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Copyright

These slides constitute the lecture notes for
e MACS L111 Advanced Data Flow Analysis course at Cambridge
University, and
e CS 618 Program Analysis course at |IT Bombay.
They have been made available under GNU FDL v1.2 or later (purely for
academic or research use) as teaching material accompanying the book:

e Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow
Analysis: Theory and Practice. CRC Press (Taylor and Francis
Group). 2009.

Apart from the above book, some slides are based on the material from
the following books

e M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.
e F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program

: Analysis. Springer-Verlag. 1998. n
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Outline

Modelling General Flows

Constant Propagation

Faint Variables Analysis

Pointer Analyses

Heap Reference Analysis

Important Note:

e Focus on intuitions conveyed through examples rather than formal
definitions
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Precise Modelling of General Flows
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Complexity of Constant Propagation?
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Complexity of Constant Propagation?

Iteration #1
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Complexity of Constant Propagation?

Iteration #1 Iteration #2
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Complexity of Constant Propagation?

Iteration #2

5 Iteration #3
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Complexity of Constant Propagation?

T Iteration #3 Iteration #4
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Loop Closures of Flow Functions

p1
| Paths Terminating at p, | Data Flow Value |
P1, P2 X
P1, P2, P3, P2 f(x)
P1, P2, P3, P2, P3, P2 f(f(X)) = f2(X)
P1, P2, P3, P2, P3, P2, P3. P2 | F(F(F(x))) = F3(x)
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Loop Closures of Flow Functions

p1
| Paths Terminating at p, | Data Flow Value |
P1, P2 X
P1, P2, P3, P2 f(x)
P1, P2, P3, P2, P3, P2 f(f(X)) = f2(X)
P1, P2, P3, P2, P3, P2, P3. P2 | F(F(F(x))) = F3(x)

e For static analysis we need to summarize the value at p» by a value
which is safe after any iteration.

F(x) =xMF(x)NFx)NFAX)NFAc)M. ..
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Loop Closures of Flow Functions

p1
| Paths Terminating at p, | Data Flow Value |
P1, P2 X
P1, P2, P3, P2 f(x)
P1, P2, P3, P2, P3, P2 f(f(X)) = f2(X)
P1, P2, P3, P2, P3, P2, P3. P2 | F(F(F(x))) = F3(x)

e For static analysis we need to summarize the value at p» by a value
which is safe after any iteration.

F(x) =xMF(x)NFx)NFAX)NFAc)M. ..

Uday Khedker

e f* is called the loop closure of f.
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Loop Closures in Bit Vector Frameworks

e Flow functions in bit vector frameworks have constant Gen and Kill

f(x) = xOfx)NFX)NFRX)M...

f2(x) = f(GenU (x —Kill))
= Gen U ((Gen U (x — Kill)) — Kill)
= Gen U ((Gen — Kill) U (x — Kill))
= Gen U (Gen — Kill) U (x — Kill)
= GenU(x—Kill) = f(x)

f*(x) = xNf(x)
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Loop Closures in Bit Vector Frameworks

e Flow functions in bit vector frameworks have constant Gen and Kill

f(x) = xOfx)NFX)NFRX)M...

f2(x) = f(GenU (x —Kill))
= Gen U ((Gen U (x — Kill)) — Kill)
= Gen U ((Gen — Kill) U (x — Kill))
= Gen U (Gen — Kill) U (x — Kill)
= GenU(x—Kill) = f(x)

f*(x) = xNf(x)

e Loop Closures of Bit Vector Frameworks are 2-bounded.

e Intuition: Since Gen and Kill are constant, same things are generated or
killed in every application of f.

Multiple applications of f are not required unless the input value changes.

e May 2011
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Larger Values of Loop Closure Bounds

e Fast Frameworks = 2-bounded frameworks (eg. bit vector
frameworks)
Both these conditions must be satisfied
» Separability
Data flow values of different entities are independent
» Constant or Identity Flow Functions
Flow functions for an entity are either constant or identity

e Non-fast frameworks
At least one of the above conditions is violated
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Separability

f:L—Lis (f;]_,/f;g, . ,ﬁm> where h; computes the value of X;
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Separability

f:L—Lis (f;]_,/f;g, . ,ﬁm> where h; computes the value of X;
Separable | Non-Separable
Example: All bit vector frameworks Example: Constant Propagation
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Separability
f:L—Lis (f;]_,/f;g, . ,ﬁm> where B,- computes the value of x;
| Separable | | Non-Separable |
(R, K2y ooy R (R, K2y ovey R
V V
f f
V V
<5/\17/y27"‘75/\m> <5/\175/\27"‘75/\m>

Example: All bit vector frameworks

Example: Constant Propagation
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Separability
f:Lw Lis (hy,ho,..., hy) where h; computes the value of X;

| Separable |
(X1, Ry oy R )
hs
( ,Vz/, )

Example: All bit vector frameworks

| Non-Separable |

<3(\1, /)22, ...,Xm>

— - <

<5/\17 /y\27 "‘75/\m>

Example: Constant Propagation
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MACS L111
Separability

f:L—Lis (f;]_,/f;g, . ,ﬁm> where E,- computes the value of x;

| Separable | | Non-Separable |
(X1, X2y «ovy Xm ) (?1,?2,u;..,?m)

hs f

( ?{ ) <}71,)72}L--~,)7m>

| hilol |

Example: All bit vector frameworks

Example: Constant Propagation
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MACS L111
Separability

f:L—Lis (f;]_,/f;g, . ,ﬁm> where E,- computes the value of x;
| Separable | | Non-Separable |

(X1, X2y «ovy Xm ) (X1, X2, «ovy Xm )

’f;z /ﬁz
( ?{ ) (' Y )
| hilol |

Example: All bit vector frameworks

Example: Constant Propagation
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MACS L111
Separability

f:L—Lis (f;]_,/f;g, . ,ﬁm> where E,- computes the value of x;
| Separable | | Non-Separable |

(X1, X2y «ovy Xm ) (X1, X2, «ovy Xm )

by /ﬂz

( )72/, ) (7 Yo )

| hilol | | holosl |

Example: All bit vector frameworks

Example: Constant Propagation
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Separability of Bit Vector Frameworks

e L is{0,1}, Lis {0,1}™
is either boolean AND or boolean OR

and 1L are 0 or 1 depending on 1.

—y I ™)

e his a bit function and could be one of the following:

Raise Lower Propagate Negate

May 2011
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Separability of Bit Vector Frameworks

e L is{0,1}, Lis {0,1}™
is either boolean AND or boolean OR

and 1L are 0 or 1 depending on 1.

—y I ™)

e his a bit function and could be one of the following:

Raise Lower Propagate Negate

Non-monotonicity /
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Boundedness of Constant Propagation
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Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

f((‘/a’ Vb, VC>) = < 1in (Vb + 1),
(VC +1)7
(va+1)
)
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Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

f((‘/a’vbv VC>) = < 1in (Vb + 1),

(VC + 1)7
(Va + 1)
)
FOT) = (T,T,T)
F(T) = (1, T,T)
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Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

f((‘/a’ Vb, VC>) = < 1in (Vb + 1),
(VC +1)7
(va+1)

~
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fO(T) =
f1(T) =
f2(T) =

~
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Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

f((‘/a’vbv VC>) = < 1in (Vb + 1),

(ve +1),
(Va+1)
)
FOT) = (T,T,T)
F(T) = (1, T,T)
F2(T) = (1, T, 2)
f3(T) = (1, 3, 2)
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Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

f(<Va’ Vb, Vc>)
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Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

f((va, Vb, ve)) =

(1M (vp +1),
(Vc + 1)7
(va+1)

~
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Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

f((‘/a’vbv VC>) = < 1in (Vb + 1),

(ve +1),

(Va+1)

)
FOT) = (T,T,T)
F(T) = (1, T,T)
F2(T) = (1, T, 2)
f3(T) = (1, 3, 2)
FA(T) = (1,3, 2)
F,5(T) = (1,3, 1)
F5(T) = (L,1,1)
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Boundedness of Constant Propagation
Summary flow function:
(data flow value at node 7)

f((Vay Vb, Ve))

< 1in (Vb + 1)’
(VC + 1)7
(va+1)
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Boundedness of Constant Propagation
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Boundedness of Constant Propagation

The moral of the story:

e The data flow value of every variable could change twice

J May 2011 Uday Khedkernggi
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Boundedness of Constant Propagation

The moral of the story:

e The data flow value of every variable could change twice

e In the worst case, only one change may happen in every step of a
function application

: May 2011 Uday Khedker
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Boundedness of Constant Propagation

The moral of the story:

e The data flow value of every variable could change twice

e In the worst case, only one change may happen in every step of a
function application

e Maximum number of steps: 2 x [Var]|
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Boundedness of Constant Propagation

The moral of the story:

The data flow value of every variable could change twice

In the worst case, only one change may happen in every step of a
function application

Maximum number of steps: 2 x |Var]|

Boundedness parameter k is (2 x |Var|) + 1
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Modelling Flow Functions for General Flows

e General flow functions can be written as
(X)) = (X =Kill,(X)) U Gen,(X)
where Gen and Kill have constant and dependent parts

Gen,(X) = ConstGen, U DepGenp(X)
Killo(X) ConstKill, U DepKill o(X)
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Modelling Flow Functions for General Flows

MACS L111

e General flow functions can be written as

f(X) = (X —Killo(X)) U Genn(X)

where Gen and Kill have constant and dependent parts

Gen,(X) = ConstGen, U DepGenp(X)
Kill.(X) = ConstKill, U DepKillo(X)

e The dependent parts take care of

» dependence across different entities as well as
» dependence on the value of the same entity in the argument X

Uday Khedker
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Modelling Flow Functions for General Flows

e General flow functions can be written as
(X)) = (X =Kill,(X)) U Gen,(X)
where Gen and Kill have constant and dependent parts

Gen,(X) = ConstGen, U DepGenp(X)
Kill.(X) = ConstKill, U DepKillo(X)

e The dependent parts take care of

» dependence across different entities as well as
» dependence on the value of the same entity in the argument X

e Bit vector frameworks are a special case

DepGen,(X) = DepKill ,(X) = ()
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Component Lattice for Integer Constant Propagation

_/Il
und(ef )or

I

nonconst or x
(L)
e Overall lattice L is the product of L for all variables.
e M and 1 get defined by C and E.

L0 [ [0 (v.cr) |
v, || (v,?) | (v, %) (v, c1)
A KA KA vox)

(v, ) [ {v, %)

(v, ) || (v, v, If a1 = ¢ then (v, 1) else (v, x)
i (gwﬁ
May 2011 =

Uday Khedker “==3




MACS L111 General Frameworks: Precise Modelling of General Flows 13/96

Flow Functions for Constant Propagation

e Flow function for r = a1 x a>

‘ mult H (al,?> ‘ (al, X> ‘ (al,q) ‘
<a27?> <r7?> <r7><> <r7?>
<32,><> (r,><> <r7><> (r,><>
(ag, ) || (r, )y | (r,x) | (r,(c1*c))

) May 2011 Uday Khedker




MACS L111 General Frameworks: Precise Modelling of General Flows 14/96
Defining Data Flow Equations for Constant Propagation

| ConstGen, | DepGen,(X) | ConstKill,|  DepKill,(X) |
v =_c,
c e Const| LWViC)} o 0 | {(v.d){v,d)eX}
v =e,
e € Expr 0 | {veval(eX)}| 0 | {(v.d)[{v.d)eX}
read(v) | {{v.x)} [ 0 [ {v.d)[{v.deX]
other 0 0 0 0

