General Data Flow Framekworks

Uday P. Khedker

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

May 2011

Part 1

About These Slides

rigiit

These slides constitute the lecture notes for

- MACS L111 Advanced Data Flow Analysis course at Cambridge University, and
- CS 618 Program Analysis course at IIT Bombay.

They have been made available under GNU FDL v1.2 or later (purely for academic or research use) as teaching material accompanying the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow

Analysis: Theory and Practice. CRC Press (Taylor and Francis Group). 2009.

Apart from the above book, some slides are based on the material from the following books

- M. S. Hecht. *Flow Analysis of Computer Programs*. Elsevier North-Holland Inc. 1977.
- F. Nielson, H. R. Nielson, and C. Hankin. *Principles of Program Analysis*. Springer-Verlag. 1998.

Outline

- Modelling General Flows
- Constant Propagation
- Faint Variables Analysis
- Pointer Analyses
- Heap Reference Analysis

Important Note:

Focus on intuitions conveyed through examples rather than formal definitions

Part 2

Modelling General Flows

Part 3

Precise Modelling of General Flows

May 2011 Uday Khedker

Loop Closures of Flow Functions

Paths Terminating at p_2	Data Flow Value
p_1, p_2	X
p_1, p_2, p_3, p_2	f(x)
$p_1, p_2, p_3, p_2, p_3, p_2$	$f(f(x)) = f^2(x)$
$p_1, p_2, p_3, p_2, p_3, p_2, p_3, p_2$	$f(f(f(x))) = f^3(x)$

Loop Closures of Flow Functions

Paths Terminating at p_2	Data Flow Value
p_1, p_2	X
p_1, p_2, p_3, p_2	f(x)
$p_1, p_2, p_3, p_2, p_3, p_2$	$f(f(x)) = f^2(x)$
$p_1, p_2, p_3, p_2, p_3, p_2, p_3, p_2$	$f(f(f(x))) = f^3(x)$

• For static analysis we need to summarize the value at p_2 by a value which is safe after any iteration.

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap f^4(x) \sqcap \dots$$

Loop Closures of Flow Functions

Paths Terminating at p_2	Data Flow Value
p_1, p_2	X
p_1, p_2, p_3, p_2	f(x)
$p_1, p_2, p_3, p_2, p_3, p_2$	$f(f(x)) = f^2(x)$
$p_1, p_2, p_3, p_2, p_3, p_2, p_3, p_2$	$f(f(f(x))) = f^3(x)$

• For static analysis we need to summarize the value at p_2 by a value which is safe after any iteration.

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap f^4(x) \sqcap \dots$$

• f* is called the loop closure of f.

Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \dots$$

$$f^2(x) = f(Gen \cup (x - Kill))$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup (Gen - Kill) \cup (x - Kill)$$

$$= Gen \cup (x - Kill) = f(x)$$

$$f^*(x) = x \sqcap f(x)$$

Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \dots$$

$$f^2(x) = f (Gen \cup (x - Kill))$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup (Gen - Kill) \cup (x - Kill)$$

$$= Gen \cup (x - Kill) = f(x)$$

$$f^*(x) = x \sqcap f(x)$$

Loop Closures of Bit Vector Frameworks are 2-bounded.

Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill $f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \dots$

$$f^{2}(x) = f(Gen \cup (x - Kill))$$

$$= Gen \cup ((Gen \cup (x - Kill)) - Kill)$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup (Gen - Kill) \cup (x - Kill)$$

$$= Gen \cup (x - Kill) = f(x)$$

$$f^{*}(x) = x \sqcap f(x)$$

- Loop Closures of Bit Vector Frameworks are 2-bounded.
- Intuition: Since Gen and Kill are constant, same things are generated or killed in every application of f.
 Multiple applications of f are not required unless the input value changes.

Larger Values of Loop Closure Bounds

- Fast Frameworks ≡ 2-bounded frameworks (eg. bit vector frameworks) Both these conditions must be satisfied
 - Separability Data flow values of different entities are independent
 - Constant or Identity Flow Functions Flow functions for an entity are either constant or identity
- Non-fast frameworks At least one of the above conditions is violated

6/96

$$f: L \mapsto L$$
 is $\langle \widehat{h}_1, \widehat{h}_2, \dots, \widehat{h}_m \rangle$ where \widehat{h}_i computes the value of \widehat{x}_i

MACS L111

7/96

Jility

$$f: L \mapsto L$$
 is $\langle \widehat{h}_1, \widehat{h}_2, \dots, \widehat{h}_m \rangle$ where \widehat{h}_i computes the value of \widehat{x}_i

MACS L111

$$f: L \mapsto L$$
 is $\langle \widehat{h}_1, \widehat{h}_2, \dots, \widehat{h}_m \rangle$ where \widehat{h}_i computes the value of \widehat{x}_i

General Frameworks: Precise Modelling of General Flows

Separability

$$f:L\mapsto L$$
 is $\langle \widehat{h}_1,\widehat{h}_2,\ldots,\widehat{h}_m
angle$ where \widehat{h}_i computes the value of \widehat{x}_i

Example: All bit vector frameworks

Example: Constant Propagation

$$f:L\mapsto L$$
 is $\langle \widehat{h}_1,\widehat{h}_2,\ldots,\widehat{h}_m
angle$ where \widehat{h}_i computes the value of \widehat{x}_i

Non-Separable

$$f:L\mapsto L$$
 is $\langle \widehat{h}_1,\widehat{h}_2,\ldots,\widehat{h}_m
angle$ where \widehat{h}_i computes the value of \widehat{x}_i

$$f:L\mapsto L$$
 is $\langle \widehat{h}_1,\widehat{h}_2,\ldots,\widehat{h}_m
angle$ where \widehat{h}_i computes the value of \widehat{x}_i

Separability of Bit Vector Frameworks

- \widehat{L} is $\{0,1\}$, L is $\{0,1\}^m$
- ullet $\widehat{\sqcap}$ is either boolean AND or boolean OR
- $\widehat{\top}$ and $\widehat{\bot}$ are 0 or 1 depending on $\widehat{\sqcap}$.
- \hat{h} is a bit function and could be one of the following:

Raise	Lower	Propagate	Negate
⊢ → ⊢ →	Î Î	$ \begin{array}{c} \uparrow \longrightarrow \uparrow \\ \widehat{\bot} \longrightarrow \widehat{\bot} \end{array} $	Î Î

Separability of Bit Vector Frameworks

- \widehat{L} is $\{0,1\}$, L is $\{0,1\}^m$
- $\widehat{\sqcap}$ is either boolean AND or boolean OR
- $\widehat{\top}$ and $\widehat{\bot}$ are 0 or 1 depending on $\widehat{\sqcap}$.
- \hat{h} is a bit function and could be one of the following:

Raise	Lower	Propagate	Negate
$\hat{\tau}$ $\hat{\tau}$	Î Î	$ \begin{array}{c} \widehat{\uparrow} & \widehat{\uparrow} \\ \widehat{\downarrow} & \widehat{\downarrow} \end{array} $	Î Î
Non-monotonicity			

9/96

Boundedness of Constant Propagation

May 2011

General Frameworks: Precise Modelling of General Flows

$$f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), (v_c + 1), (v_a + 1)$$

9/96

$$f^{0}(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{1}(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

Uday Khedker

May 2011

 $f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1),$ $(v_c + 1),$

$$(v_a+1)$$
 \rangle $f^0(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$

$$f^{0}(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{1}(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{2}(\top) = \langle 1, \widehat{\top}, 2 \rangle$$

