though.
- \sqsupseteq captures valid approximations for exhaustiveness
$x \sqsupseteq y \Rightarrow x$ is stronger than y
- The data flow information represented by \times contains every value contained in the data flow information represented by y
- It may be unsafe, though.

Partial Order Captures Approximation

- \sqsubseteq captures valid approximations for safety
$x \sqsubseteq y \Rightarrow x$ is weaker than y
- The data flow information represented by x can be safely used in place of the data flow information represented by y
- It may be imprecise, though.
- \sqsupseteq captures valid approximations for exhaustiveness
$x \sqsupseteq y \Rightarrow x$ is stronger than y
- The data flow information represented by \times contains every value contained in the data flow information represented by y
- It may be unsafe, though.

We want most exhaustive information which is also safe.

Most Approximate Values in a Complete Lattice

- Top. $\forall x \in L, x \sqsubseteq T$. The most exhaustive value.
- Bottom. $\forall x \in L, \perp \sqsubseteq x$. The safest value.

Most Approximate Values in a Complete Lattice

- Top. $\forall x \in L, x \sqsubseteq T$. The most exhaustive value.
- Using T in place of any data flow value will never miss out (or rule out) any possible value.
- Bottom. $\forall x \in L, \perp \sqsubseteq x$. The safest value.

Most Approximate Values in a Complete Lattice

- Top. $\forall x \in L, x \sqsubseteq \top$. The most exhaustive value.
- Using T in place of any data flow value will never miss out (or rule out) any possible value.
- The consequences may be sematically unsafe, or incorrect.
- Bottom. $\forall x \in L, \perp \sqsubseteq x$. The safest value.

Most Approximate Values in a Complete Lattice

- Top. $\forall x \in L, x \sqsubseteq T$. The most exhaustive value.
- Using T in place of any data flow value will never miss out (or rule out) any possible value.
- The consequences may be sematically unsafe, or incorrect.
- Bottom. $\forall x \in L, \perp \sqsubseteq x$. The safest value.
- Using \perp in place of any data flow value will never be unsafe, or incorrect.

Most Approximate Values in a Complete Lattice

- Top. $\forall x \in L, x \sqsubseteq T$. The most exhaustive value.
- Using T in place of any data flow value will never miss out (or rule out) any possible value.
- The consequences may be sematically unsafe, or incorrect.
- Bottom. $\forall x \in L, \perp \sqsubseteq x$. The safest value.
- Using \perp in place of any data flow value will never be unsafe, or incorrect.
- The consequences may be undefined or useless because this replacement might miss out valid values.

Most Approximate Values in a Complete Lattice

- Top. $\forall x \in L, x \sqsubseteq T$. The most exhaustive value.
- Using T in place of any data flow value will never miss out (or rule out) any possible value.
- The consequences may be sematically unsafe, or incorrect.
- Bottom. $\forall x \in L, \perp \sqsubseteq x$. The safest value.
- Using \perp in place of any data flow value will never be unsafe, or incorrect.
- The consequences may be undefined or useless because this replacement might miss out valid values.

Appropriate orientation chosen by design.

Setting Up Lattices

Available Expressions Analysis

\sqsubseteq is \subseteq
\sqcap is \cap

Live Variables Analysis

\sqsubseteq is \supseteq
\sqcap is \cup

Partial Order Relation

Reflexive $\quad x \sqsubseteq x$

Transitive

$$
\begin{array}{r}
x \sqsubseteq y, y \sqsubseteq z \\
\Rightarrow x \sqsubseteq z
\end{array}
$$

Antisymmetric $x \sqsubseteq y, y \sqsubseteq x$

$$
\Leftrightarrow x=y
$$

Partial Order Relation

Reflexive $\quad x \sqsubseteq x$

Transitive

$$
\begin{aligned}
& x \sqsubseteq y, y \sqsubseteq z \\
& \Rightarrow x \sqsubseteq z
\end{aligned}
$$

x can be safely used in place of x

If x can be safely used in place of y and y can be safely used in place of z, then x can be safely used in place of z

Antisymmetric $x \sqsubseteq y, y \sqsubseteq x$ If x can be safely used in place of y $\Leftrightarrow x=y \quad$ and y can be safely used in place of x, then x must be same as y

Merging Information

- $x \sqcap y$ computes the greatest lower bound of x and y i.e. largest z such that $z \sqsubseteq x$ and $z \sqsubseteq y$

The largest safe approximation of combining data flow information x and y

Merging Information

- $x \sqcap y$ computes the greatest lower bound of x and y i.e. largest z such that $z \sqsubseteq x$ and $z \sqsubseteq y$