Uday Khedker
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Defining Data Flow Equations for Constant Propagation

| ConstGen, | DepGen,(X) | ConstKill,|  DepKill,(X) |
v =_c,
c e Const| LWViC)} o 0 | {(v.d){v,d)eX}
v =e,
e € Expr 0 | {veval(eX)}| 0 | {(v.d)[{v.d)eX}
read(v) | {{v.x)} [ 0 [ {v.d)[{v.deX]
other 0 0 0 0

eval(a; op az, X)
H <31,?> e X ‘ (al, ><> e X ‘ <31,C1> e X

(a2, ) e X ? X ?
(ag, x) € X X X X
(an, ) € X ? X c1Lop o

Uday Khedker
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Example Program for Constant Propagation

nio

=
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Result of Constant Propagation

heration #1 | (IS | atee s | ireration e
I, |T,7,7.7,7.7
Out, | T,7,7,7,L,T
In, |T,7,7,7,1,7
Out,, | 7,2,7,7,1,1
Inp, | 7,2,7,7,0,1 |1,27,31,1]1,2,6,3,1,1]1,1,6,3,1,1
Outp, | 22,7, 7,1,1 [2,2,7,3,1,12,26,3,1,1 [21,63,1,1
Ing, |227,7T,1,1[227T,3,1,1/22631,1]21,63,1,1
Out,, | 2,7,7,7,1,1 [2,7,7,3,1,1] 2,7,6,3, 1,1
Ing | 2,7,7,7,1,1|2,7,7,3,1,1]27,6,31,1
Outp, | 2,7,7,7,0,1 |2,7,7,3,1,1 | 2,7,6,3,1,1
Ing | 2,2,7,7T,1,1 [227,3,1,122631,1]21,63,1,1
Outy, | 2,2,7,7,1,1 [2,2,7,3,1,1]226,3,1,1 [2,1,631,1
In,, |227T,7,1.,1[227T,31,1]271,6311
Out, | 2,2,7,7,1,1 | 2,2,6,3,1,1 | 2,1,6,3,1,1
Ing | 2,27, 7,01 1227,3,1,1]226,31,1]21,631,1
Out,, | 2,2,T,4,1,1 | 2,2,T,41,1]2,2,6,4,1,1 [2,1,6,1,1,1
Ingg | 2,2,T,4,1,1 [2261,1,1[21,6,1,1,1
Out,, | 2,2,7,3,1,1 [ 2,2631,1[21,63,1,0
Inge | 2,2,7,7,0,111,2,7,3,1,11,1,6,3,1,1
Outp, | 1,2,7,7,1,1 [ 1,2,7,3, 4,1 1,1,6,3,1,1

May 2011 Uday Khedker
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Monotonicity of Constant Propagation

e Flow function f,(X) = (X — Kill,(X)) U Gen,(X) where

Gen,(X) = ConstG ,@DepGen,,(X)
Kill,(X) = Consg?éd DepKill o(X)

e ConstGen, and ConstKill, ﬁ&ally monotonic

e Toshow X1 C X, = enn(X1) C DepGen,(X2)
we need to show th C Xo = eval(e, X1) C eval(e, X2).
This follows from&inition of eval(e, X).

S
e To show Xfé(z = (X1 — DepKill,(X1)) C (Xo — DepKill ,(X2))
observe that DepKill,, removes the pair corresponding to the
variable modified in statement n. Data flow values of other
variables remain unaffected.

) May 2011 Uday Khedker
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Conditional Constant Propagation

ny| read (e); An execution trace of the program

when the value read for variable
a—T7 b—2f—e e is some number x < 0
if (f >0)

false
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Conditional Constant Propagation

ny | read (e); An execution trace of the program

when the value read for variable
a—T b=2f—e e is some number x < 0

2 if (f > 0)

false

]
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Conditional Constant Propagation

ny| read (e); An execution trace of the program
when the value read for variable
. a—7b=2f—e e is some number x < 0
if (f >0) \‘/
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Conditional Constant Propagation

ny| read (e); An execution trace of the program
when the value read for variable
. a—7b=2f—e e is some number x < 0
if (f >0) \‘/

2 x, x)

7?747X7X>
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Conditional Constant Propagation

ny| read (e); An execution trace of the program
when the value read for variable
. a—7b=2f—e e is some number x < 0
if (f >0) \‘/

X, x+1)
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Conditional Constant Propagation

ny| read (e); An execution trace of the program
when the value read for variable
. a—7b=2f—e e is some number x < 0
if (f >0) \‘/

X, x+1)

(2,2,6,3,x,x+1) N\ /
¢

I
=
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Conditional Constant Propagation

ny| read (e); An execution trace of the program
when the value read for variable
. a—7b=2f—e e is some number x < 0
if (f >0) \‘/

X, x+1)

(2,2,6,3,x,x+1) \4 /
¢

1 (2,2,6,3, %, x+2) (@}
e
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ny | read (e); An execution trace of the program

when the value read for variable
a—T b=2f—e e is some number x < 0

2 if (f > 0)
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Conditional Constant Propagation

ny | read (e); An execution trace of the program
when the value read for variable
a—T7 b—2f—e e is some number x < 0

X, x+1)

(2,2,6,3,x,x+1) N\ pd (2,2,7,4,x,x)
R
(2,2,6,3,%,x+2)
=
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Conditional Constant Propagation

ny | read (e); An execution trace of the program
when the value read for variable
a—T7 b—2f—e e is some number x < 0

regardless of
the input value
of e, b is constant in
the loop and constant
propagation cannot

(2,7,6,,3, discover it
(2,2,6,3,1,1) \ P (2,2,6,4,1,1)
i

(2,2,6,3,1, 1)
(o

: May 2011 Uday Khedker
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Lattice for Conditional Constant Propagation

notReachable
X 1T X f§\q>z e X T
reachable ({’\\o
>

e Let (s, X) denote a@nented data flow value where
s € {reachable, noEBe chable} and X € L.

e |f we can mai the invariant s = notReachable = X = T, then
the meet c$ defined as

(51, X1) M (52, X2) = (51Mc 52, X1 M X2)

Y May 2011 Uday Khedker Smy




MACS L111 General Frameworks: Precise Modelling of General Flows 20/96

Data Flow Equations for Conditional Constant Propagation

(reachable, BI) \eﬁ is Start

In, =
n l_]c @,; otherwise
pEpred( n)

Out. — (reachabl X( In, = (reachable, X)
no (notRe ble, T) otherW|se

%
(n@achable, T) evalCond(m, X) # undefined and
gm—n(s, X) = evalCond(m, X) # label(m — n)

otherwise

J May 2011 Uday Khedkerng;i
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Conditional Constant Propagation

. Changes in Changes in
‘ ‘ Iteration #1 ‘ iteration #2 ‘ iteration #3
Iy, |RA(T,T,T.7,7.7)
Out, | R (T,T,7,7.1,T)
Iy, | R(T.T.7.7.L0) <
Out,, | R, (7,2, T,T,L1,1) QN
Inp, | R.(7.2,7T,7.1,1) |R(1.2,T )| R.(1,2631,1)
Out,, | R, (2,2,T,7,1,1) | R,2,2, IV, 1) R,(2,2,6,3,1,1)
Inp, | R(22,T,T,1.1) [R(2A®3.1.1)| R (22631 1)
Outp, | R, (2, T, T,T,1,1) | Ryf®T.T,3,1,1)| R, (2763,1,1)
Ing RJﬁﬁﬁLD,? T340 [ NT=(,T,T,1T,T,T)
Outn, | R, (2,T,T,T, 1R, (2,T,7,3,1, 1) | N, T=(T,T,7,7,T,T)
Inpg | R,(2,2,7,T, R,(2,2,7,3,1,1) R,(2,2,6,3,1,1)
Outn, | R (22T AL 1) |R(22T.31,1)| R(22631.1)
Inm, | R.(2,2A408,1,1) | R,(2,2,7,3,1,1) | R.(226,3.1,1)
Outy,, | RO, T,1,1) | R, (2,2,6,3,1,1) R.(2,2,6,3,1,1)
I, | RQZT, T, | R(2,2,7,31,1) R,(2,2,6,3,1,1)
Outp, | R,(2,2,T,4,1,1) | R,(2,2,T,4,1,1) R,(2,2,6,4,1,1)
Inn, | R,(2,2,T,4,1,1) | R,(2,2,6,1,1,1) R,(2,2,6,1,1,1)
Out,, | R,(2,2,7,3,1,1) | R {2,2,6,3,1,1) R,(2,2,6,3,1,1)
Inny | R(L,2,T,T,1,1) | R,(1,2,T,3,1,1) R,(1,1,6,3,1,1)
Outy, | R,(1,2,7,7,1,1) | R,(1,2,7,3,1,1 R,(1,1,6,3,1,1)

=
May 2011 Uday Khedker
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Faint Variables Analysis

A variable is faint if it is dead or is used in computing faint variables.

=2 =]

2 | print (x) 2 | print (y)

J May 2011 Uday Khedkerng&gi
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Faint Variables Analysis

A variable is faint if it is dead or is used in computing faint variables.

=2 =]

2 |print (x) 2 |print (y)
{x,y}

Gen2 = @
Kill, = {x}

) May 2011 Uday Khedker
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22/96

Faint Variables Analysis

A variable is faint if it is dead or is used in computing faint variables.

=2

{r}

2 | print (x)
{xy}

Genp, =0 Gen; = {y}
Ki||2 = {X} Ki||1 = @

J May 2011

Uday Khedker
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22/96

Faint Variables Analysis

A variable is faint if it is dead or is used in computing faint variables.

{r}

=2

{r}

2 | print (x)
{xy}

Genp, =0 Gen; = {y}
Ki||2 = {X} Ki||1 = @

J May 2011

Uday Khedker
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General Frameworks: Faint Variables Analysis

Faint Variables Analysis

MACS L111

A variable is faint if it is dead or is used in computing faint variables.

{v}
o] ]
{v}

2 |print (x) 2 |print (y)
{x,y}

Genp, =0 Gen; = {y}
Ki||2 = {X} Ki||1 = @

Faintness of x is killed
by the print statement

(i.e. x becomes live)

Uday Khedker
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General Frameworks: Faint Variables Analysis

Faint Variables Analysis

MACS L111

A variable is faint if it is dead or is used in computing faint variables.

{r}

=2 =]

{v}
2 |print (x) 2 |print (y)
{x.y} {x.y}
Geny = () Gen; = {y} Geny =0
Kill, = {x}  Kill; =0 Killa = {y}

Faintness of x is killed
by the print statement

(i.e. x becomes live)

Uday Khedker
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General Frameworks: Faint Variables Analysis

Faint Variables Analysis

MACS L111

A variable is faint if it is dead or is used in computing faint variables.

{v}
y=x] ty=x]
{v} {x}
2 |print (x) 2 |print (y)
{x.y} {x.y}
Geny, = ) Gen; = {y} Geny, = () Geny = {y}
Kill, = {x}  Kill; =0 Kill, = {y} Killy = {x}

Faintness of x is killed
by the print statement

(i.e. x becomes live)

Uday Khedker
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MACS L111
Faint Variables Analysis

A variable is faint if it is dead or is used in computing faint variables.

{v} {v}
y=x] ty=x]
{v} {x}
2 |print (x) 2 |print (y)
{x.y} {x.y}
Geny, = ) Gen; = {y} Geny, = () Geny = {y}
Kill, = {x}  Kill; =0 Kill, = {y} Killy = {x}

Faintness of x is killed
by the assignment to y
(i.e. x becomes live)

Faintness of x is killed
by the print statement
(i.e. x becomes live)

Uday Khedker
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Faint Variables Analysis

L =2

2 |print (y); print (x);

J May 2011 Uday Khedkernh}
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Faint Variables Analysis

L =2

2 |print (y); print (x);
{x.v}

Geny, =0
Kill, = {x, y}

) May 2011 Uday Khedker
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Faint Variables Analysis

L =2

0
2 |print (y); print (x);
{x.v}

Geny = () Gen; = {y}
Kilb = {x,y}  Kill; = {x}

) May 2011 Uday Khedker
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Faint Variables Analysis

{r}

L [r=x]

0
2 |print (y); print (x);
{x.v}

Geny = () Gen; = {y}
Kilb = {x,y}  Kill; = {x}

Faintness of x is killed both by the
print statement and by the assignment
to y (i.e. x becomes live)

Uday Khedker
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Data Flow Equations for Faint Variables Analysis

In, = f,(Outy)
Bl nis End
Out, = ﬂ Ins  otherwise

sesucc(n)

where,

fn(X) = (X — (ConstKill, U DepKill ,( X)))
U (ConstGen, U DepGen,(X))

and Bl contains all local variables

) May 2011 Uday Khedker
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Flow Function Components for Faint Variables Analysis

Statement
read(x) use(x)
x =e, e € Expr (assigning value (not in
from input) | assignment)
x & Opd(e) = {x
ConstGen, N i OZdEe; - é) } {x} 0
ConstKill , 0 0 {x}
DepGen,(X) 0 0 0
DepKilly(X) | * i § - @O”d(e) nVar 0 0

Note: For statement x = e, f,(X) is an identity function if x € Opd(e)

Uday Khedker n
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Faint Variable Analysis

e What is L for faint variables analysis?
e Is faint variables analysis a bit vector framework?

e |s faint variables analysis distributive? Monotonic?