9/96

Uday Khedker

 $f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), (v_c + 1), \rangle$

$$(v_a+1)$$
 \rangle $f^0(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$

9/96

$$f^{0}(\top) = \langle \top, \top, \top \rangle$$

$$f^{1}(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{2}(\top) = \langle 1, \widehat{\top}, 2 \rangle$$

$$f^{3}(\top) = \langle 1, 3, 2 \rangle$$

Uday Khedker

$$f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), (v_c + 1), \rangle$$

$$\langle v_a + 1 \rangle$$

9/96

$$f^{0}(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{1}(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{2}(\top) = \langle 1, \widehat{\top}, 2 \rangle$$

$$f^{3}(\top) = \langle 1, 3, 2 \rangle$$

 $f^4(\top) = \langle \widehat{\perp}, 3, 2 \rangle$

$$f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), (v_c + 1), \rangle$$

$$(v_a + 1)$$

$$\rangle$$

$$f^0(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

$$f^1(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^2(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{0}(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{1}(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{2}(\top) = \langle 1, \widehat{\top}, 2 \rangle$$

$$f^{3}(\top) = \langle 1, 3, 2 \rangle$$

$$f^{4}(\top) = \langle \widehat{\bot}, 3, \widehat{\bot} \rangle$$

9/96

$$f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), (v_c + 1),$$

$$(v_a+1)$$

9/96

$$f^{0}(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{1}(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{2}(\top) = \langle 1, \widehat{\top}, 2 \rangle$$

$$f^{3}(\top) = \langle 1, 3, 2 \rangle$$

$$f^{4}(\top) = \langle \widehat{\perp}, 3, 2 \rangle$$

$$f^{5}(\top) = \langle \widehat{\perp}, 3, \widehat{\perp} \rangle$$

$$f^{6}(\top) = \langle \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$$

Uday Khedker

General Frameworks: Precise Modelling of General Flows

 $f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1),$ $(v_c + 1),$ $(v_a + 1)$

$$f^{0}(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{1}(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{2}(\top) = \langle 1, \widehat{\top}, 2 \rangle$$

$$f^{3}(\top) = \langle 1, 3, 2 \rangle$$

$$f^{4}(\top) = \langle \widehat{\bot}, 3, \widehat{\bot} \rangle$$

Uday Khedker

 $f^{6}(\top) = \langle \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$ $f^7(\top) = \langle \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$ 9/96

May 2011

MACS L111

9/96

Boundedness of Constant Propagation

10/96

Boundedness of Constant Propagation

The moral of the story:

The data flow value of every variable could change twice

Boundedness of Constant Propagation

The moral of the story:

- The data flow value of every variable could change twice
- In the worst case, only one change may happen in every step of a function application

Boundedness of Constant Propagation

The moral of the story:

- The data flow value of every variable could change twice
- In the worst case, only one change may happen in every step of a function application
- Maximum number of steps: $2 \times |\mathbb{V}ar|$

Uday Khed

Boundedness of Constant Propagation

The moral of the story:

- The data flow value of every variable could change twice
- In the worst case, only one change may happen in every step of a function application
- Maximum number of steps: 2 × |Var|
- Boundedness parameter k is $(2 \times |\mathbb{V}ar|) + 1$

Uday Khed

Modelling Flow Functions for General Flows

General flow functions can be written as

$$f_n(X) = (X - Kill_n(X)) \cup Gen_n(X)$$

where Gen and Kill have constant and dependent parts

$$Gen_n(X) = ConstGen_n \cup DepGen_n(X)$$

$$Kill_n(X) = ConstKill_n \cup DepKill_n(X)$$

MACS L111

Modelling Flow Functions for General Flows

General flow functions can be written as

$$f_n(X) = (X - Kill_n(X)) \cup Gen_n(X)$$

where Gen and Kill have constant and dependent parts

$$Gen_n(X) = ConstGen_n \cup DepGen_n(X)$$

 $Kill_n(X) = ConstKill_n \cup DepKill_n(X)$

- The dependent parts take care of
 - dependence across different entities as well as
 - dependence on the value of the same entity in the argument X

Modelling Flow Functions for General Flows

General flow functions can be written as

$$f_n(X) = (X - \mathsf{Kill}_n(X)) \cup \mathsf{Gen}_n(X)$$

where Gen and Kill have constant and dependent parts

$$Gen_n(X) = ConstGen_n \cup DepGen_n(X)$$

 $Kill_n(X) = ConstKill_n \cup DepKill_n(X)$

- The dependent parts take care of
 - dependence across different entities as well as
 - dependence on the value of the same entity in the argument X
- Bit vector frameworks are a special case

$$DepGen_n(X) = DepKill_n(X) = \emptyset$$

Component Lattice for Integer Constant Propagation

- Overall lattice L is the product of \widehat{L} for all variables.
- \sqcap and $\widehat{\sqcap}$ get defined by \sqsubseteq and $\widehat{\sqsubseteq}$.

Π	$\langle v, ? \rangle$	$\langle v, \times \rangle$	$\langle v, c_1 angle$
$\langle v, ? \rangle$	$\langle v, ? \rangle$	$\langle v, \times \rangle$	$\langle v, c_1 angle$
$\langle v, \times \rangle$	$\langle v, \times \rangle$	$\langle v, \times \rangle$	$\langle u, imes angle$
$\langle v, c_2 \rangle$	$\langle v, c_2 \rangle$	$\langle v, \times \rangle$	If $c_1=c_2$ then $\langle v,c_1 angle$ else $\langle v, imes angle$

Uday Khedke

• Flow function for $r = a_1 * a_2$

mult	$\langle a_1, ? \rangle$	$\langle a_1, imes angle$	$\langle a_1, c_1 angle$
$\langle a_2, ? \rangle$	$\langle r, ? \rangle$	$\langle r, \times \rangle$	$\langle r, ? \rangle$
$\langle a_2, imes angle$	$\langle r, \times \rangle$	$\langle r, \times \rangle$	$\langle r, \times \rangle$
$\langle a_2, c_2 \rangle$	$\langle r, ? \rangle$	$\langle r, \times \rangle$	$\langle r, (c_1 * c_2) \rangle$

Defining Data Flow Equations for Constant Propagation

	Const Gen _n	$DepGen_n(X)$	$ConstKill_n$	$DepKill_n(X)$
$v = c,$ $c \in \mathbb{C}$ onst	$\{\langle v,c\rangle\}$	Ø	Ø	$\{\langle v,d\rangle \langle v,d\rangle \in X\}$
$egin{aligned} v &= e, \ e &\in \mathbb{E} xpr \end{aligned}$	Ø	$\{\langle v, eval(e,X)\rangle\}$	Ø	$\{\langle v,d\rangle \langle v,d\rangle \in X\}$
read(v)	$\{\langle v, \times \rangle\}$	Ø	Ø	$\{\langle v,d\rangle \langle v,d\rangle \in X\}$

Ø

other

14/96

Defining Data Flow Equations for Constant Propagation

		ConstGen _n	$DepGen_n(X)$	ConstKill _n	$DepKill_n(X)$
	$v = c,$ $c \in \mathbb{C}$ onst	$\{\langle v,c\rangle\}$	Ø	Ø	$\{\langle v,d\rangle \langle v,d\rangle \in X\}$
	$egin{aligned} v &= e, \ e &\in \mathbb{E} xpr \end{aligned}$	Ø	$\{\langle v, eval(e,X)\rangle\}$	Ø	$\{\langle v,d\rangle \langle v,d\rangle \in X\}$
ĺ	read(v)	$\{\langle v, \times \rangle\}$	Ø	Ø	$\{\langle v,d\rangle \langle v,d\rangle \in X\}$
	other	Ø	Ø	Ø	Ø

$eval(a_1 \ op \ a_2, X)$				
	$\langle a_1, ? \rangle \in X$	$\langle a_1, \times \rangle \in X$	$\langle a_1,c_1\rangle\in X$	
$\langle a_2, ? \rangle \in X$?	×	?	
$\langle a_2, \times \rangle \in X$	×	×	×	
$\langle a_2,c_2\rangle\in X$?	×	c_1 op c_2	

14/96

Example Program for Constant Propagation

May 2011

Result of Constant Propagation

	Iteration #1	Changes in iteration #2	Changes in iteration #3	Changes in iteration #4
In_{n_1}	$\hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}$			
Out_{n_1}	$\hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\perp}, \hat{\tau}$			
In _{n2}	$\hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\perp}, \hat{\tau}$			
Out_{n_2}	$7,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$			
In _{n3}	$7,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$\widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp}$	$\widehat{\perp}, 2, 6, 3, \widehat{\perp}, \widehat{\perp}$	$\widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$
Out_{n_3}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$
In_{n_4}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$
Out_{n_4}	$2, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp}$	$2, \widehat{\top}, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot}$	$2,7,6,3,\widehat{\perp},\widehat{\perp}$	
In _{n5}	$2, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp}$	$2, \widehat{\top}, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot}$	$2,7,6,3,\widehat{\perp},\widehat{\perp}$	
Out_{n_5}	$2, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\bot}, \widehat{\bot}$	$2, \widehat{\top}, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot}$	$2,7,6,3,\widehat{\perp},\widehat{\perp}$	
In_{n_6}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$
Out_{n_6}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$
In _{n7}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$	
Out_{n_7}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$	
In _{n8}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$
Out_{n_8}	$2,2,\widehat{\top},4,\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},4,\widehat{\perp},\widehat{\perp}$	$2,2,6,4,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, \widehat{\perp}, \widehat{\perp}, \widehat{\perp}$
In _{ng}	$2,2,\widehat{\top},4,\widehat{\perp},\widehat{\perp}$	$2,2,6,\widehat{\perp},\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, \widehat{\perp}, \widehat{\perp}, \widehat{\perp}$	
Out_{n_0}	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$	
$In_{n_{10}}$	$\widehat{\perp}, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp}$	$\widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp}$	$\widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$	
$Out_{n_{10}}$	$\hat{\perp}, 2, \hat{\top}, \hat{\top}, \hat{\perp}, \hat{\perp}$	$\widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp}$	$\widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$	