The largest safe approximation of combining data flow information x and y

- Commutative $x \sqcap y=y \sqcap x$

Associative $\quad x \sqcap(y \sqcap z)=(x \sqcap y) \sqcap z$

Idempotent $\quad x \sqcap x=x$

Merging Information

- $x \sqcap y$ computes the greatest lower bound of x and y i.e. largest z such that $z \sqsubseteq x$ and $z \sqsubseteq y$

The largest safe approximation of combining data flow information x and y

- Commutative $x \sqcap y=y \sqcap x$

Associative $\quad x \sqcap(y \sqcap z)=(x \sqcap y) \sqcap z$

Idempotent $\quad x \sqcap x=x$

The order in which the data flow information is merged, does not matter

Allow n-ary merging without any restriction on the order

No loss of information if x is merged with itself

Merging Information

- $x \sqcap y$ computes the greatest lower bound of x and y i.e. largest z such that $z \sqsubseteq x$ and $z \sqsubseteq y$

The largest safe approximation of combining data flow information x and y

- Commutative $x \sqcap y=y \sqcap x$

The order in which the data flow information is merged, does not matter

Associative $\quad x \sqcap(y \sqcap z)=(x \sqcap y) \sqcap z \quad$ Allow n-ary merging without any restriction on the order

Idempotent $\quad x \sqcap x=x$
No loss of information if x is merged with itself

- \top is the identity of \sqcap
- Presence of loops \Rightarrow self dependence of data flow information
- Using T as the initial value ensure exhaustiveness

More on Lattices in Data Flow Analysis

$L=$ Lattice for all expressions $\quad \widehat{L}=$ Lattice for a single expression

More on Lattices in Data Flow Analysis

$L=$ Lattice for all expressions $\quad \widehat{L}=$ Lattice for a single expression

Cartesian products if sets are used, vectors (or tuples) if bit are used.

- $L=\hat{L} \times \hat{L} \times \hat{L}$ and $x=\left\langle\widehat{x}_{1}, \widehat{x}_{2}, \widehat{x}_{3}\right\rangle \in L$ where $\widehat{x}_{i} \in \hat{L}$
- $\sqsubseteq=\hat{\underline{G}} \times \hat{\underline{G}} \times \hat{\underline{G}}$ and $\Pi=\hat{\Pi} \times \hat{\Pi} \times \hat{\Pi}$
- $\mathrm{T}=\widehat{\top} \times \hat{\mathrm{T}} \times \hat{\mathrm{T}}$ and $\perp=\widehat{\perp} \times \hat{\perp} \times \hat{\perp}$

Component Lattice for Data Flow Information Represented By Bit Vectors

\sqcap is \cap or Boolean AND
\sqcap is \cup or Boolean OR

Component Lattice for Integer Constant Propagation

(ㅅ)

- Overall lattice L is the product of \widehat{L} for all variables.
- Π and $\hat{\Pi}$ get defined by \sqsubseteq and $\hat{\underline{\omega}}$.

$\hat{\Pi}$	$\langle a, u d\rangle$	$\langle a, n c\rangle$	$\left\langle a, c_{1}\right\rangle$
$\langle a, u d\rangle$	$\langle a, u d\rangle$	$\langle a, n c\rangle$	$\left\langle a, c_{1}\right\rangle$
$\langle a, n c\rangle$			
$\left\langle a, c_{2}\right\rangle$	$\left\langle a, c_{2}\right\rangle$	$\langle a, n c\rangle$	If $c_{1}=c_{2}$ then $\left\langle a, c_{1}\right\rangle$ else $\langle a, n c\rangle$

Component Lattice for May Points-To Analysis

- Relation between pointer variables and locations in the memory.

Component Lattice for May Points-To Analysis

- Relation between pointer variables and locations in the memory.
- Assuming three locations I_{1}, l_{2}, and I_{3}, the component lattice for pointer p is.

Component Lattice for May Points-To Analysis

- Relation between pointer variables and locations in the memory.
- Assuming three locations I_{1}, l_{2}, and I_{3}, the component lattice for pointer p is.

Component Lattice for Must Points-To Analysis

- A pointer can point to at most one location.

Alternatively,

General Lattice for May-Must Analysis

Interpreting data flow values

- Unknown. Nothing is known as yet
- No. Information does not hold along any path
- Must. Information must hold along all paths
- May. Information may hold along some path

Possible Applications

- Pointer Analysis: No need of separate of May and Must analyses eg. ($p \mapsto I$, May), ($p \mapsto I$, Must), ($p \mapsto I$, No), or ($p \mapsto I$, Unknown).
- Type Inferencing for Dynamically Checked Languages