J May 2011

Uday Khedker
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Distributivity of Faint Variables Analysis

Prove that \Q

VX1, Xo € L, fo(Xa mg§fn(x1) (%)
R
&
7/
&

Wy
2
&=

May 2011 Uday Khedker ==y’
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Distributivity of Faint Variables Analysis

Prove that
&

VX1, Xo € L, fo(X1 mg§fn(xl) N f2(X2)
L J
N

e ConstGen,, DepGen,, and stKill,, are trivially distributive.
Assume that DepKill q_

fa(X) = ()S onstKill ,) U ConstGen,, U DepGen,(X)

Since Dep ) = 0, the flow function has only constant parts!

J May 2011 Uday Khedkerng;i
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Distributivity of Faint Variables Analysis
To show that

(X1 N X2) — DepKill ,( X1 N X2)
= (X1 — DepKill,(X1)) N (X2 — De %Q)

Uday Khedker “==3
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Distributivity of Faint Variables Analysis
To show that

(X1 N X2) — DepKill, (X1 N X2
= (X1 — DepKill,(X1)) N (X2 — De %( )
e If nis an assignment statement@ e, and x € X1 N Xp. Assume
that x is neither in Xj nor in
(XlﬁX2)— i//n(XlﬁXQ)
(X1 N (Opd(e) N Var)
bQOpd )N Var)) N (X2 — (Opd(e) NVar))
@ DepKillo(X1)) N (X2 — DepKillo(X2))

What if x is in Xq but not in X57?

J May 2011 Uday Khedkern
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Distributivity of Faint Variables Analysis
To show that
(X1 N X2) — DepKill, (X1 N X2
= (X1 — DepKill,(X1)) N (X2 — De %( )
e If nis an assignment statement@ e, and x € X1 N Xp. Assume
that x is neither in Xj nor in
(XlﬁX2)— i//n(XlﬁXQ)
(X1 N (Opd(e) N Var)
bQOpd )N Var)) N (X2 — (Opd(e) NVar))
@ DepKillo(X1)) N (X2 — DepKillo(X2))

What if x is in Xq but not in X57?
e In all other cases, DepKill ,(X) = 0.

J May 2011 Uday Khedkern
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Example Program for Faint Variables Analysis

ng | print a;
Uday Khedker
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Result of Faint Variables Analysis

Node Iteration #1 toratee il | o s | e

Out, | In, Out, | In, | Out,| In, Out, | In,

ng | {a,b,c,d} | {b,c, d}

ng |{a,b,c,d} | {a,b,c,d} | {b,c} | {b,c} | {c} {c} ) 0

n; | {a,b,c,d} | {a,b,c,d} | {b,c} | {b,c} | {c} {c} 0

ng | {a,b,c,d}|{a b,c,d}|{b,c}| {bc} | {c} ) 0

ns | {a,b,c,d} | {a,b,c} |{b,c}| {b,c} ) 0

ng |{a b,c,d}|{ab,c,d} | {b,c}| {ac} | {c} 0 0

n3 {a, b, c} {a,b,c} {c} {c} ) 0

no {b,c} {b,c} {c} {c} ) ) 0

m {b, c} {b,c,d} {c} | {c,d} ] {d}

P May 2011 Uday Khedker

He




Part 5

Pointer Analyses



MACS L111 General Frameworks: Pointer Analyses 31/96

Code Optimization In Presence of Pointers

1. g=p
2. while (...) {
3. q = grnext; [afeszzzizzzismenc .
5. p—data = rl; N k! \
p Y Y Y
6. print (q—data); E O next O next O L
7. p—data = r2;
8. r4 = p—data + r3;
Program Memory graph at statement 5

e |s p~—data live at the exit of line 5?7 Can we delete line 57

) May 2011 Uday Khedker
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Code Optimization In Presence of Pointers

L q=p;

2. do{

3. gq = q—next; IEI-====:::::: ---------- R

4. while (...) T

> p>.—>data =L p — next r"\ next ‘;'

6. print (q—data); [P] O O O

7. p—data = r2;

8. r4 = p—data + r3;

Program

Memory graph at statement 5

e |s p~—data live at the exit of line 5?7 Can we delete line 57

J May 2011
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Code Optimization In Presence of Pointers

L q=p;

2. do{

3. gq = q—next; IEI-====:::::: ---------- R

4. while (...) T

> p>.—>data =L p — next r"\ next ‘;'

6. print (q—data); [P] O O O

7. p—data = r2;

8. r4 = p—data + r3;

Program

Memory graph at statement 5

e |s p~—data live at the exit of line 5?7 Can we delete line 57

e No, if p and g can be possibly aliased.

J May 2011
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Code Optimization In Presence of Pointers

L q=p;

2. do{

3. gq = q—next; IEI-====:::::: ---------- R

4. while (...) T

> p>.—>data =L p — next r"\ next ‘;'

6. print (q—data); [P] O O O

7. p—data = r2;

8. r4 = p—data + r3;

Program

Memory graph at statement 5

e |s p~—data live at the exit of line 5?7 Can we delete line 57

e No, if p and g can be possibly aliased.

e Yes, if p and q are definitely not aliased.

J May 2011
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Code Optimization In Presence of Pointers

a=>5
=)
b = xx

Original Program

J May 2011 Uday Khedkernggﬁ
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Code Optimization In Presence of Pointers

a=>5 a=>5
=] EEYR
b = xx b = xx

Original Program  Constant Propagation
without aliasing
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Code Optimization In Presence of Pointers

a=>5 a=>5
=] EEYR
b = xx b = xx

Original Program Constant Propagation
without aliasing

a=>5
b=5

Constant Propagation
with aliasing

J May 2011
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The World of Pointer Analysis

Alias Analysis Pointer Analysis

Alias analysis Points-to
of reference
parameters,

analysis of
data and

fields of unions function
array indices pointers

Alias analysis of
data pointers

J May 2011 Uday Khedkerng&gﬁ
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The Mathematics of Pointer Analysis

In the most general situation

e Alias analysis is undecidable.
Landi-Ryder [POPL 1991], Landi [LOPLAS 1992],
Ramalingam [TOPLAS 1994]

e Flow insensitive alias analysis is NP-hard
Horwitz [TOPLAS 1997]

e Points-to analysis is undecidable
Chakravarty [POPL 2003]

e May 2011
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Motivation for a Good Science of Pointer Analysis

e To quote Hind [PASTE 2001]
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Motivation for a Good Science of Pointer Analysis

e To quote Hind [PASTE 2001]

» Fortunately many approximations exist
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Motivation for a Good Science of Pointer Analysis

e To quote Hind [PASTE 2001]

» Fortunately many approximations exist

» Unfortunately too many approximations exist!

J May 2011 Uday Khedkerngg}
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Motivation for a Good Science of Pointer Analysis

e To quote Hind [PASTE 2001]

» Fortunately many approximations exist

» Unfortunately too many approximations exist!

e Pointer analysis enables not only precise data analysis but also
precise control flow analysis.

J May 2011 Uday Khedkernh}
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Motivation for a Good Science of Pointer Analysis

e To quote Hind [PASTE 2001]

» Fortunately many approximations exist

» Unfortunately too many approximations exist!

e Pointer analysis enables not only precise data analysis but also
precise control flow analysis.

e Needs to scale to large programs.
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Motivation for a Good Science of Pointer Analysis

e To quote Hind [PASTE 2001]

» Fortunately many approximations exist

» Unfortunately too many approximations exist!

e Pointer analysis enables not only precise data analysis but also
precise control flow analysis.

e Needs to scale to large programs.

e Engineering of pointer analysis is much more dominant than the
science of pointer analysis.

= Results in many questionable perceptions.

J May 2011 Uday Khedkerng&gi
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Alias Information Vs. Points-To Information

J May 2011 Uday Khedkerng}
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Alias Information Vs. Points-To Information

a . "
D “x Points-To a

X

denoted x—a

May 2011 Uday Khedker
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Alias Information Vs. Points-To Information

a , "
D “x Points-To a

% denoted x—a
b 1|x =&a

denoted x = b

i ? 2 IEI “x and b are Aliases”
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Alias Information Vs. Points-To Information

a , "
D “x Points-To a

% denoted x—a
b 1|x =&a

and
Reflexive

f( ? ? :Ib — X1 “x and b are Aliases" Symmetric

denoted x = b
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Alias Information Vs. Points-To Information

)a( D “x Points-To a" SNe|ther.
o
denoted xr—a ymmetr|.c
b 1|x=4&a Nor Reflexive

and
Reflexive

denoted x = b

f( ? ? :Ib — X1 “x and b are Aliases" Symmetric
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Alias Information Vs. Points-To Information

)a( D “x Points-To a" SNe|ther.
o
denoted xr—a ymmetr|.c
b 1|x =&a Nor Reflexive

and
Reflexive

f( ? ? :Ib — X1 “x and b are Aliases" Symmetric

denoted x = b

b | o

e What about transitivity?
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Alias Information Vs. Points-To Information

)a( D “x Points-To a" SNe|ther.
o
denoted xr—a ymmetr|.c
b 1|x =&a Nor Reflexive

and
Reflexive

f( ? ? :Ib — X1 “x and b are Aliases" Symmetric

denoted x = b

b | o

e What about transitivity?
» Points-To: No.
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Alias Information Vs. Points-To Information

)a( D “x Points-To a" SNe|ther.
o
denoted xr—a ymmetn.c
b 1|x =&a Nor Reflexive

and
Reflexive

f( ? ? :Ib — X1 “x and b are Aliases" Symmetric

denoted x = b

b |«

e What about transitivity?

» Points-To: No.
> Alias: Depends.

J May 2011 Uday Khedkern
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Must Points-To Information
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Must Points-To Information
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May Points-To Information
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May Points-To Information
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Must Alias Information

—
X
I
Ro
©
<o X

J May 2011 Uday Khedkerng&gi



MACS L111 General Frameworks: Pointer Analyses 39/96
Must Alias Information

—
X
I
Ro
©
<o X
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Must Alias Information

< T X
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Must Alias Information

—
X
I
Ro
©
<o X

< T X

x=bandb=y=x=y
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May Alias Information

=)
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May Alias Information

N< O XD

N< T X ©
k4
N\
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May Alias Information

N< O XD

1|x=4&a

N< T X ©
k4
N\

N< T X
il
NS
w
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May Alias Information

N< O XD

1|x=4&a

N< O X oL

N< T X w
tlyle
&/
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May Alias Information

N< O XD

1|x=4&a

N< O X oL

N< T X w
tlyle
&/
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May Alias Information

N< O XD

1|x=4&a

N< O X oL

N< T X w
tlyle
&/

x=bandb=y#Ax=y
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A Comparison of Points-To and Alias Relations

| Asgn. | Memory | Points-to | Aliases
N Existing X
Before Existi ‘ X— U A
xistin X =
*X =y 8| y—z New Direct *;éz
N New ‘ Uz O
After . *U=z
New Indirect o
k Xk X=2Z
*X =V
Existing ¥y =2z
N *Z=U
Before X—v xky=u
B Existing | yr—z *X =k
XX = *y 7l ) =7
N New Direct >
After New  [v—u vz
7 v=sxy
New Indirect | **XT Y
XV =U

p May 2011 Uday KhedkerQ
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=

42/96

y = &b

2 w = &c
szodn] 4[z=%/]

*z = null

S *w = nul

May 2011
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Strong and Weak Updates

1
y=&b

2|w= &c

3 :
xz = null
5lsw = null

Weak update: Modification of x or y due to *z in block 5

May 2011
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42/96
Strong and Weak Updates

1
y=&b

2|w= &c

3 :
xz = null
5lsw = null

Weak update: Modification of x or y due to *z in block 5

Strong update: Modification of ¢ due to *w in block 5

May 2011

Uday Khedker j



MACS L111

General Frameworks: Pointer Analyses

42/96
Strong and Weak Updates

1
y=&b

2|w= &c

3 :
xz = null
5lsw = null

Weak update: Modification of x or y due to *z in block 5

Strong update: Modification of ¢ due to *w in block 5

How is this concept related to May/Must nature of information?

May 2011 Uday Khedker
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What About Heap Data?