Monotonicity of Constant Propagation

• Flow function $f_n(X) = (X - Kill_n(X)) \cup Gen_n(X)$ where

$$Gen_n(X) = ConstGen_n \cup DepGen_n(X)$$

 $Kill_n(X) = ConstKill_n \cup DepKill_n(X)$

- ullet ConstGen_n and ConstKill_n are trivially monotonic
- To show $X_1 \sqsubseteq X_2 \Rightarrow DepGen_n(X_1) \sqsubseteq DepGen_n(X_2)$ we need to show that $X_1 \sqsubseteq X_2 \Rightarrow eval(e, X_1) \sqsubseteq eval(e, X_2)$. This follows from definition of eval(e, X).
- To show $X_1
 ightharpoonup X_2 \Rightarrow (X_1 DepKill_n(X_1)) \sqsubseteq (X_2 DepKill_n(X_2))$ observe that $DepKill_n$ removes the pair corresponding to the variable modified in statement n. Data flow values of other variables remain unaffected.

MACS L111

Conditional Constant Propagation

May 2011

MACS L111

Conditional Constant Propagation

when the value read for variable *e* is some number $x \leq 0$

notReachable

Lattice for Conditional Constant Propagation

- Let $\langle s, X \rangle$ denote an augmented data flow value where $s \in \{reachable, notReachable\}$ and $X \in L$.
- If we can maintain the invariant $s = notReachable \Rightarrow X = \top$, then the meet can be defined as

$$\langle s_1, X_1 \rangle \sqcap_c \langle s_2, X_2 \rangle = \langle s_1 \sqcap_c s_2, X_1 \sqcap X_2 \rangle$$

May 2011 Uday Khedker

Data Flow Equations for Conditional Constant Propagation

$$In_n = \begin{cases} \langle \textit{reachable}, \textit{BI} \rangle & \textit{n} \text{ is } \textit{Start} \\ \prod_{C} g_{p \rightarrow n}(\textit{Out}_p) & \text{otherwise} \end{cases}$$

$$Out_n = \begin{cases} \langle \textit{reachable}, f_n(X) \rangle & \textit{In}_n = \langle \textit{reachable}, X \rangle \\ \langle \textit{notReachable}, \top \rangle & \text{otherwise} \end{cases}$$

$$g_{m \rightarrow n}(s, X) = \begin{cases} \langle \textit{notReachable}, \top \rangle & \textit{evalCond}(m, X) \neq \textit{undefined} \text{ and} \\ & \textit{evalCond}(m, X) \neq \textit{label}(m \rightarrow n) \\ \langle s, X \rangle & \text{otherwise} \end{cases}$$

otherwise

	Iteration #1	Changes in	Changes in
	1001401011 // 2	iteration #2	iteration #3
In_{n_1}	$R, \langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle$		
Out_{n_1}	$R, \langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle$		
In_{n_2}	$R, \langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\bot}, \widehat{\bot} \rangle$.0	,
Out_{n_2}	$R, \langle 7, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$		
In_{n_3}	$R, \langle 7, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R,\langle \widehat{\perp},2,6,3,\widehat{\perp},\widehat{\perp}\rangle$
Out_{n_3}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, \widehat{\uparrow}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R,\langle 2,2,6,3,\widehat{\perp},\widehat{\perp}\rangle$
In_{n_4}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, \uparrow, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
Out_{n_4}	$R, \langle 2, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	R , $\langle 2, \uparrow, \widehat{\uparrow}, 3, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 7, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
In_{n_5}	$R, \langle 2, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R,\langle 2,\widehat{\top},\widehat{\top},3,\widehat{\perp},\widehat{\perp}\rangle$	$N, \top = \langle \hat{\top}, \hat{\top}, \hat{\top}, \hat{\top}, \hat{\top}, \hat{\top}, \hat{\top} \rangle$
Out_{n_5}	$R, \langle 2, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\bot}, \widehat{\bot} \rangle$	$R,\langle 2,\widehat{\top},\widehat{\top},3,\widehat{\perp},\widehat{\perp}\rangle$	$N, T = \langle \hat{T}, \hat{T}, \hat{T}, \hat{T}, \hat{T}, \hat{T} \rangle$
In_{n_6}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
Out_{n_6}	$R, \langle 2, 2, \widehat{\top}, \widehat{\overrightarrow{+}}, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
In _{n7}	$R, \langle 2, 2, \widehat{\uparrow}, \widehat{\uparrow}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
Out_{n_7}	$R, \langle 2, 2, \widehat{+}, \widehat{+}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
In _{n8}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
Out_{n_8}	$R, \langle 2, 2, \widehat{\top}, 4, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 2, \widehat{\top}, 4, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 4, \widehat{\perp}, \widehat{\perp} \rangle$
In _{n9}	$R, \langle 2, 2, \widehat{\top}, 4, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$	$R,\langle 2,2,6,\widehat{\perp},\widehat{\perp},\widehat{\perp}\rangle$
Out_{n_9}	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
$In_{n_{10}}$	$R, \langle \widehat{\perp}, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
$Out_{n_{10}}$	$R, \langle \widehat{\perp}, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R,\langle \widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$

May 2011

Uday

Part 4

Faint Variables Analysis

A variable is faint if it is dead or is used in computing faint variables.

A variable is faint if it is dead or is used in computing faint variables.

 $Gen_2 = \emptyset$ $Kill_2 = \{x\}$

A variable is faint if it is dead or is used in computing faint variables.

A variable is faint if it is dead or is used in computing faint variables.

Faint Variables Analysis

A variable is faint if it is dead or is used in computing faint variables.

Faintness of x is killed by the print statement (i.e. x becomes live)

 $Kill_2 = \{x\}$ $Kill_1 = \emptyset$

A variable is faint if it is dead or is used in computing faint variables.

Faintness of x is killed by the print statement (i.e. x becomes live)

Faint Variables Analysis

A variable is faint if it is dead or is used in computing faint variables.

Faintness of x is killed by the print statement (i.e. x becomes live)

Faint Variables Analysis

A variable is faint if it is dead or is used in computing faint variables.

Faintness of x is killed by the print statement (i.e. x becomes live)

Faintness of x is killed by the assignment to y (i.e. x becomes live)

23/96

Faint Variables Analysis

23/96

Faint Variables Analysis

$$\begin{array}{c|c}
\downarrow \\
1 & y = x \\
\hline
2 & \text{print } (y); \text{ print } (x); \\
\downarrow & \{x, y\}
\end{array}$$

$$\begin{array}{c}
\mathsf{Gen}_2 = \emptyset \\
\mathsf{Kill}_2 = \{x, y\}
\end{array}$$

Faint Variables Analysis

$$\begin{array}{c|c}
\downarrow \\
1 & y = x \\
\hline
2 & \text{print } (y); \text{ print } (x); \\
\hline
& & \{x, y\} \\
\text{Gen}_2 = \emptyset & \text{Gen}_1 = \{y\} \\
\text{Kill}_2 = \{x, y\} & \text{Kill}_1 = \{x\}
\end{array}$$

Faint Variables Analysis

$$\begin{array}{c|c}
 & \downarrow & \downarrow & \downarrow \\
1 & y = x \\
\hline
 & \downarrow & \emptyset \\
2 & \text{print } (y); \text{ print } (x); \\
\hline
 & \downarrow & \{x, y\} \\
Gen_2 = \emptyset & Gen_1 = \{y\} \\
Kill_2 = \{x, y\} & Kill_1 = \{x\}
\end{array}$$

Faintness of x is killed both by the print statement and by the assignment to y (i.e. x becomes live)