Compile time entities, abstract entities, or summarized entities

Three options:
» Represent all heap locations by a single abstract heap location
» Represent all heap locations of a particular type by a single abstract
heap location
» Represent all heap locations allocated at a given memory allocation
site by a single abstract heap location

Summarization: Usually based on the length of pointer expression

No clean and elegant solution exists

: May 2011 Uday Khedker
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Left and Right Locations in Pointer Assignments

For an assignment statement /hs, = rhs,

e Left Locations

Left Locations
Ihs, | ConstleftL, | DepLeftln(X)

X {x} 0
X 0 {y | (x—y) € X}

e Right Locations

Right Locations
rhs, | ConstRightL, |  DepRightL,(X)
x 0 {y [ (x—y) € X}
*X 0 {z [ {x—y,y—z} C X}
& x {x} 0

P May 2011 Uday Khedker
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Gen and Kill Components

ConstGen, = {x—vy |x € ConstleftL,,y € ConstRightL,}
DepGenp(X) = {x—y | (x € ConstLeftL,,y € DepRightL,(X)), or
(x € DeplLeftL,(X),y € ConstRightL,), or
(x € DepLeftLn(X),y € DepRightL,(X))}
ConstKill, = {x—y | x € ConstLeftL,}
DepKillo(X) = {x—vy | x € DeplLeftL,(X)}

) May 2011 Uday Khedker
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DepKill(X) in May and Must Points-To Analysis

e May Points-To analysis

» A points-to pair should be removed only if it must be removed along
all paths

» DepKill(X) should remove only strong updates
» X should be Must Points-To information
e Must Points-To analysis

» A points-to pair should be removed if it can be removed along some
path

» DepKill(X) should remove all weak updates
» X should be May Points-To information
e Must Points-To C May Points-To

= May 2011
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DepKill(X) in May and Must Points-To Analysis

e

2|c:&a| 3|c:&d|

) May 2011 Uday Khedker
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DepKill(X) in May and Must Points-To Analysis

lla=4&b

2|c:&a| 3|c:&d|

Mustlng = {a—b}
DepLeftLy(Musting) = ()

) May 2011 Uday Khedker
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DepKill(X) in May and Must Points-To Analysis

lla=4&b

2|c:&a| 3|c:&d|

Mustlng = {a—b}
DepLeftLy(Musting) = ()

Mayln, = {a—b, c—a, c—d}
DepLeftLs(Maylng) = {a,d}
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DepKill(X) in May and Must Points-To Analysis

lla=4&b

2|c:&a| 3|c:&d|

Mustlng = {a—b}
DepLeftLy(Musting) = ()

Mayln, = {a—b, c—a, c—d}
DepLeftLs(Maylng) = {a,d}

I

e a—b at block 5 along path 1, 3,4,5 but not along path 1,2,4,5.
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DepKill(X) in May and Must Points-To Analysis

lla=4&b

2|c:&a| 3|c:&d|

Mustlng = {a—b}
DepLeftLy(Musting) = ()

Mayln, = {a—b, c—a, c—d}
DepLeftLs(Maylng) = {a,d}

I

e a—b at block 5 along path 1, 3,4,5 but not along path 1,2,4,5.
e a—b € Maylns but a—b ¢ Mustlins
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DepKill(X) in May and Must Points-To Analysis

lla=4&b

2|c:&a| 3|c:&d|

Mustlng = {a—b}
DepLeftLy(Musting) = ()

Mayln, = {a—b, c—a, c—d}
DepLeftLs(Maylng) = {a,d}

I

e a—b at block 5 along path 1, 3,4,5 but not along path 1,2,4,5.
e a—b € Maylns but a—b ¢ Mustlins

e If DepKill,, for MayQOut, is defined in terms of Mayln, then
a—b & MayOut, because a is in DeplLeftLs(Mayiny)
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DepKill(X) in May and Must Points-To Analysis

lla=4&b

2|c:&a| 3|c:&d|

Mustlng = {a—b}
DepLeftLy(Musting) = ()

Mayln, = {a—b, c—a, c—d}
DepLeftLs(Maylng) = {a,d}

I

e a—b at block 5 along path 1, 3,4,5 but not along path 1,2,4,5.
e a—b € Maylns but a—b ¢ Mustlins

e If DepKill,, for MayQOut, is defined in terms of Mayln, then
a—b & MayOut, because a is in DeplLeftLs(Mayiny)

o If DepKilly for MustOuty is defined in terms of Musting then
a—b € MustOut, because a is not in DepLeftls(Musting)

P May 2011 Uday Khedker
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Data Flow Equations for Points-To Analysis

Bl n is Start
Mayin, = U MayOut,  otherwise
pEpred(n)
MayOut, = fy(Mayln,, Mustin,)
Bl n is Start
Mustln, = m MustOut, otherwise
pEpred(n)
MustOut, = f,(Mustln,, Mayin,)

fn(Xl,Xg) = (Xl—KiII,,(Xg))UGen,,(Xl)

) May 2011 Uday Khedker
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Approximating May and Must Alias and Points-To
Information

e May Alias: Every pointer variable is aliased to every pointer variable.

e Must Alias: Every pointer variable is alised only to itself.

J May 2011 Uday Khedkernh}
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Approximating May and Must Alias and Points-To
Information

e May Alias: Every pointer variable is aliased to every pointer variable.
e Must Alias: Every pointer variable is alised only to itself.

e May Points-To: Every pointer variable points to every location.
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Approximating May and Must Alias and Points-To
Information

May Alias: Every pointer variable is aliased to every pointer variable.

Must Alias: Every pointer variable is alised only to itself.

May Points-To: Every pointer variable points to every location.

Must Points-To: No pointer variable points to any location.
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Approximating May and Must Alias and Points-To
Information

May Alias: Every pointer variable is aliased to every pointer variable.

Must Alias: Every pointer variable is alised only to itself.

May Points-To: Every pointer variable points to every location.

Must Points-To: No pointer variable points to any location.

Both May and Must analyses need not be performed.
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Approximating May and Must Alias and Points-To
Information

May Alias: Every pointer variable is aliased to every pointer variable.

Must Alias: Every pointer variable is alised only to itself.

May Points-To: Every pointer variable points to every location.

Must Points-To: No pointer variable points to any location.

Both May and Must analyses need not be performed.

In every case, the approximation uses the 1 element of the lattice.

J May 2011 Uday Khedkerng&gi
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Example Program for Points-To Analysis

e Variables and points-to sets:
Var = {a,b,c,d}
U = { a—a, a—b, a—c, a—d,
b—a, b—b, b—d, b—d,
c—a, c—b, c—c, c—d,
d—a, d—b, d—c, d—d }

J May 2011 Uday Khedkerng&gﬁ
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Example Program for Points-To Analysis

e Variables and points-to sets:
Var = {a,b,c,d}
U = { a—a, a—b, a—c, a—d,
b—a, b—b, b—d, b—d,
c—a, c—b, c—c, c—d,
d—a, d—b, d—c, d—d }

° Lmay = <2U7 2>7 Tmay = (Z)a —]—may =U

= May 2011
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Example Program for Points-To Analysis

e Variables and points-to sets:
Var = {a,b,c,d}
U = { a—a, a—b, a—c, a—d,
b—a, b—b, b—d, b—d,
c—a, c—b, c—c, c—d,
d—a, d—b, d—c, d—d }

° Lmay = <2U7 2>7 Tmay = (Z)a J—may =U

® Lynust =LaxLpxLceXLy
The component lattice L, is:
{a—a,a—b, a—c, a—d}

{a—a} {a—b} {a—c} {a—d}

\ 4
~

0
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Result of Pointer Analysis
. Changes in Changes in
Iteration #1 Iteration #2 [teration #3
Mayln, 0
Mustin,, 0
MayOut,, | {b—d}
MustOutp, | {b—d}
{a—b,a—d, b—b, | {a—b,a—d, b—b,

Maying, | {b—d} bd, cd) b—d, c—b, crd}
Mustin,, {b—d} 0

a—b,a—d, b—b,
MayOuty, | {b—d, c—d} {b>—>d, c:b, c:d}
MustOutp, | {b—d, c—d}

a—b,a—d, b—b,
Maylnn, {bHd’ CHd} {b>—>d, c—b, C>—>d}
Mustin,, | {b—d,c—d} 0

{a—b, b—d, | {a—b, b—b, b—d,
/\/layOutn3 C>—>d} C>—>b, C>—>d}
a—b, b—d,

MustOutp, {c:d} ~ {a—b}

Uday Khedker
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Result of Pointer Analysis
. Changes in Changes in
I 1 . .
teration 7 Iteration #2 Iteration #3
a—b, b—b, b—d,
Maying, | {a—b,b—d,c—a} | (220070,
Mustlin,, {a—b, b—d, c—d} | {a—b}
a—b, b—b, c—b,
MayOut,, | {a—b, b—b,c—d} {c:d} ~
MustOut,, | {a—b, b—b,c—d} | {a—b, b—b}
{a—b, a—d, b—b,
Maylnp, | {b—d, c—d} bd, cb, c—d}
Mustin,, | {b—d,c—d} 0
a—c, b—b, b—d,
MayOutp, | {a—c, b—d, c—d} {c:b, C:d} -
MustOut,, | {a—c, b—d,c—d} | {a—c}

Uday Khedker
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Result of Pointer Analysis
. Changes in Changes in
Iteration 71 Iteration #2 Iteration #3
Mavin {a—b, a—c,b—b, | {a—b,a—c, b—b,
Vil b—d, c—d} b—d,co—b, c—d}
Mustinp, {c—d} 0
{a—b,a—d, b—b, | {a—b,a—d, b—b,
MayOutns | “p_ g crmd) bod, b, c—d}
MustOutp, | {c—d} 0
Mavin {a—b, a—d, b—b, | {a—b,a—d, b—b,
Yifny b—d, c—d} b—d, c—b, c—d}
Mustinp, {c—d} 0
{@—b, a—d, b—b,
MayOutp, {Z:Z,’ a:‘(jj Z:Sj’} b—d, c—b, c—d,
o—a d—b,d—d}
MustOutp, | {c—d} 0

Uday Khedker
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Non-Distributivity of Points-To Analysis

May Points-To Must Points-To

N

b=&c b=&e
mic=8&d| ™|e==&d

n2
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Non-Distributivity of Points-To Analysis

May Points-To Must Points-To

N

b=&c b=&e
mic=8&d| ™|e==&d

n2

z—w IS spurious
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Non-Distributivity of Points-To Analysis

May Points-To Must Points-To

N

b=&c b=&e
mic=8&d| ™|e==&d

n2

z—w IS spurious a—d is missing

May 2011 Uday Khedker
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Motivating Example for Heap Liveness Analysis

If the while loop is not executed even once.

w = X // x points to m,
while (x.data < max)

X = X.rptr
y = x.Iptr

AN

-

z = New class_of_z
y = y.lptr
z.sum = x.data + y.data

~No G

1

E \ ot /r

=~

Iptr —

I~

(Y=t
O~

y Iptr —

—7
~

oW
y©§‘©i

o

\ - >
{Ot, P I~

Stack
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Motivating Example for Heap Liveness Analysis

If the while loop is executed once.

w = X // x points to m,
while (x.data < max)
X = X.rptr

y = x.Iptr

-€
z = New class_of_z
y = y.lptr
z.sum = x.data + y.data

AN

~No G

Stack Heap

J May 2011 Uday Khedkernh}
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Motivating Example for Heap Liveness Analysis

If the while loop is executed twice.

w = X // x points to m,
while (x.data < max)
X = X.rptr

y = x.Iptr

-€
z = New class_of_z
y = y.lptr
z.sum = x.data + y.data

AN

~No G

Stack Heap

J May 2011 Uday Khedkernh}
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The Moral of the Story

e Mappings between access expressions and |-values keep changing

e This is a rule for heap data
For stack and static data, it is an exception!

e Static analysis of programs has made significant progress for stack
and static data.

What about heap data?

» Given two access expressions at a program point, do they have the
same l-value?

» Given the same access expression at two program points, does it have
the same |-value?

J May 2011 Uday Khedkerng&gﬁ
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Our Solution

y =z = null

1 w=x
w = null

2 while (x.data < max)

{ x.Iptr = null

3 X = X.rptr }
x.rptr = x.Iptr.rptr = null
x.Iptr.Iptr.Iptr = null
x.Iptr.Iptr.rptr = null

4 y =xlptr

x.Iptr = y.rptr = null
y.Iptr.lptr = y.Iptr.rptr = null
5 z = New class_of_z
z.Iptr = z.rptr = null
6 y=y.lptr
y.Iptr = y.rptr = null
7 z.sum = x.data + y.data
x =y =2z = null

Uday Khedker
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Our Solution
. y = 2=l While loop is not executed even once
w = X
w = null

2 while (x.data < max)
{ x.Iptr = null

3 X = X.rptr }
x.rptr = x.Iptr.rptr = null
x.Iptr.Iptr.Iptr = null
x.Iptr.Iptr.rptr = null

4 y = xlptr
x.Iptr = y.rptr = null
y.Iptr.Iptr = y.Iptr.rptr = null

5 z = New class_of_z
z.lptr = z.rptr = null

6 y=y.lptr
y.Iptr = y.rptr = null

7 z.sum = x.data + y.data
x =y =2z =null

—
\
o
(b) _
-
s
Iptr —
~

X
B () <

Stack
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Our Solution
. y = 2=l While loop is not executed even once
W =X
w=nl

2 while (x.data < max)
{ x.Iptr = null

3 X = X.rptr }
x.rptr = x.Iptr.rptr = null
x.Iptr.Iptr.Iptr = null
x.Iptr.Iptr.rptr = null

4 y = xlptr
x.Iptr = y.rptr = null
y.Iptr.Iptr = y.Iptr.rptr = null

5 z = New class_of_z
z.lptr = z.rptr = null

6 y=y.lptr
y.Iptr = y.rptr = null

7 z.sum = x.data + y.data
x =y =2z =null

—
oy \

O
(b) —
%(D{\
Iptr —
~

X
y Iptr ®<

Stack
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58/96

y =z = null
1 w=x
w = null

2 while (x.data < max)
{ x.Iptr = null
3 X = X.rptr }
xrptr = xlptr.rptr = null
x.Iptr.Iptr.Iptr = null
x.Iptr.Iptr.rptr = null
4 y = xlptr
x.Iptr = y.rptr = null
y.Iptr.Iptr = y.Iptr.rptr = null
5 z = New class_of_z
z.lptr = z.rptr = null
6 y=y.lptr
y.Iptr = y.rptr = null
7 z.sum = x.data + y.data
x =y =2z =null

Our Solution

While loop is not executed even once

_>
ot \
o
/ Iptr @::
>
: v (®)
& %@{.\
Iptr —
o ~

7 ’Ptr <D<

%*@

e (]

Stack

Heap
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Our Solution

. =z = el While loop is not executed even once
w = X
w = null
2 while (x.data < ma
while (x x) - ::
{ x.Iptr = null e
'3
3 X = x.rptr } @ y Iptr @::
x.rptr = x.Iptr.rptr = null ﬂ

x.Iptr.Iptr.rptr = null ®§ —
4 y = xlptr ! =
x.Iptr = y.rptr = null
y.Iptr.Iptr = y.Iptr.rptr = null
5 z = New class_of-z
z.lptr = z.rptr = null
6 y=y.lptr
ylptr =yrptr=nall | || G

R
x.data + y.data ot @::

S PSSl Stack Heap

May 2011 Uday KhedkerQ
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Our Solution

. =z = el While loop is not executed even once
w = X
w = null
2 while (x.data < ma
while (x x) - ::
{ x.Iptr = null e
'3
3 X = x.rptr } @ y Iptr @::
x.rptr = x.Iptr.rptr = null ﬂ

x.Iptr.Iptr.lptr = null o %CD{’::
Intr —
4 y = xlptr \ =
x.Iptr = y.rptr = null
y.Iptr.Iptr = y.Iptr.rptr = null
5 z = New class_of_z
z.lptr = z.rptr = null

6 y=ylptr ..,'.?.t.'...-r®::
ylptr =yrptr=null | || @,
Ipgr ">
7 z.sum = x.data + y.data ot @::
x =y =2z =null Stack Heap
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Our Solution

. =z = el While loop is not executed even once
w = X
w = null
2 while (x.data < ma
while (x x) - ::
{ x.Iptr = null e
'3
3 X = x.rptr } @ y Iptr @::
x.rptr = x.Iptr.rptr = null ﬂ

—7

x.Iptr.Iptr.Iptr = null o % U \
S

x.Iptr.Iptr.rptr = null _ o = .,

.-' r I~

4 y = xlptr \o
wlpte =yt <l @
-1 ot
y.Iptr.Iptr = y.Iptr.rptr = null m . ®<<ID<
X
5 z = New class_of.z N A ot <D<

z.lptr = z.rptr = null y ___/"h'.
6 y=ylptr B @ T~ i ()~
y.Iptr = y.rptr = null @ .......

R
7 z.sum = x.data + y.data ot @::

x =y =2z =null Stack Heap

May 2011 Uday KhedkerQ
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Our Solution
. y = 2=l While loop is not executed even once
w = X
w = null

2 while (x.data < max)
{ x.Iptr = null

3 X = X.rptr }
x.rptr = x.Iptr.rptr = null
x.Iptr.Iptr.Iptr = null
x.Iptr.Iptr.rptr = null

4 y = xlptr
x.Iptr = y.rptr = null
y.Iptr.Iptr = y.Iptr.rptr = null

5 z = New class_of_z
z.lptr = z.rptr = null

6 y=y.lptr
y.Iptr = y.rptr = null

7 z.sum = x.data + y.data
x =y =2z =null

0

—
oy \
O
:/ O~
—
%(D{\
Iptr —
~

Iptr

o<
<
o<

Stack

Uday KhedkerQ
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Our Solution
y = =l While loop is executed once
1 w=x
w = null

2 while (x.data < max)
{ x.Iptr = null

3 X = X.rptr }
x.rptr = x.Iptr.rptr = null
x.Iptr.Iptr.Iptr = null
x.Iptr.Iptr.rptr = null

4 y = xlptr
x.Iptr = y.rptr = null
y.Iptr.Iptr = y.Iptr.rptr = null

5 z = New class_of_z
z.lptr = z.rptr = null

6 y=y.lptr
y.Iptr = y.rptr = null

7 z.sum = x.data + y.data
x =y =2z =null

©)

—
\
@I

~

X
y Iptr <D<

@
®<@<

Iptr

Iptr

Stack

Heap

May 2011
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Our Solution

. =z = el While loop is executed twice
w = X
w = null

2 while (x.data < max)
{ x.Iptr = null

3 X = X.rptr }
x.rptr = x.Iptr.rptr = null
x.Iptr.Iptr.Iptr = null
x.Iptr.Iptr.rptr = null

4 y = xlptr
x.Iptr = y.rptr = null
y.Iptr.Iptr = y.Iptr.rptr = null

5 z = New class_of_z
z.lptr = z.rptr = null

6 y=y.lptr
y.Iptr = y.rptr = null

7 z.sum = x.data + y.data
sy =sz= ol Stack Heap

‘P May 2011 Uday Khedkerng&si
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Some Observations

y =z = null O - . . .p
1w Node (7 ) is live but link @ is nullified

w = null
2 while (x.data < max) ::

e Ipty @::
[ ::
O<__ e

7 ey <D<

{ x.Iptr = null
3 X = X.rptr }

x.rptr = x.Iptr.rptr = null
x.Iptr.Iptr.Iptr = null
x.Iptr.Iptr.rptr = null
4 y = xlptr
x.Iptr = y.rptr = null
y.Iptr.Iptr = y.Iptr.rptr = null
5 z = New class_of_z
z.lptr = z.rptr = null

6 y=ylptr ..,‘f‘.’.t.'.-v@::
ylptr =yrptr=null | || @,
Toes >
7 z.sum = x.data + y.data ot @::
x =y =2z =null Stack Heap
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Some Observations

y =z = null New access expressions are created.
1 w=x Can they cause exceptions?
w = null
2 while (x.data < max) o /r
{ x.Iptr = null \
3 X = x.rptr } @ y Iptr @::
x.rptr = x.Iptr.rptr = null ﬂ

—7
x.Iptr.Iptr.Iptr = null $ %CD{’\
_ K
x.Iptr.Iptr.rptr = null __ = >
4 y=xlptr \o ~
7,

x.Iptr = y.rptr = null

Wl @{QD(
ylptelptr = ylptr.rptr = null 2
5 z = New class_of.z N A ot ®<

z.lptr = z.rptr = null __/»h""'
6 y=ylptr @ %@...:"’-"‘""QD::

ylptr =yrptr=null | || @,
Ipgr ">
7 z.sum = x.data + y.data ptr @::

x =y =2z =null Stack Heap

May 2011 Uday Khedker
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An Overview of Heap Reference Analysis

e A reference (called a link) can be represented by an access path.
Eg. “x — Iptr — rptr”
e A link may be accessed in multiple ways

e Setting links to null

v

Alias Analysis. ldentify all possible ways of accessing a link

v

Liveness Analysis. For each program point, identify “dead” links
(i.e. links which are not accessed after that program point)

v

Availability and Anticipability Analyses. Dead links should be
reachable for making null assignment.

v

Code Transformation. Set “dead” links to null

= May 2011
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Assumptions

For simplicity of exposition
e Java model of heap access

» Root variables are on stack and represent references to memory in
heap.

» Root variables cannot be pointed to by any reference.
e Simple extensions for C4++

» Root variables can be pointed to by other pointers.

» Pointer arithmetic is not handled.
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Key Ildea #1 : Access Paths Denote Links

—7
'~

ot

® T

e Root variables : x,y, z
o Field names : rptr, Iptr

o Access path : x—=rptr—Iptr

Semantically, sequence of “links”

R RO

e Frontier : name of the last link

o Live access path : If the link
corresponding to its frontier is
used in future

<]
1\
AN
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What Makes a Link Live?

Assuming that a statement is the last statement in the program, if
nullifying a link read in the statement can change the semantics of the

program, then the link is live.

Iptr
o : rptr | O3
Reading a link for accessing the contents of the
. . data
corresponding target object:
Iptr
Objects | Live access
Example read paths rptr | Oy
sum = x.rptr.data x, O1, Oz | x, x=>rptr Heap
if (x.rptr.data < sum) | x, Oy, Oz | x, x—>rptr

Uday Khedker

He




MACS L111 General Frameworks: Heap Reference Analysis 63/96

What Makes a Link Live?

Assuming that a statement is the last statement in the program, if
nullifying a link read in the statement can change the semantics of the
program, then the link is live.

Iptr
. . . 0 rptr | O3
Reading a link for copying the contents of the 1
. Lo data
corresponding target object:
m |ptr
Objects | Live access
Example read paths rptr | Oy
y=xaptr|x,01 |x Heap data
i
Stack
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What Makes a Link Live?

Assuming that a statement is the last statement in the program, if
nullifying a link read in the statement can change the semantics of the

program, then the link is live.

Iptr
o . G rptr | O3
Reading a link for copying the contents of the 1 =
corresponding target object: Iptr e
T
Objects | Live access ata
Example reaJd paths rptr | Oy
y=xurptr|x,01 |x Heap data
xlptr=y | x,01,y | x E g’
Stack

p May 2011 Uday Khedker
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What Makes a Link Live?

Assuming that a statement is the last statement in the program, if
nullifying a link read in the statement can change the semantics of the
program, then the link is live.

Iptr
. . . 0 rptr | O3
Reading a link for comparing the address of the 1
. o data
corresponding target object:
rptre |
ptr
E | Objects | Live access data ™~ m—
xample read paths P 2
if (x.Iptr==null)|x, 01 | x,x—=>Iptr Heap data

p May 2011 Uday Khedker ﬁ
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What Makes a Link Live?

Assuming that a statement is the last statement in the program, if
nullifying a link read in the statement can change the semantics of the
program, then the link is live.