Data Flow Equations for Faint Variables Analysis

24/96

$$In_n = f_n(Out_n)$$
 $Out_n = \begin{cases} BI & n \text{ is } End \\ \bigcap_{s \in succ(n)} In_s & \text{otherwise} \end{cases}$

where,

$$f_n(X) = (X - (ConstKill_n \cup DepKill_n(X)))$$

 $\cup (ConstGen_n \cup DepGen_n(X))$

and BI contains all local variables

May 2011 Uday Khedker

Statement

read(x)

Flow Function Components for Faint Variables Analysis

	$x=e,\;e\in\mathbb{E}$ xpr	(assigning value from input)	(not in assignment)	
Const Gen _n	$x \notin Opd(e) \Rightarrow \{x\}$ $x \in Opd(e) \Rightarrow \emptyset$	{x}	Ø	
$ConstKill_n$	Ø	Ø	{x}	
$DepGen_n(X)$	Ø	Ø	Ø	
$DepKill_n(X)$	$x \notin X \Rightarrow Opd(e) \cap \mathbb{V}$ ar $x \in X \Rightarrow \emptyset$	Ø	Ø	

Note: For statement x = e, $f_n(X)$ is an identity function if $x \in Opd(e)$

use(x)

Faint Variable Analysis

- What is \widehat{L} for faint variables analysis?
- Is faint variables analysis a bit vector framework?
- Is faint variables analysis distributive? Monotonic?

Uday Khedk

27/96

Prove that

 $\forall X_1, X_2 \in L, \ f_n(X_1 \cap X_2) = f_n(X_1) \cap f_n(X_2)$

Distributivity of Faint Variables Analysis

Prove that

$$\forall X_1, X_2 \in L, \ f_n(X_1 \cap X_2) = f_n(X_1) \cap f_n(X_2)$$

 ConstGen_n, DepGen_n, and ConstKill_n are trivially distributive. Assume that DepKill, is 100

$$\mathcal{E}_n(X) = (X + \mathsf{ConstKill}_n) \cup \mathsf{ConstGen}_n \cup \mathsf{DepGen}_n(X)$$

 $f_n(X) = (X - ConstKill_n) \cup ConstGen_n \cup DepGen_n(X)$ Since $DepGen_n(X) = \emptyset$, the flow function has only constant parts!

Distributivity of Faint Variables Analysis

To show that

$$(X_1 \cap X_2) - DepKill_n(X_1 \cap X_2)$$

$$= (X_1 - DepKill_n(X_1)) \cap (X_2 - DepKill_n(X_2))$$

28/96

28/96

Distributivity of Faint Variables Analysis

To show that

$$(X_1 \cap X_2) - DepKill_n(X_1 \cap X_2)$$

$$= (X_1 - DepKill_n(X_1)) \cap (X_2 - DepKill_n(X_2))$$

• If n is an assignment statement x = e, and $x \notin X_1 \cap X_2$. Assume that x is neither in X_1 nor in X_2 .

$$\begin{split} &(X_1\cap X_2)-\textit{DepKill}_n(X_1\cap X_2)\\ &=(X_1\cap X_2)-(\textit{Opd}(e)\cap \mathbb{V}\text{ar})\\ &=(X_1-(\textit{Opd}(e)\cap \mathbb{V}\text{ar}))\,\cap\,(X_2-(\textit{Opd}(e)\cap \mathbb{V}\text{ar}))\\ &=(X_1-\textit{DepKill}_n(X_1))\,\cap\,(X_2-\textit{DepKill}_n(X_2)) \end{split}$$

What if x is in X_1 but not in X_2 ?

May 2011 Uday Khedker

Distributivity of Faint Variables Analysis

To show that

$$(X_1 \cap X_2) - DepKill_n(X_1 \cap X_2)$$

$$= (X_1 - DepKill_n(X_1)) \cap (X_2 - DepKill_n(X_2))$$

• If n is an assignment statement $x \supseteq e$, and $x \notin X_1 \cap X_2$. Assume that x is neither in X_1 nor in X_2 .

$$\begin{split} &(X_1\cap X_2)-\underline{DepKill}_n(X_1\cap X_2)\\ &=(X_1\cap X_2)-(Opd(e)\cap \mathbb{V}ar)\\ &=(X_1-(Opd(e)\cap \mathbb{V}ar))\,\cap\,(X_2-(Opd(e)\cap \mathbb{V}ar))\\ &=(X_1-DepKill_n(X_1))\,\cap\,(X_2-DepKill_n(X_2)) \end{split}$$

What if x is in X_1 but not in X_2 ?

• In all other cases, $DepKill_n(X) = \emptyset$.

May 2011

28/96

29/96

Result of Faint Variables Analysis

Node	Iteration #1		Changes in Iteration #2		Changes in Iteration #3		Changes in Iteration #4	
	Out _n	In _n	Out _n	In _n	Out_n	In _n	Out _n	In _n
<i>n</i> ₉	$\{a,b,c,d\}$	$\{b,c,d\}$						
n ₈	$\{a,b,c,d\}$	$\{a,b,c,d\}$	{ <i>b</i> , <i>c</i> }	{ <i>b</i> , <i>c</i> }	{c}	{ <i>c</i> }	Ø	Ø
n ₇	$\{a,b,c,d\}$	$\{a,b,c,d\}$	{ <i>b</i> , <i>c</i> }	{ <i>b</i> , <i>c</i> }	{c}	{c}	Ø	
n ₆	$\{a,b,c,d\}$	$\{a,b,c,d\}$	{ <i>b</i> , <i>c</i> }	{ <i>b</i> , <i>c</i> }	{c}	Ø	Ø	
<i>n</i> ₅	$\{a,b,c,d\}$	$\{a,b,c\}$	{ <i>b</i> , <i>c</i> }	{ <i>b</i> , <i>c</i> }	Ø	Ø		
n ₄	$\{a,b,c,d\}$	$\{a,b,c,d\}$	{ <i>b</i> , <i>c</i> }	$\{a,c\}$	{c}		Ø	Ø
n ₃	$\{a,b,c\}$	$\{a,b,c\}$	{c}	{c}	Ø	Ø		
n ₂	$\{b,c\}$	$\{b,c\}$	{c}	{c}	Ø	Ø	Ø	
n_1	{b, c}	$\{b,c,d\}$	{c}	{ <i>c</i> , <i>d</i> }	Ø	{d}		

Part 5

Pointer Analyses

- 1. q = p;
- 2. while (...) {
- 3. $q = q \rightarrow next;$
- 4.
- 5. p → data = r1;
 6. print (q → data);
- 7. $p \rightarrow data = r2$;
- 7. $p \rightarrow data = r2;$ 8. $r4 = p \rightarrow data + r3;$

Program

Memory graph at statement 5

next

next

• Is p

data live at the exit of line 5? Can we delete line 5?

- q = p;
 - do {
 - 3. $q = q \rightarrow next;$
 - while (...) 4. 5. $p \rightarrow data = r1$:
 - print (q → data); 6.
 - 7. $p \rightarrow data = r2$;
 - 8. $r4 = p \rightarrow data + r3;$

next next

Memory graph at statement 5

Is p

data live at the exit of line 5? Can we delete line 5?

- 1. q = p;
 - 2. do {

8.

- 3. $q = q \rightarrow next;$ 4. while (...)
- 5. $p \rightarrow data = r1$;
- 6. print (q→data);
- 7. $p \rightarrow data = r2;$

 $r4 = p \rightarrow data + r3;$

Program

Memory graph at statement 5

- Is p

 data live at the exit of line 5? Can we delete line 5?
- No, if p and q can be possibly aliased.

- q = p; do {
 - 2.

8.

- 3. $q = q \rightarrow next;$ while (...) 4.
- $p \rightarrow data = r1$: 5.
- print (q → data); 6.
- $p \rightarrow data = r2$: 7.

 $r4 = p \rightarrow data + r3;$

Program

Memory graph at statement 5

- Is p

 data live at the exit of line 5? Can we delete line 5?
- No, if p and q can be possibly aliased.
- Yes, if p and q are definitely not aliased.