Iptr
. . . 0 rptr | O3
Reading a link for comparing the address of the 1
. o data
corresponding target object: R
rptr e |
ptr
E | Objects | Live access data ™~ m—
xample read paths P 2
if (x.Iptr==null) [x,01 |x,x—=>Iptr Heap data
if (y == x.lptr) |x, O1,y|x,x=>Iptr,y E g’

Stack

p May 2011 Uday Khedker
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Liveness Analysis

t

Live Access Paths

Statement involving Effect of the statement
memory references on the access paths

Live Access Paths

1

Program Semantic Information
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Key Idea #2 : Transfer of Access Paths
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Key Idea #2 : Transfer of Access Paths

H\
° o
=)

o

||
~

[X]
1%
<O

(-~
o

Uday KhedkerQ
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Key Idea #2 : Transfer of Access Paths

0-0
B—"|r
O o
..=x.rd
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Key Idea #2 : Transfer of Access Paths

0:0
I {x,x>r}
QO o6
..=xrd
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Key Idea #2 : Transfer of Access Paths

0 o Tr

X = Xx.n Analysis

I {x,x>r}

..=x.rd
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Key Idea #2 : Transfer of Access Paths

=29
0 o Tf

X = Xx.n Analysis

I {x,x>r}

..=x.rd
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Key Idea #2 : Transfer of Access Paths

=29
0 o Tf

X = Xx.n Analysis

I {x,x>r}

..=x.rd
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Key Idea #2 : Transfer of Access Paths

Generated
Constant {x}
Dependent  {x—=n,x—=>n—>r}

Killed

Q_”,@ Constant X, X=>r}
1f Dependent %
O o Tf
X = Xx.n Analysis

I {x,x>r}

x after the assinment is same as
the x—>n before the assignment

J May 2011 Uday Khedkernh}
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Key Idea #3 : Liveness Closure Under Link Aliasing

x=y
e—rLO x and y are node aliases
]
. 00
=x.n

~— |l

J May 2011 Uday Khedkernggi
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Key Idea #3 : Liveness Closure Under Link Aliasing

X=Yy
ele x and y are node aliases
l x.n and y.n are link aliases
. =00
v
=x.n

~— |l
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Key Idea #3 : Liveness Closure Under Link Aliasing

X=Yy
n :
: e—>° x and y are node aliases
l x.n and y.n are link aliases
: r T .
H °—>Q x=>n is live = y—=>nis live
v
=x.n

~— |l

J May 2011 Uday Khedkernggﬁ
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Key Idea #3 : Liveness Closure Under Link Aliasing

xX=y
n .
: °—>o x and y are node aliases
l x.n and y.n are link aliases
: r T .
H o—>a x=>n is live = y—>nis live
v
=x.n

¥ May 2011 Uday Khedkernﬂj
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Explicit and Implicit Liveness

x=y
. z=0'0
l x=>nis live = y—=>nis live
z—0-0
=Xx.n

J May 2011 Uday Khedkernh}
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Explicit and Implicit Liveness

X=Yy
. —=0"0
l x=>n is live = y—=>nis live
. =-0%0
=x.n

May 2011 Uday Khedkern[j
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Key Idea #4: Explicit Liveness Covers Entire Heap Usage

e Explicit Liveness at p
Liveness purely due to the program beyond p.
The effect of execution before p is not incorporated.
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Key Idea #4: Explicit Liveness Covers Entire Heap Usage

e Explicit Liveness at p
Liveness purely due to the program beyond p.
The effect of execution before p is not incorporated.

e Implicit Liveness at p
Access paths that become live under link alias closure.
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Key Idea #4: Explicit Liveness Covers Entire Heap Usage

e Explicit Liveness at p
Liveness purely due to the program beyond p.
The effect of execution before p is not incorporated.

e Implicit Liveness at p
Access paths that become live under link alias closure.

» The set of implicitly live access paths may not be prefix closed.
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Key Idea #4: Explicit Liveness Covers Entire Heap Usage

e Explicit Liveness at p
Liveness purely due to the program beyond p.
The effect of execution before p is not incorporated.

e Implicit Liveness at p
Access paths that become live under link alias closure.

» The set of implicitly live access paths may not be prefix closed.
» These paths are not accessed, their frontiers are accessed
through some other access path
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Key Idea #4: Explicit Liveness Covers Entire Heap Usage

e Explicit Liveness at p
Liveness purely due to the program beyond p.
The effect of execution before p is not incorporated.

e Implicit Liveness at p
Access paths that become live under link alias closure.

» The set of implicitly live access paths may not be prefix closed.
» These paths are not accessed, their frontiers are accessed
through some other access path

Every live link in the heap is the Frontier of
some explicitly live access path.

) May 2011 Uday Khedker
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Notation for Defining Flow Functions for Explicit Liveness

base(px)
prefixes(px)
summary(S)

= longest proper prefix of py

= {0 | o ig @prefixe of py}
= {Px_”’%l\wes}

&

empty access path

px | frontier(py) | base@preﬁ%&s(px) | summary({px}) |
X—=>n—>r r ;;)-&;U {x,x—>}7\,€<—>n—>r} {x>n—>r—>x}
X—=>r—>n n XA {x,x>r,xxr>n} | {x>r>n—>x}
X=>n n _{x {x,x>n} \ {x=>n—>=x}
X—>r | x {x,x=>r} \ {x=>r—>=x}
X g‘—é’ {x} \ | {x=>x}
/ ¥

0 or more occurrences
of any field name

J May 2011
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Notation for Defining Flow Functions for Explicit Liveness

base(px) = longest proper prefix of py

prefixes(px) = {p} | Pl \@refixe of px}
summary(S) = {px—zb% €S}

L
S
px | frontier(py) | base('@preﬁxes(px) | summary({px}) |
X—=>n—>r r e’ | {x,x>n,x>n>r} [ {x>n>r>x}
A

X—=>r—>n n {x,x>r,x>r>n} | {x>r>n>x}

2
X=>n n Nx {x,x>n} {x>n—>x}

X=>r @V X {x,x>r} {x>r—>x}
g = !

) May 2011 Uday Khedker
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Flow Functions for Explicit Liveness Analysis

access expression corresponding access path
o
| Statement | ConstKill | DepKill(X) [ Const@@® —  DepGen(X) |
Use a, 0 0 pi@(base(p'y)) 0
Use a,.d 0 0 ixes(py) 0
ax = new | {px—=>x*} 0, refixes(base(px)) [
ax = Null | {px—>x} Q;\' prefixes(base(px)) 0
B prefixes(base(px)) U
ax=ay | {p>r} AO/@ prefixes(base(p,)) >0 | px>o e X}
End 0 S summary(Globals) 0
other 0 0 0 0

) May 2011 Uday Khedker
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Flow Functions for Explicit Liveness Analysis

\A\Q

| Statement | ConstKill | DepKill(X) | Const@ag” DepGen(X) |
Use o, 0 0 pi@(base(py)) 0
Use a,.d 0 0 ixes(py) 0
ax = new | {px—=>x*} 0, refixes(base(px)) [
ax = Null | {px—>x} %“' prefixes(base(px)) 0

o —a (pe—t} A prefixes(base(px)) U (py>0 | px>o € X}
Y Px PR prefixes(base(p,)) Py | Px
End D NO 0 summary(Globals) /] 0
other 0 0 0 / 0

Transfer

J May 2011
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Flow Functions for Explicit Liveness Analysis

\A\Q

| Statement | ConstKill | DepKill(X) | Const@ag” DepGen(X) |
Use o, [ 0 pi@(base(py)) 0

Use a,.d 0 0 ixes(py) 0

ax = new | {px—=>x*} 0, refixes(base(px)) [

ax = Null | {px—>x} %“' prefixes(base(px)) 0

B prefixes(base(px)) U

ax=ay | {p>r} o’@ prefixes(base(p,)) >0 | px>o e X}
End 0 N 0 summary(Globals) 0

other 0 0 0 0

\ End of procedure

J May 2011
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Flow Functions for Handling Procedure Calls in Computing
Explicit Liveness

O
o

| Statement | ConstKill | DepKill (X) Lﬁen | DepGen(X) |
é@éﬁxes(base(px)) U
" prefixes(base(py)) U 0

ax = Flay) | {p>st | 0
.‘:b summary({p, } U Globals)
%' prefixes(base(py)) U

summary({p, })

=

return o, 0

éo
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Computing Explicit Liveness Using Sets of Access Paths

Analysis X =

...=x.r.d

7]

{x,x=>r}

J May 2011
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Computing Explicit Liveness Using Sets of Access Paths

Analysis X = X.n

{x,x=>r}
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Computing Explicit Liveness Using Sets of Access Paths

x—>n extended with r

Analysis X = X.n

{x, x>
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Computing Explicit Liveness Using Sets of Access Paths

{x,x=>n,x=>n>r}

Analysis X = X.n

{x,x=>r}
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Computing Explicit Liveness Using Sets of Access Paths

{x,x=>n,x=>n>r}

Analysis X = X.n

{x,x=>r}
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Computing Explicit Liveness Using Sets of Access Paths

Anticipability of Heap References: An All Paths problem

{x,x=>n,x=>n>r}

—x7)

Analysisé
' {x,x=>r}

{x,x=>r}

...=x.r.d
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Computing Explicit Liveness Using Sets of Access Paths

Anticipability of Heap References: An All Paths problem

{x,x=>n,x=>n>r}

7]

Analysisé
: {x,x>r} N{x,x>n,x>n>r}

{x,x=>r}

...=x.r.d
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Computing Explicit Liveness Using Sets of Access Paths

Anticipability of Heap References: An All Paths problem

{x,x=>n,x=>n>r}

Analysis X = X.n
{x}

{x,x=>r}

...=x.r.d
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Computing Explicit Liveness Using Sets of Access Paths

Anticipability of Heap References: An All Paths problem

{x, x>n}

Analysis X = X.n
{x}

{x,x=>r}

...=x.r.d
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Computing Explicit Liveness Using Sets of Access Paths

Liveness of Heap References: An Any Path problem

{x,x=>n,x=>n>r}

Analysis X = X.n

{x,x=>r}

{x,x=>r}

...=x.r.d
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Computing Explicit Liveness Using Sets of Access Paths

Liveness of Heap References: An Any Path problem

1 {x,x=>n,x=>n>r}
Analysis X = X.n

{x,x>r} U{x,x>n,x>n>r}

...........

{x,x=>r}

...=x.r.d
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Computing Explicit Liveness Using Sets of Access Paths

Liveness of Heap References: An Any Path problem

x—>n extended with r, n, and n—>r

Analysis X = X.n

{x,x=>r,x=>n,x>n>r}

{x,x=>r}

...=x.r.d
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Computing Explicit Liveness Using Sets of Access Paths

Liveness of Heap References: An Any Path problem

{x7x—)n,x—)n—)n,x—)n—)nx—)n—)n—)r}

Analysis X = X.n

{x,x=>r,x=>n,x>n>r}

{x,x=>r}

...=x.r.d
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Computing Explicit Liveness Using Sets of Access Paths

Liveness of Heap References: An Any Path problem

{x7x+n7x—)n—)r,x—)n—)n—)r,x—)n—) cee —)n—)r}

Analysis X = X.n

{x,x»r,x+n7x+n+r7x—>n+ cee —)n—)r}

{x,x=>r}

...=x.r.d

Infinite Number of Unbounded Access Paths
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Key Idea #b5: Using Graphs as Data Flow Values

Analysis X = Xx.n (ﬂ3

Finite Number of Bounded Structures

J May 2011 Uday Khedkernggﬁ
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Key Idea #6 : Include Program Point in Graphs

{x,x=>n,x>n—>n,x>n>n->n,...}

Different occurrences of n's in an access path are
Indistinguishable

{x,x>n,x>n>n,x>n>n>r}

l Different occurrences of n's in an access path are
Distinct
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Key Idea #6 : Include Program Point in Graphs

{x,x=>n,x>n—>n,x>n>n->n,...}

Different occurrences of n's in an access path are
Indistinguishable

{x,x>n,x>n>n,x>n>n>r}

l Different occurrences of n's in an access path are
Distinct

l Access Graph : ° n @ n @ r @
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Key Idea #6 : Include Program Point in Graphs

{x,x=>n,x>n—>n,x>n>n->n,...}

Different occurrences of n's in an access path are
Indistinguishable

Access Graph : °—”>@3 n

{x,x>n,x>n>n,x>n>n>r}

l Different occurrences of n's in an access path are
Distinct

l Access Graph : ° n @ n @ r @
J May 2011 Uday Khedkernh}
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Inclusion of Program Point Facilitates Summarization

1
2 = x.n.d 3] x=xr
4 = x.n.d
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Inclusion of Program Point Facilitates Summarization

1
2 = x.n.d 3 x=xr
Gy (x)—(ng \ / x —-mg G,
4 = x.n.d
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Inclusion of Program Point Facilitates Summarization

1 G
/ \ x—r>l’3—n>l‘l4
2 = x.n.d 3 x=xr
Gy (x)—(ng \ / x —-mg G,
4 = x.n.d
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Inclusion of Program Point Facilitates Summarization

ny 1
G, n Gs
x —D . (ng / \ x —Ls(r3)—-(ny
2 = x.n.d 3| x=xr
Gy (x)—(ng \ / x —-mg G,
4 = x.n.d
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Inclusion of Program Point Facilitates Summarization

nz
G n G =Gy W G3
X I, r3 —n, ng
n A
ny 1 5
& " G ss
X _n, ng / \ X _r, r3 _n_ ng ié
2 = x.n.d 3 x=xr Analysis
Gy (x—D>(ng \\ / x -z G 8
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Inclusion of Program Point Facilitates Summarization

Iteration #1

Analysis | 1| x = x.n
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Inclusion of Program Point Facilitates Summarization
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Inclusion of Program Point Facilitates Summarization

Iteration #1
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Inclusion of Program Point Facilitates Summarization

Iteration #1

n r
0-®-0

Analysis | 1| x = x.n
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Inclusion of Program Point Facilitates Summarization

Analysis

1 = %]

Iteration #1

0-@-0@
|—>| |—>
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Inclusion of Program Point Facilitates Summarization

Iteration #2

0-@-0@
|—>| |—>
0-@U.0-0-0
0-0

|—>|

Analysis | 1| x = x.n

2(...=x.rd

J May 2011 Uday Khedkernh}




MACS L111 General Frameworks: Heap Reference Analysis 76/96

Inclusion of Program Point Facilitates Summarization

Iteration #2
0-@-@
000

r

0-0
|—>|

Analysis | 1| x = x.n

2(...=x.rd
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Inclusion of Program Point Facilitates Summarization

Iteration #2

0-Q=0
Analysis | 1[x = x.n] r
000

r
0-0

2(...=x.rd

J May 2011 Uday Khedkernh}




MACS L111 General Frameworks: Heap Reference Analysis 76/96

Inclusion of Program Point Facilitates Summarization

Iteration #2

n
0-0-0
— —>

Analysis | 1| x = x.n
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Inclusion of Program Point Facilitates Summarization

Iteration #3
n
0-0-Q
n r n(% r
0@;@ U: 0—@-@

r

0-0
|—>|

Analysis | 1| x = x.n

2(...=x.rd
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Inclusion of Program Point Facilitates Summarization

Iteration #3

Analysis | 1| x = x.n (_”j
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Inclusion of Program Point Facilitates Summarization

Iteration #3

Analysis | 1| x = x.n (_”j r
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Inclusion of Program Point Facilitates Summarization

Iteration #3

Analysis | 1| x = x.n (_”j
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Access Graph and Memory Graph

Program Fragment

xI=y.r|1

if (x.I.n==y.r.n)|2
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Access Graph and Memory Graph

Program Fragment Memory Graph

xI=y.r|1

X —> /

=0

if (x.I.n==y.r.n)|2
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Access Graph and Memory Graph

Program Fragment Memory Graph Access Graphs

xI=y.r|1
=y OO0

O
y—=(Yr =><:>—>r@—”>@

if (x.I.n==y.r.n)|2
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Access Graph and Memory Graph

Program Fragment Memory Graph Access Graphs

xI=y.r|1
x—(y OO0

O
y—=(Yr =><:>—>r@—”>@

if (x.I.n==y.r.n)|2
e Memory Graph: Captures the shape of heap
Nodes represent locations and edges represent links (i.e.
pointers).
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Access Graph and Memory Graph

Program Fragment Memory Graph Access Graphs

x—() | A ;»
y—=(J)r > () (m)

if (x.I.n==y.r.n)|2
e Memory Graph: Captures the shape of heap
Nodes represent locations and edges represent links (i.e.
pointers).
o Access Graphs: Captures the usage (or access) pattern of
heap
Nodes represent dereference of links at particular
B statements. Memory locations are implicit.

He

‘¢ May 2011 Uday Khedker
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Lattice of Access Graphs

e Finite number of nodes in an access graph for a variable
e & induces a partial order on access graphs

= a finite (and hence complete) lattice

= All standard results of classical data flow analysis can be extended to
this analysis.

Termination and boundedness, convergence on MFP, complexity etc.

J May 2011 Uday Khedkerng&gi
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Access Graph Operations

Union. G W G’

Path Removal.
G © p removes those access paths in G which have p as a prefix.

Factorization (/).

e FExtension.

May 2011 Uday Khedker
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Semantics of Access Graph Operations

e P (G, M) is the set of paths in graph G terminating on nodes in M. For
graph G;, M; is the set of all nodes in G;.

e S is the set of remainder graphs and WVi;) is the set of all paths in all
remainder graphs in S.

or
Operation | N s Paths |
Union G=G W G AW (Gs,Ms) 2P (G, M) U P (G, M)

P (G2, Mo) D P (Gy, My) —
Path R I & =6 Q;‘-
ath Removal G, 1 ?/ {p=>0c | p>0o € P(G, M)}

f . - P(SvMS):
Factorization 5% 2 M) o e € P(GLMy), € P (G, M)}
G2 (G, M)#0 | P(G,M2) =10
Extension P(Gy, My) D P(Gy, My) U
G = (G s | FLo M) 2 PG M)

{p>0o|peP(G,M), o0 €P(S5 M)}

) May 2011 Uday Khedker




MACS L111 General Frameworks: Heap Reference Analysis 80/96
Semantics of Access Graph Operations

e P (G, M) is the set of paths in graph G terminating on nodes in M. For
graph G;, M; is the set of all nodes in G;.

e S is the set of remainder graphs and
remainder graphs in S.

.o
Operation |j@Paths |

Union G=G W G AW (Gs,Ms) 2P (G, M) U P (G, M)
D) —
Path Removal G, = G; @Q- P (G2, Mz) 2 P (Gr, My)
4

WVi;) is the set of all paths in all

{p=>a | p>0 € P (G, Mi)}
m) P (S, M) =
> {g|p/>0€ P (G, M), ¢/ € P(Go, M)}

Factorization S
G§ (G, M)#0 | P16, M) =0

Extension P(Gy, M) D M) U
G = M ’ - :
2 W (o0 p € PG, 0 € P(S. M)}

o represents remainder p’ represents quotient M
==

) May 2011 Uday Khedker
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Access Graph Operations: Examples

Program Access Graphs Remainder
Graphs

81

= |0 \»@»@}Q( 20

rg2
86 C
=) f00-0 | 200 | LaBe
| Union [ Path Removay]‘-\-,éactorisation | Extension |

&

Y May 2011 Uday Khedkern
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Program Access Graphs Remainder

Graphs

81

=0 \»@%\Q( 20

rg2
86 C
=) f00-0 | 200 | LaBe
| Union [ Path Removay]‘-\-,éactorisation | Extension |

gWga=g
& WEg=gs

8 Wg=gs éo
85 W 86 =86

" May 2011

Uday Khedker
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Access Graph Operations: Examples
Program Access Graphs Remainder
Graphs
&1 rg1
1 soll #@*%\ﬂ' =@
l rg2
86 gy
=) f00-0 | 200 | LaBe
| Union [ Path Removay]‘-\gactorisation | Extension |

W g=g1|8 O x> =g
S Wgr=gs 5.5 G
g5 Y ga=gs g;;% =g

g5 W g6 =g6|84 OX>I=g1

" May 2011

Uday Khedker
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Program Access Graphs Remainder

Graphs

81

= |0 \»@»%\Q( 2o
[ =] 0-0-® B |~

20%G-0

| Union | Path Removale| <}~ Factorisation | Extension |
et ot RO
& W egr=gs ’ 4

g2}
&J p—
bt w5
g4/ (g2, {r}) =

e May 2011

Uday Khedker ﬁ
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Access Graph Operations: Examples

Program Access Graphs Remainder

Graphs

81

=]~ \»@»%\Q( 20
=] 20-0-0 ~

86 C
ORO;ONER0L0)

| Union | Path Removale| <}~ Factorisation | Extension |
£ 81— 8| 8 O x| g ;jggl’ggjg} (s, () # {r&1) = &
L Wg=g5| 8O o/ Asb rg’} (83, {x, h})# {re1, rg2} = g6
85 W gs=gs5|8 % g4 /@, {ra}) = {€R2G} (&2, {n}) # {€rc} =&
g5 W g=g6|8aOR>I=g g4/ (& {r}) = (&2, {n})#0=E

e May 2011

Uday Khedker ﬁ
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Access Graph Operations: Examples
Program Access Graphs Remainder
Graphs

83 rg1

>

2[=xrd)| SO-0-®

85 (

AD-®

86 C &
ORO;ONER0L0)

| Union | Path Removale| <}~ Factorisation

| Extension |
T —

83 W g4 =ga| g6 © x>
& W gi=gs
85 W g =g5\84

85 W 86 =86|84 ©

g5/ (g2, {r})={¢
g4/ (g2, {r})=0

gs/ (g1, {x})={rg,
g2}
RG}

(g3, {h Nt {re1} =8

(83, {x, h}) # {ret\rg2} = g6
(g2, {r}) # {€rc} =g

(82, {r2}) #925G

Remainder is empty

Quotient is empty

J May 2011

Uday Khedker
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Data Flow Equations for Heap Liveness Analysis

Computing Liveness Access Graph for variable v by incorporating the
effect of statement n.

ELIn,(v) = (ELOuty(v)© ELKillPath,(v)) W ELGenp(v)
makeGraph(v—>x) n= End, v € Globals
= End Global.
ELOut,(v) = & = =g, v # Globals
H—J ELIns(v) otherwise
sesucc(n)

ELGen,(v) = ELConstGen,(v)W ELDepGen,(v)
(Note: This notation is slightly different from the notation in the book.)

) May 2011 Uday Khedker
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Flow Functions for Explicit Liveness Analysis

| | Use ozX d | ax = ay |
Access Paths == ConstKill,, {px=>x}
ConstGen, pref,@px e (e (3}
Access Graphs DepGenn(X) v lpy>olp>o € X}
Gy = ’ﬁaph( px) GB = makeGraph(base(py))
G, = mikeGraph(p,) GP = makeGraph(base( v))
Use a.d frblse o = = Nufl,
X X y = New
ELKllPathy(x) 1% g Px Dx
ELKillPathy(y) ~ 3 3 g
ELConstGenp(x) €4 Gy GB GB GB
EL ConstGen,(y) & & G? &
ELDepGen,,( )(X) SG 5(; 5(; 5(;
ELDepGen,(y)(X) & & | (Gy, My)# (X/(Gx, My)) &

Uday Khedker ﬁ
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Flow Functions for Explicit Liveness Analysis

The singleton set containing the

Access Paths =—> Consthin, last node corresponding to px ) =
) t pretixes(base(px))U
ConstGen, pref\»@px) prefixes(base(p, ;)
Access Graphs DepGena(X) ‘)ﬁ {py—>a o> € X)
G. = mak aph(px) G)g = makeGraph(base(py))
o, —
The singleton set containing the )G = makeGraph(base( y))
last node corresponding to p, ay = oy i ,I\\Il ull,
ELKillPath,(x) e Px Px
ELKillPathy(y) S & & &
ELConstGenp(x) €4 Gy GB GB GB
ELConstGen,(y) & & G? &
ELDepGen,(x)(X) & & & &
ELDepGen,(y)(X) & & | (G, M))# (X/(G,, M) &

Jiok

Uday Khedker ﬁ
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Liveness Analysis of Example Program: Ist Iteration

=2 X — Iy — g

1{w=x
#X—>/4—>Iﬁ
(
2 |whi|e (x.data < max)|
J U

#Xﬂl‘t—’Iﬁ

> X D>V —

= X — [y — Iy

5|2:New

class_of z |

> X >V — I

6|y = y.lptr

> X >y >z

7 |z.sum = x.data + y.data |

|

= X

3 (=]

5(;_/

> Z

P May 2011

Uday Khedker
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Liveness Analysis of Example Program: 2nd Iteration
> x—n—l—
~—
1l w=x

> X—B— L —
~—_

2 |whi|e (x.data < max)|
J U

p
=2 X —B—> [y — g
~—_

> X — I — I > X—B— [, —

= X — |y — g

> X D>V —

5 |z = New class_of z |

> X D>V — g >z
6|y = y.lptr
> X >V >z

7 |z.sum = x.data + y.data |

p May 2011 Uday Khedker
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Liveness Analysis of Example Program: 3rd Iteration

fon}
= X —>B—> [y — g
~_ -

1[w=x

‘o)
= X —B— ), —
N~

( N\
2 |whi|e (x.data < max)|
J U

( <
2> X —>B— [y — 5
N~

o)
> X — I — I 2> X —B—p—

2> X —B— [y — g
~—_

> X D>V —

5 |z = New class_of z |

> X D>V — g >z
6|y = y.lptr

> X >y >z

7 |z.sum = x.data + y.data |

p May 2011 Uday Khedker
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Liveness Analysis of Example Program: 4th lIteration

fon}
= X —>B—> [y — g
~_ -

1[w=x

‘o)
= X —B— ), —
N~

( N\
2 |whi|e (x.data < max)|
J U

( <
2> X —>B— [y — 5
N~

o)
> X — I — I 2> X —B—p—

€
=2 X —>B—> [y — g

> X D>V —

5 |z = New class_of z |

> X D>V — g >z
6|y = y.lptr

> X >y >z

7 |z.sum = x.data + y.data |

p May 2011 Uday Khedker
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Which Access Paths Can be Nullified?

o Consider extensions of accessible paths for nullification.