32/96

Original Program

32/96

Code Optimization In Presence of Pointers

Original Program Constant Propagation without aliasing

Original Program Constant Propagation Constant Propagation without aliasing with aliasing

The World of Pointer Analysis

In the most general situation

- Alias analysis is undecidable.
 Landi-Ryder [POPL 1991], Landi [LOPLAS 1992],
 Ramalingam [TOPLAS 1994]
- Flow insensitive alias analysis is NP-hard Horwitz [TOPLAS 1997]
- Points-to analysis is undecidable Chakravarty [POPL 2003]

Motivation for a Good Science of Pointer Analysis

General Frameworks: Pointer Analyses

35/96

• To quote Hind [PASTE 2001]

May 2011

Uday Khedke

Motivation for a Good Science of Pointer Analysis

- To quote Hind [PASTE 2001]
 - ▶ Fortunately many approximations exist

Uday Khedke

35/96

- To quote Hind [PASTE 2001]
 - ► Fortunately many approximations exist
 - Unfortunately too many approximations exist!

35/96

- To quote Hind [PASTE 2001]
 - ► Fortunately many approximations exist
 - Unfortunately too many approximations exist!
- Pointer analysis enables not only precise data analysis but also precise control flow analysis.

Uday Khedl

Motivation for a Good Science of Pointer Analysis

- To quote Hind [PASTE 2001]
 - ► Fortunately many approximations exist
 - Unfortunately too many approximations exist!
- Pointer analysis enables not only precise data analysis but also precise control flow analysis.
- Needs to scale to large programs.

Motivation for a Good Science of Pointer Analysis

- To quote Hind [PASTE 2001]
 - Fortunately many approximations exist
 - Unfortunately too many approximations exist!
- Pointer analysis enables not only precise data analysis but also precise control flow analysis.
- Needs to scale to large programs.
- Engineering of pointer analysis is much more dominant than the science of pointer analysis.
 - ⇒ Results in many questionable perceptions.

And information vs. 1 ones 10 information

Uday Khedke

36/96

Alias Information Vs. Points-To Information

MACS L111

Neither Symmetric Nor Reflexive

Symmetric and Reflexive

What about transitivity?

- What about transitivity?
 - Points-To: No.

- What about transitivity?
 - Points-To: No.
 - ► Alias: Depends.

37/96

Must Points-To Information

Must Points-To Information

May Points-To Information

 $x \stackrel{\circ}{=} b$ and $b \stackrel{\circ}{=} y \Rightarrow x \stackrel{\circ}{=} y$

40/96

a x b y z

a

x b y z

40/96

way Anas information

 $x \stackrel{\circ}{=} b$ and $b \stackrel{\circ}{=} y \not\Rightarrow x \stackrel{\circ}{=} y$

a X

b y z

A Comparison of Points-To and Alias Relations

Asgn.	Memory	Points-to		Aliases	
	Before x y y z u	.	x≻→u	Existing	* <i>x</i> ≗ <i>u</i> * <i>y</i> ≗ <i>z</i>
*x = y		Existing New	$y \mapsto z$ $u \mapsto z$	New Direct	$ \begin{array}{c} *x \stackrel{\circ}{=} y \\ y \stackrel{\circ}{=} u \end{array} $
	After	TVEVV	u → Z	New Indirect	$ *u \stackrel{\circ}{=} Z $ $ * * X \stackrel{\circ}{=} Z $
				Existing	* <i>x</i>
	Before $x \bullet y \bullet z \bullet u v$	Existing	<i>x</i> → <i>v</i>		* * y <u>≗</u> u
*x = *y		LXISTING	$y \rightarrow z$ $z \rightarrow u$	New Direct	* <i>x</i>
	After X Y Z Y U V Y	New	v⊶u		$ \begin{array}{c} v \stackrel{\circ}{=} z \\ v \stackrel{\circ}{=} *y \end{array} $
				New Indirect	* * X [°] = U *V [°] = U

MACS L111

41/96

42/96

Strong and Weak Updates

Strong and Weak Updates

Weak update: Modification of x or y due to *z in block 5

Weak update: Modification of x or y due to *z in block 5

Strong update: Modification of c due to *w in block 5

Strong and Weak Updates

Weak update: Modification of x or y due to *z in block 5 Strong update: Modification of c due to *w in block 5 How is this concept related to May/Must nature of information?

What About Heap Data?

- Compile time entities, abstract entities, or summarized entities
- Three options:
 - ▶ Represent all heap locations by a single abstract heap location
 - ► Represent all heap locations of a particular type by a single abstract heap location
 - ► Represent all heap locations allocated at a given memory allocation site by a single abstract heap location
- Summarization: Usually based on the length of pointer expression
- No clean and elegant solution exists

Left and Right Locations in Pointer Assignments

For an assignment statement $lhs_n = rhs_n$

Left Locations

Left Locations					
lhsn	$ConstLeftL_n$	$DepLeftL_n(X)$			
X	{x}	Ø			
* <i>X</i>	Ø	$\{y \mid (x \rightarrow y) \in X\}$			

Right Locations

Right Locations				
rhs _n	$ConstRightL_n$	$DepRightL_n(X)$		
X	Ø	$\{y \mid (x \rightarrow y) \in X\}$		
*X	Ø	$\{z \mid \{x \rightarrowtail y, y \rightarrowtail z\} \subseteq X\}$		
&x	{x}	Ø		

Gen and Kill Components

$$\begin{array}{lll} \textit{ConstGen}_n &=& \{x \rightarrowtail y \mid x \in \textit{ConstLeftL}_n, y \in \textit{ConstRightL}_n \} \\ \textit{DepGen}_n(X) &=& \{x \rightarrowtail y \mid (x \in \textit{ConstLeftL}_n, y \in \textit{DepRightL}_n(X)), \text{ or } \\ && (x \in \textit{DepLeftL}_n(X), y \in \textit{ConstRightL}_n), \text{ or } \\ && (x \in \textit{DepLeftL}_n(X), y \in \textit{DepRightL}_n(X)) \} \\ \textit{ConstKill}_n &=& \{x \rightarrowtail y \mid x \in \textit{ConstLeftL}_n \} \\ \textit{DepKill}_n(X) &=& \{x \rightarrowtail y \mid x \in \textit{DepLeftL}_n(X) \} \\ \end{array}$$

- all paths
 - ► DepKill(X) should remove only strong updates

 - ▶ *X* should be Must Points-To information
 - Must Points-To analysis

May Points-To analysis

 A points-to pair should be removed if it can be removed along some path

A points-to pair should be removed only if it must be removed along

- ► DepKill(X) should remove all weak updates
- ▶ X should be May Points-To information
- Must Points-To ⊆ May Points-To

47/96

DepKill(X) in May and Must Points-To Analysis

$$1 \overline{a = \&b}$$

$$2 \overline{c = \&a} \ 3 \overline{c = \&d}$$

$$Mustln_4 = \{a \rightarrow b\}$$

$$DepLeftL_4(Mustln_4) = \emptyset$$

$$4 \overline{*c = e}$$

$$DepLeftL_4(Mayln_4) = \{a, d\}$$

$$5$$

• $a \rightarrow b$ at block 5 along path 1,3,4,5 but not along path 1,2,4,5.

- $a \rightarrow b$ at block 5 along path 1,3,4,5 but not along path 1,2,4,5.
- $a \rightarrow b \in MayIn_5$ but $a \rightarrow b \notin MustIn_5$

- $a \rightarrow b$ at block 5 along path 1, 3, 4, 5 but not along path 1, 2, 4, 5.
- $a \rightarrow b \in MayIn_5$ but $a \rightarrow b \notin MustIn_5$
- If $DepKill_n$ for $MayOut_4$ is defined in terms of $MayIn_4$ then $a \rightarrow b \notin MayOut_4$ because a is in $DepLeftL_4(MayIn_4)$

- $a \rightarrow b$ at block 5 along path 1, 3, 4, 5 but not along path 1, 2, 4, 5.
- $a \rightarrow b \in MayIn_5$ but $a \rightarrow b \notin MustIn_5$
- If $DepKill_n$ for $MayOut_4$ is defined in terms of $MayIn_4$ then $a \rightarrow b \notin MayOut_4$ because a is in $DepLeftL_4(MayIn_4)$
- If DepKill₄ for MustOut₄ is defined in terms of MustIn₄ then
 a → b ∈ MustOut₄ because a is not in DepLeftL₄(MustIn₄)

Data Flow Equations for Points-To Analysis

$$MayIn_n = \begin{cases} BI & n \text{ is } Start \\ \bigcup_{p \in pred(n)} MayOut_n & \text{otherwise} \end{cases}$$
 $MayOut_n = f_n(MayIn_n, MustIn_n)$
 $MustIn_n = \begin{cases} BI & n \text{ is } Start \\ \bigcap_{p \in pred(n)} MustOut_n & \text{otherwise} \end{cases}$
 $MustOut_n = f_n(MustIn_n, MayIn_n)$
 $f_n(X_1, X_2) = (X_1 - Kill_n(X_2)) \cup Gen_n(X_1)$

- May Alias: Every pointer variable is aliased to every pointer variable.
- Must Alias: Every pointer variable is alised only to itself.