Let p be accessible at p (i.e. available or anticipable)
for each reference field f of the object pointed to by p
if p—>f is not live at p then
Insert p—>f = null at p subject to profitability

o For simple access paths, p is empty and f is the root variable name.

J May 2011 Uday Khedkerng&gi
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Which Access Paths Can be Nullified?

Can be safely
dereferenced

o Consider extensions of accessible paths for nullification.

Let p be accessible at p (i.e. available or anticipable)
for each reference field f of the object pointed to by p
if p—>f is not live at p then
Insert p—>f = null at p subject to profitability

o For simple access paths, p is empty and f is the root variable name.

May 2011 Uday Khedker
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Which Access Paths Can be Nullified?

Can be safely Consider link
dereferenced aliases at p

o Consider extensions of accessible paths for nullificagion.

Let p be accessible at p (i. ffable or anticipable)
for each reference fieJd” f of the object pointed to by p
if p—>f is not live at p then
Insert p—>f = null at p subject to profitability

o For simple access paths, p is empty and f is the root variable name.

Uday Khedker
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Which Access Paths Can be Nullified?

Can be safely Consider link
dereferenced aliases at p

o Consider extensions of accessible paths for nullificagion.

Let p be accessible at p (i. ffable or anticipable)
for each reference fieJd” f of the object pointed to by p
if p—>f is not live at p then

Insert p—>f = null at p subject to profit;(\bility

o For simple access paths, p is empty and f is the Tegt variable name.

Cannot be hoisted and
is not redefined at p

Uday Khedker n
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Availability and Anticipability Analyses

e p is available at program point p if the target of each prefix of p is
guaranteed to be created along every control flow path reaching p.

e p is anticipable at program point p if the target of each prefix of p
is guaranteed to be dereferenced along every control flow path
starting at p.

) May 2011 Uday Khedker
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Availability and Anticipability Analyses

e p is available at program point p if the target of each prefix of p is
guaranteed to be created along every control flow path reaching p.

e p is anticipable at program point p if the target of each prefix of p
is guaranteed to be dereferenced along every control flow path
starting at p.

e Finiteness.

» An anticipable (available) access path must be anticipable (available)
along every paths. Thus unbounded paths arising out of loops cannot
be anticipable (available).

» Due to “every control flow path nature”, computation of anticipable

and available access paths uses N as the confluence. Thus the sets
are bounded.

= No need of access graphs.

'P May 2011

Uday Khedker
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Availability Analysis of Example Program

0
1 [w=x]
0 ( |
2 |while (x.data < max)|
g J U
{x} {x} {1}
{x} b —
5 | z = New class_of-z |
{x.z}
6|y = y.lptr
{x. 2}

7 |z.sum = x.data + y.data |

. {x,y,2}
May 2011 Uday Khedker
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Anticipability Analysis of Example Program

{x}
1] w=x
{x} §
[
2 |Whi|e (x.data < max)|
; J U
| Iptr—| {x} )
{x, x> Iptr, x>Iptr—Iptr } {x, x>rptr }
{x,y,y>lptr } {x} —

5 |z = New class_of_z |

{x.y,y—~>lptr,z}
6|y = y.lptr

{xy,z}

7 |z.sum = x.data + y.data |

May 2011 Uday Khedker
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Live and Accessible Paths

> x—— f— {x}
~
1l w=x
> xS [ — g )
~
2|whi|e (x.data < max)|
J C
=
x, x—|ptr, x—|ptr—Iptr > x—nB—h—k {x, x=>rptr }
{x, x=>Iptr, x—>Iptr—Iptr } e S
> X—lp— I {x} #X—’?—’&—’/ﬁ
=] [
>x >y—1h {xyy>ptr} O} T T —k
5|z = New class_of z |
{Xz.yv.y_)lptr,z} => X D>y — g >z
6|y = ylptr
>x >y >z {x,y,2}

7 | z.sum = x.déta + y.data |

{x.y,2z}
p May 2011 Uday Khedker
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Creating null Assignments from Live and Accessible Paths
y =z = null

1=+

w = null
11 )
2 |while (x.data < max)|
JRIN
x.rptr = x.Iptr.rptr = null 1
x.Iptr.Iptr.Iptr = null

x.Iptr.Iptr.rptr = null x.Iptr = null

¥
[y =l ;

x.Iptr = y.rptr = null

y.Iptr.Iptr = y.Iptr.rptr = null

5 | z = New class_of z |
T

z.Iptr = z.rptr = null

o [r=ir]

y.Iptr = y.rptr = null

7 | z.sum = x.d;ta + y.data |

x=y=z=null

: May 2011 Uday Khedker
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The Resulting Program

y =z = null

1 w=x
w = null

2 while (x.data < max)

{ x.Iptr = null

3 X = X.rptr }
x.rptr = x.Iptr.rptr = null
x.Iptr.Iptr.Iptr = null
x.Iptr.Iptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null
y.Iptr.lptr = y.Iptr.rptr = null
5 z = New class_of_z
z.Iptr = z.rptr = null
6 y=y.lptr
y.Iptr = y.rptr = null

x =y =z = null
Uday Khedker 3=

7 z.sum = x.data + y.data




MACS L111 General Frameworks: Heap Reference Analysis

95/96

Non-Distributivity of Explicit Liveness Analysis

1 [x.n=null

{ ¢\®

2 | x=x.n

[ J

&

J May 2011 Uday Khedkern%iq,}
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Non-Distributivity of Explicit Liveness Analysis

1 [x.n=null

{ ¢\®

2 | x=x.n

[ J

&

/

N

7 =57l 7=x7] 8

J May 2011 Uday Khedkern%iq,}
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Non-Distributivity of Explicit Liveness Analysis

1 [x.n=null

{ ¢\®

2 | x=x.n

[ J

&

N

Y May 2011 Uday Khedker S3amy



MACS L111 General Frameworks: Heap Reference Analysis 95/96
Non-Distributivity of Explicit Liveness Analysis
1 [x.n=null
{ ) N
2 |x=x.n

3 | x.n.n = null
N\

6

>0~

®—)\ @

Q;"'

©

—~

X =X.n

[ J

&

x.n.r =null| 5

7 =57l

J May 2011

z=x.r| 8
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Non-Distributivity of Explicit Liveness Analysis

1 [x.n=null

) | 4
2
0 .
* “09~®)

3 | x.n.n = null Q;‘-',' x.n.r =null| 5

N\ L ®
®—)\ @

6 |x=x.n

>~ >0~
7 z=x.r| 8

—~

J May 2011

Uday Khedker
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Non-Distributivity of Explicit Liveness Analysis

1 [x.n=null

I 4
gl . @5@9
To-0  To-®

« ¥
3 | x.n.n = null Q;‘-',' x.n.r =null| 5

N

@

OXC) ®
6 |x=x.n

>~ >0~
' 7 z=x.r| 8 m

) May 2011 Uday Khedker
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Non-Distributivity of Explicit Liveness Analysis

1 [x.n=null

N\ O
Oy @

2 EEEY
_® \_®
@\ @\
¥

-0
3 [x.n.n=null Q;‘-',‘ x.n.r =null| 5

N

@

OXC) ®
6 |x=x.n

>~ >0~
7 z=x.r| 8

~

J May 2011

Uday Khedker
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Non-Distributivity of Explicit Liveness Analysis

N\
@-@r2

2 (=5

N __®
®‘

3 [ x.n.n = null

R OR®,

1 [x.n=null

Ou®,

—~

.‘

<&
\ L ®
~®

6 |x=x.n

‘o0

@;

B®
e
=iy
-0
5

xnr—nuII

Uday Khedker ﬁ
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Non-Distributivity of Explicit Liveness Analysis

1 Gor =]
Il /@

. ® \
@@\ ®+\®

2 (=5 =

T o e
Seo-0 O

"0
3 | x.n.n = null Q;‘-',‘ x.n.r =null| 5

N\ L ®
®—)\ @

6 |x=x.n

—~

>0~

ELOut;(x)

e
e
Ceqt

Uday Khedker
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Non-Distributivity of Explicit Liveness Analysis

1 [x.n=null ELOut;(x)
\ ® N @@ ®)
~ @ \
®@‘ ©-© @ 6&@ _

2 remove x—>n—>* due to @

_® the assignment in node 1

®\ ®\._,@¥/»f1 (Eun2 ) ELIn4(x))

3 [nn ol Qj m 5
~®

N\

®—)\ @

6 |x=x.n

>~ >0~
7 z=x.r| 8

P May 2011 Uday Khedker ﬁ
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Non-Distributivity of Explicit Liveness Analysis

1 [x.n=null ELOut;(x)
\ ® N @@ ®)
~ @ \
®@‘ ©-© @ 6&@ _

2 remove x—n->x* due to @

the assignment in node 1

N B
@\ @\.»@p (ELlng )W ELln4(x))
5 [ =] &l = 5 N
N\ ® OO 2

®—)\ @

6 |x=x.n

>0~ >©~®

z=x.r| 8

Uday Khedker ﬁ
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Non-Distributivity of Explicit Liveness Analysis

1 [x.n=null ELOut;(x)
! N ®
o-a2 ool -

« < pINCSID
¢ @ O Do
X — x.n remove x—>n—>x* due to
2 @ the assignment in nod;c 1 @
S)D‘ Q)" \_/—w‘l (ELlng(x) W ELIn4(x))
AL
3 | x.n.n = null Q/-' ° @ @ g

z=x.r| 8

Uday Khedker
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Non-Distributivity of Explicit Liveness Analysis

1 [x.n=null ELOut;(x)
N ® N @) @)
~ @ \
@ OO0 ® % g

2 remove x—>n—>* due to @

the assignment in node 1

N ™ S
S)D\ ®\ pﬂ (ELIHQ(X) W EL/n4(X))

3 | x.n.n = null -"'L \ (")
< Glcwat

f(ELIno(x)) U A (ELIng(x))
>0 oo ?

z=x.r| 8

Uday Khedker
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Non-Distributivity of Explicit Liveness Analysis

1 [x.n=null ELOutl(x)
‘oe® 002?50
[ ©-0 “® X @
5 ipechmisntons ®
®\ ®\(%\¥/—>ﬂ <ELIn2(x) W ELIn4(x))
\ ) O
f (ELInQ(x) ¥ flELIn4(x)) C i (ELIny(x)) @ A (ELIng(x)) (D-@) ®
)
Access path x—=>r—n—r (shown in blue color) is a spurious
access path that arises due to W and is not removed by \fl(ELan(x)) 3 (ELIng(x))
the assignment in node 1.
0@ [ FO0 T Tpel?
‘ 7 z=x.r| 8 @

P May 2011 Uday Khedker
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Issues Not Covered in These Slides

Precision of information \@
» Cyclic Data Structures fba

» Eliminating Redundant nuIIo nments

Properties of Data Flow
Monotonicity, Boun CompIeX|ty

Interprocedural A
Extensions @——l—

J May 2011 Uday Khedkerng;i
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Conclusions

e Data flow analysis is a powerful program analysis technique

e Requires us to design appropriate
» Set of values with reasonable approximations

= Acceptable partial order and merge operation

» Monotonic functions which are closed under composition

J May 2011 Uday Khedkerng&gi
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Conclusions

e Data flow analysis can be used for discovering complex semantics

e Unbounded information can summarized using interesting insights

» Example: Heap Analysis

Heap manipulations consist of repeating patterns which bear a close
resemblance to program structure

Analysis of heap data is possible despite the fact that the mappings
between access expressions and I-values keep changing

: May 2011 Uday Khedker
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BTW, What is Static Analysis of Heap?

{2}
¥ May 2011 Uday Khedker S2==3
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BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
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