- May Alias: Every pointer variable is aliased to every pointer variable.
- Must Alias: Every pointer variable is alised only to itself.
- May Points-To: Every pointer variable points to every location.

- May Alias: Every pointer variable is aliased to every pointer variable.
- Must Alias: Every pointer variable is alised only to itself.
- May Points-To: Every pointer variable points to every location.
- Must Points-To: No pointer variable points to any location.

MACS L111

Uday Khed

- May Alias: Every pointer variable is aliased to every pointer variable.
- Must Alias: Every pointer variable is alised only to itself.
- May Points-To: Every pointer variable points to every location.
- Must Points-To: No pointer variable points to any location.
- Both May and Must analyses need not be performed.

Uday Khedker

- May Alias: Every pointer variable is aliased to every pointer variable.
- Must Alias: Every pointer variable is alised only to itself.
- May Points-To: Every pointer variable points to every location.
- Must Points-To: No pointer variable points to any location.
- Both May and Must analyses need not be performed.

In every case, the approximation uses the \perp element of the lattice.

Example Program for Points-To Analysis

• Variables and points-to sets:

$$\mathbb{V}\text{ar} = \{a, b, c, d\}$$

$$\mathbb{U} = \{a \mapsto a, a \mapsto b, a \mapsto c, a \mapsto d, b \mapsto a, b \mapsto b, b \mapsto d, b \mapsto d, c \mapsto a, c \mapsto b, c \mapsto c, c \mapsto d, d \mapsto a, d \mapsto b, d \mapsto c, d \mapsto d\}$$

Uday Khedker

Example Program for Points-To Analysis

MACS L111

• Variables and points-to sets:

$$\mathbb{V}\text{ar} = \{a, b, c, d\}$$

$$\mathbb{U} = \{a \mapsto a, a \mapsto b, a \mapsto c, a \mapsto d, b \mapsto a, b \mapsto b, b \mapsto d, b \mapsto d, c \mapsto a, c \mapsto b, c \mapsto c, c \mapsto d, d \mapsto a, d \mapsto b, d \mapsto c, d \mapsto d\}$$

50/96

• $L_{may} = \langle 2^{\mathbb{U}}, \supseteq \rangle, \ \top_{may} = \emptyset, \bot_{may} = \mathbb{U}$

May 2011 Uday Khedker

50/96

Example Program for Points-To Analysis

• Variables and points-to sets:

$$\mathbb{V}\text{ar} = \{a, b, c, d\}$$

$$\mathbb{U} = \{a \mapsto a, a \mapsto b, a \mapsto c, a \mapsto d, b \mapsto a, b \mapsto b, b \mapsto d, b \mapsto d, c \mapsto a, c \mapsto b, c \mapsto c, c \mapsto d, d \mapsto a, d \mapsto b, d \mapsto c, d \mapsto d\}$$

- $L_{may} = \langle 2^{\mathbb{U}}, \supseteq \rangle, \ \top_{may} = \emptyset, \bot_{may} = \mathbb{U}$
- $L_{must} = \widehat{L}_a \times \widehat{L}_b \times \widehat{L}_c \times \widehat{L}_d$ The component lattice \widehat{L}_a is: $\{a \mapsto a, a \mapsto b, a \mapsto c, a \mapsto d\}$

	Itaration #1	Changes in	Changes in
	Iteration #1	Iteration #2	Iteration #3
$MayIn_{n_1}$	Ø		
$MustIn_{n_1}$	Ø		
$MayOut_{n_1}$	$\{b \rightarrow d\}$		
$MustOut_{n_1}$	$\{b \rightarrow d\}$		
MayIn _{n2}	$\{b \rightarrow d\}$	$ \begin{cases} a \rightarrowtail b, a \rightarrowtail d, b \rightarrowtail b, \\ b \rightarrowtail d, c \rightarrowtail d \end{cases} $	$ \begin{cases} a \rightarrow b, a \rightarrow d, b \rightarrow b, \\ b \rightarrow d, c \rightarrow b, c \rightarrow d \end{cases} $
$MustIn_{n_2}$	$\{b \rightarrow d\}$	Ø	-
MayOut _{n2}	$\{b \rightarrowtail d, c \rightarrowtail d\}$	$\begin{cases} a \rightarrow b, a \rightarrow d, b \rightarrow b, \\ b \rightarrow d, c \rightarrow b, c \rightarrow d \end{cases}$	
$MustOut_{n_2}$	$\{b \rightarrow d, c \rightarrow d\}$	Ø	
MayIn _{n3}	$\{b \rightarrow d, c \rightarrow d\}$	$ \begin{cases} a \rightarrow b, a \rightarrow d, b \rightarrow b, \\ b \rightarrow d, c \rightarrow b, c \rightarrow d \end{cases} $	
$MustIn_{n_3}$	$\{b \rightarrow d, c \rightarrow d\}$	Ø	
MayOut _{n3}	$\{a ightharpoonup b, b ightharpoonup d, \ c ightharpoonup d\}$	$ \begin{cases} a \rightarrow b, b \rightarrow b, b \rightarrow d, \\ c \rightarrow b, c \rightarrow d \end{cases} $	
MustOut _{n3}	$\{a \rightarrow b, b \rightarrow d,$	{a → b}	

Result of Pointer Analysis

	Iteration $\#1$	Changes in	Changes in
		Iteration #2	Iteration #3
MayIn _{n4}	$\{a \rightarrowtail b, b \rightarrowtail d, c \rightarrowtail d\}$	$\{a ightharpoonup b, b ightharpoonup b, b ightharpoonup d, \ c ightharpoonup b, c ightharpoonup d\}$	
MustIn _{n4}	$\{a \rightarrowtail b, b \rightarrowtail d, c \rightarrowtail d\}$	$\{a \rightarrowtail b\}$	
MayOut _{n4}	$\{a \rightarrowtail b, b \rightarrowtail b, c \rightarrowtail d\}$	$\{a \rightarrow b, b \rightarrow b, c \rightarrow b, c \rightarrow d\}$	
MustOut _{n4}	$\{a \rightarrowtail b, b \rightarrowtail b, c \rightarrowtail d\}$	$\{a \rightarrowtail b, b \rightarrowtail b\}$	
MayIn _{n5}	$\{b \rightarrow d, c \rightarrow d\}$	$ \begin{cases} a \rightarrowtail b, a \rightarrowtail d, b \rightarrowtail b, \\ b \rightarrowtail d, c \rightarrowtail b, c \rightarrowtail d \end{cases} $	
$MustIn_{n_5}$	$\{b \rightarrowtail d, c \rightarrowtail d\}$	Ø	
MayOut _{n5}	$\{a \rightarrowtail c, b \rightarrowtail d, c \rightarrowtail d\}$	$ \{a \rightarrowtail c, b \rightarrowtail b, b \rightarrowtail d, \\ c \rightarrowtail b, c \rightarrowtail d\} $	
MustOut _{ns}	$\{a \rightarrow c, b \rightarrow d, c \rightarrow d\}$	{a → c}	

Result of Pointer Analysis

	Itaration #1	Changes in	Changes in
	Iteration $\#1$	Iteration $\#2$	Iteration #3
MayIn _{n6}	$ \begin{cases} a \rightarrowtail b, a \rightarrowtail c, b \rightarrowtail b, \\ b \rightarrowtail d, c \rightarrowtail d \end{cases} $	$ \begin{cases} a \rightarrowtail b, a \rightarrowtail c, b \rightarrowtail b, \\ b \rightarrowtail d, c \rightarrowtail b, c \rightarrowtail d \end{cases} $	
$MustIn_{n_6}$	$\{c \rightarrow d\}$	Ø	
MayOut _{n6}	$ \begin{cases} a \rightarrow b, a \rightarrow d, b \rightarrow b, \\ b \rightarrow d, c \rightarrow d \end{cases} $	$ \begin{cases} a \rightarrow b, a \rightarrow d, b \rightarrow b, \\ b \rightarrow d, c \rightarrow b, c \rightarrow d \end{cases} $	
$MustOut_{n_6}$	$\{c \mapsto d\}$	Ø	
MayIn _{n7}	$ \begin{cases} a \rightarrowtail b, a \rightarrowtail d, b \rightarrowtail b, \\ b \rightarrowtail d, c \rightarrowtail d \end{cases} $	$ \begin{cases} a \rightarrowtail b, a \rightarrowtail d, b \rightarrowtail b, \\ b \rightarrowtail d, c \rightarrowtail b, c \rightarrowtail d \end{cases} $	
MustIn _{n7}	$\{c \rightarrow d\}$	Ø	
MayOut _{n7}	$ \begin{cases} a \rightarrowtail b, a \rightarrowtail d, b \rightarrowtail b, \\ b \rightarrowtail d, c \rightarrowtail d, d \rightarrowtail d \end{cases} $	$ \begin{cases} a \rightarrow b, a \rightarrow d, b \rightarrow b, \\ b \rightarrow d, c \rightarrow b, c \rightarrow d, \\ d \rightarrow b, d \rightarrow d \end{cases} $	
MustOut _{n7}	$\{c \rightarrow d\}$	Ø	

Non-Distributivity of Points-To Analysis

 $\begin{array}{c|c}
n_1 \\
b = & c \\
c = & d
\end{array}$ $n_3 \begin{bmatrix} b = & e \\
e = & d
\end{bmatrix}$

 n_4

Must Points-To

Non-Distributivity of Points-To Analysis

 $\begin{array}{c|c}
 & n_1 \\
\hline
= & c \\
= & d
\end{array}$ $\begin{array}{c|c}
 & b = & e \\
e = & d
\end{array}$

 n_4

Must Points-To

Non-Distributivity of Points-To Analysis

 $a \rightarrow d$ is missing

Part 6

Heap Reference Analysis

Motivating Example for Heap Liveness Analysis

If the while loop is not executed even once.

Motivating Example for Heap Liveness Analysis

If the while loop is executed once.

Motivating Example for Heap Liveness Analysis

If the while loop is executed twice.

- Mappings between access expressions and I-values keep changing
- This is a rule for heap data
 For stack and static data, it is an exception!
- Static analysis of programs has made significant progress for stack and static data.

What about heap data?

- ► Given two access expressions at a program point, do they have the same I-value?
- ► Given the same access expression at two program points, does it have the same I-value?

MACS L111

Uday Khedker

57/96

3

x = x.rptr

w = x

y = x.lptr

 $z = New class_of_z$

y = y.lptr

z.sum = x.data + y.data

w = null

y = z = null

while (x.data < max)x.lptr = null

x.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

x.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null

z.lptr = z.rptr = null

y.lptr = y.rptr = null

x = y = z = null

May 2011

y = z = null

 $1 \quad \mathsf{w} = \mathsf{x}$

w = null

2 while (x.data < max)

 $\{ \qquad x.\mathsf{lptr} = \mathsf{null}$

x = x.rptr

x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

 $4 \quad y = x.lptr \\$

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

x.rptr = x.lptr.rptr = null

5 z = New class_of_z z.lptr = z.rptr = null

6 y = y.lptr
y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null

While loop is not executed even once


```
y = z = null
```

w = x

w = null

while (x.data < max)

x.lptr = null

3 x = x.rptrx.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null

5 $z = New class_of_z$ z.lptr = z.rptr = null

y = y.lptr

y.lptr = y.rptr = nullz.sum = x.data + y.data

x = y = z = null

While loop is not executed even once

May 2011

```
y = z = null
```

1 w = x

w = null

2 while (x.data < max)

 $\{$ x.lptr = null

x = x.rptr

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null 4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class_of_z z.lptr = z.rptr = null

5 y = y.lptr
y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null

While loop is not executed even once


```
y = z = null
```

w = x

w = null

while (x.data < max)

x.lptr = null

3 x = x.rptrx.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = nullx.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null

5 $z = New class_of_z$ z.lptr = z.rptr = null

y = y.lptr

y.lptr = y.rptr = nullz.sum = x.data + y.data

x = y = z = null

While loop is not executed even once

y = z = null

1 w = x

w = null

2 while (x.data < max)

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

5 z = New class_of_z z.lptr = z.rptr = null

 $5 \quad y = y.lptr$

y.lptr = y.rptr = null z.sum = x.data + y.data

x = y = z = null

While loop is not executed even once

May 2011

```
y = z = null
```

1 w = x

w = null

2 while (x.data < max)

 $\{ x.lptr = null \}$

x = x.rptr

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

5 z = New class_of_z z.lptr = z.rptr = null

5 y = y.lptr
y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null

While loop is not executed even once


```
y = z = null
```

 $1 \quad \mathsf{w} = \mathsf{x}$

w = null

2 while (x.data < max)

 $\{$ x.lptr = null

x = x.rptr

x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

 $4 \quad y = x.lptr$

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

x.rptr = x.lptr.rptr = null

5 z = New class_of_z z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null 7 z.sum = x.data + y.data

x = y = z = null

While loop is not executed even once


```
y = z = null
```

1 w = x

w = null

2 while (x.data < max)

 $\{ \qquad \mathsf{x.lptr} = \mathsf{null}$

x = x.rptr

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

 $4 \quad y = x.lptr \\$

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

5 z = New class_of_z z.lptr = z.rptr = null

6 y = y.lptr
y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null

While loop is executed once

y = z = null

- $1 \quad \mathsf{w} = \mathsf{x}$
 - w = null
- 2 while (x.data < max)
- $\{$ x.lptr = null
- $3 \qquad x = x.rptr$
- x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null
- 4 y = x.lptr
 - x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null
- 5 z = New class_of_z
 - $\mathsf{z.lptr} = \mathsf{z.rptr} = \mathsf{null}$
- 6 y = y.lptr y.lptr = y.rptr = null
- 7 z.sum = x.data + y.data
 - x = y = z = null

While loop is executed twice

May 2011

Some Observations

```
y = z = \text{null}
1 \quad w = x
w = \text{null}
```

2 while (x.data < max)

 $\{ x.lptr = null \}$

3 x = x.rptr

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

5 z = New class_of_z z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null 7 z.sum = x.data + y.data

x = y = z = null

Some Observations

y = z = null

 $1 \quad w = x$

w = null

2 while (x.data < max)

 $\{ x.lptr = null$ 3 x = x.rptr

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

 $5 \quad z = New \quad class_of_z$

 $\mathsf{z}.\mathsf{lptr} = \mathsf{z}.\mathsf{rptr} = \mathsf{null}$

5 y = y.lptr y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null

New access expressions are created. Can they cause exceptions?

May 2011

An Overview of Heap Reference Analysis

- A reference (called a *link*) can be represented by an *access path*.
- Eg. " $x \rightarrow lptr \rightarrow rptr$ "
- A link may be accessed in multiple ways
- Setting links to null
 - Alias Analysis. Identify all possible ways of accessing a link
 - Liveness Analysis. For each program point, identify "dead" links (i.e. links which are not accessed after that program point)
 - ► Availability and Anticipability Analyses. Dead links should be reachable for making null assignment.
 - ▶ Code Transformation. Set "dead" links to null

Assumptions

For simplicity of exposition

- Java model of heap access
 - ► Root variables are on stack and represent references to memory in heap.
 - ▶ Root variables cannot be pointed to by any reference.
- Simple extensions for C++
 - Root variables can be pointed to by other pointers.
 - ▶ Pointer arithmetic is not handled.

Key Idea #1: Access Paths Denote Links

- Root variables: x, y, z
- Field names : rptr, lptr
- Access path : x→rptr→lptr
 Semantically, sequence of "links"
- Frontier: name of the last link
- Live access path: If the link corresponding to its frontier is used in future

What Makes a Link Live?

Assuming that a statement is the last statement in the program, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

Reading a link for accessing the contents of the corresponding target object:

Example	Objects read	Live access paths
sum = x.rptr.data	x, O_1, O_2	$x, x \rightarrow \text{rptr}$
if (x.rptr.data < sum)	x, O_1, O_2	$x, x \rightarrow \text{rptr}$

Stack

Assuming that a statement is the last statement in the program, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

Reading a link for copying the contents of the corresponding target object:

Example	Objects read	Live access paths
y = x.rptr	x, O_1	X

Assuming that a statement is the last statement in the program, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

Reading a link for copying the contents of the corresponding target object:

Example	Objects read	Live access paths
y = x.rptr	x, O_1	X
x.lptr = y	x, O_1, y	X

Stack

Assuming that a statement is the last statement in the program, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

Reading a link for comparing the address of the corresponding target object:

Example		Live access paths
if $(x.lptr == null)$	x, O_1	$x, x \rightarrow lptr$

Assuming that a statement is the last statement in the program, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

Reading a link for comparing the address of the corresponding target object:

Example		Live access paths
if $(x.lptr == null)$	x, O_1	$x, x \rightarrow lptr$
if $(y == x.lptr)$	x, O_1, y	$x, x \rightarrow lptr, y$

Liveness Analysis

Key Idea #2: Transfer of Access Paths

Key Idea #2: Transfer of Access Paths

Key Idea #2 : Transfer of Access Paths

Key Idea #2 : Transfer of Access Paths

Key Idea #2 : Transfer of Access Paths

Key Idea #2 : Transfer of Access Paths

Key Idea #2: Transfer of Access Paths

Key Idea #2 : Transfer of Access Paths

Generated

x after the assimment is same as the $x \rightarrow n$ before the assignment

Rey Idea #5 . Liveness Closure Officer Link Aliasing

x and y are node aliases

Uday Khedker

Key Idea #3 : Liveness Closure Under Link Aliasing

x and y are node aliases x.n and y.n are link aliases

Key Idea #3 : Liveness Closure Under Link Aliasing

x and y are node aliases x.n and y.n are link aliases

 $x \rightarrow n$ is live $\Rightarrow y \rightarrow n$ is live

Key Idea #3 : Liveness Closure Under Link Aliasing

 $x \rightarrow n$ is live $\Rightarrow y \rightarrow n$ is live

 Explicit Liveness at p Liveness purely due to the program beyond p. The effect of execution before p is not incorporated.

- Explicit Liveness at p
 Liveness purely due to the program beyond p.
 The effect of execution before p is not incorporated.
- Implicit Liveness at p
 Access paths that become live under link alias closure.

- Explicit Liveness at p
 Liveness purely due to the program beyond p.
 The effect of execution before p is not incorporated.
- Implicit Liveness at p
 Access paths that become live under link alias closure.
 - ▶ The set of implicitly live access paths may not be prefix closed.

- Explicit Liveness at p
 Liveness purely due to the program beyond p.
 The effect of execution before p is not incorporated.
- Implicit Liveness at p
 Access paths that become live under link alias closure.
 - ▶ The set of implicitly live access paths may not be prefix closed.
 - ► These *paths* are not accessed, their frontiers are accessed through some other access path

- Explicit Liveness at p
 Liveness purely due to the program beyond p.
 The effect of execution before p is not incorporated.
- Implicit Liveness at p
 Access paths that become live under link alias closure.
 - ▶ The set of implicitly live access paths may not be prefix closed.
 - ► These *paths* are not accessed, their frontiers are accessed through some other access path

Every live link in the heap is the Frontier of some explicitly live access path.

Notation for Defining Flow Functions for Explicit Liveness

$$\begin{array}{lll} \textit{base}(\rho_{x}) &=& \text{longest proper prefix of } \rho_{x} \\ \textit{prefixes}(\rho_{x}) &=& \{\rho_{x}' \mid \rho_{x}' \text{ is a prefixe of } \rho_{x}\} \\ \textit{summary}(S) &=& \{\rho_{x} \rightarrow * \mid \rho_{x} \in S\} \end{array}$$

ρ_{x}		frontier (ρ_x)	$base(ho_{x})$	prefixes (ho_{x})	summary $(\{ ho_{x}\})$
<i>x</i> → <i>n</i> ·	→r	r	<i>x</i> →n-	$\{x, x \rightarrow n, x \rightarrow n \rightarrow r\}$	$\{x \rightarrow n \rightarrow r \rightarrow *\}$
<i>x</i> → <i>r</i> -	→n	n	$x \rightarrow r$	$\{x, x \rightarrow r, x \rightarrow r \rightarrow n\}$	$\{x \rightarrow r \rightarrow n \rightarrow *\}$
<i>x</i> → <i>n</i>		n	X	$\{x, x \rightarrow n\}$	{ <i>x</i> → <i>n</i> →*}
<i>x</i> → <i>r</i>			X	$\{x, x \rightarrow r\}$	$\{x \rightarrow r \rightarrow *\}$
X		A	- E	{x}	{ <i>x</i> →*}

empty access path

0 or more occurrences of any field name

Notation for Defining Flow Functions for Explicit Liveness

$$\begin{array}{lll} \textit{base}(\rho_{\mathsf{x}}) &=& \mathsf{longest} \; \mathsf{proper} \; \mathsf{prefix} \; \mathsf{of} \; \rho_{\mathsf{x}} \\ \textit{prefixes}(\rho_{\mathsf{x}}) &=& \{\rho_{\mathsf{x}}' \mid \rho_{\mathsf{x}}' \; \mathsf{is} \; \mathsf{a} \; \mathsf{prefixe} \; \mathsf{of} \; \rho_{\mathsf{x}} \} \\ \textit{summary}(S) &=& \{\rho_{\mathsf{x}} \rightarrow * \mid \rho_{\mathsf{x}} \in S \} \end{array}$$

$ ho_{X}$	frontier (ρ_x)	$base(ho_x)$	prefixes (ho_{x})	summary $(\{ ho_{x}\})$
$x \rightarrow n \rightarrow r$	r	<i>x</i> →n-	$\{x, x \rightarrow n, x \rightarrow n \rightarrow r\}$	$\{x \rightarrow n \rightarrow r \rightarrow *\}$
$x \rightarrow r \rightarrow n$	n	$x \rightarrow r$	$\{x, x \rightarrow r, x \rightarrow r \rightarrow n\}$	$\{x \rightarrow r \rightarrow n \rightarrow *\}$
x→n	n	X	$\{x, x \rightarrow n\}$	{ <i>x</i> → <i>n</i> →*}
<i>x</i> → <i>r</i>		X	$\{x, x \rightarrow r\}$	{ <i>x</i> → <i>r</i> →*}
X	X	\mathcal{E}	{x}	{ <i>x</i> →*}

Flow Functions for Explicit Liveness Analysis

access expression

corresponding access path

Statement	ConstKill	DepKill(X)	ConstGen	DepGen(X)
Use α_y	Ø	Ø	$prefixes(base(\rho_y))$	Ø
Use α_y .d	Ø	Ø	$prefixes(\rho_y)$	Ø
$\alpha_{x} = new$	$\{\rho_{x} \rightarrow *\}$	Ø	$prefixes(base(ho_x))$	Ø
$\alpha_{x} = Null$	$\{\rho_{x} \rightarrow *\}$	0	$prefixes(base(\rho_x))$	Ø
$\alpha_{x} = \alpha_{y}$	$\{\rho_{x} \rightarrow *\}$	Ø	$prefixes(base(ho_x)) \cup prefixes(base(ho_y))$	$\{\rho_{y} \rightarrow \sigma \mid \rho_{x} \rightarrow \sigma \in X\}$
End	Ø	Ø	summary (Globals)	Ø
other	Ø	Ø	Ø	Ø

Flow Functions for Explicit Liveness Analysis

Statement	ConstKill	DepKill(X)	ConstGen		DepGen(X)
Use α_y	Ø	Ø	$prefixes(base(ho_y))$		Ø
Use α_y .d	Ø	Ø	$prefixes(\rho_y)$	Ø	
$\alpha_{x} = new$	$\{\rho_{X} \rightarrow *\}$	Ø	$prefixes(base(ho_x))$	Ø	
$\alpha_{x} = Null$	$\{\rho_{X} \rightarrow *\}$	0	$prefixes(base(\rho_x))$	Ø	
$\alpha_{x} = \alpha_{y}$	$\{\rho_{x} \rightarrow *\}$	Ø	$prefixes(base(ho_x)) \cup prefixes(base(ho_y))$	$\{\rho_y$	$\sigma \mid \rho_X \rightarrow \sigma \in X \}$
End	Ø	Ø	summary(Globals)		Ø
other	Ø	Ø	Ø	/	/ Ø

Uday Khedker

Transfer

Flow Functions for Explicit Liveness Analysis

Statement	ConstKill	DepKill(X)	ConstGen	DepGen(X)
Use α_y	Ø	Ø	$prefixes(base(ho_y))$	Ø
Use α_y .d	Ø	Ø	$prefixes(\rho_y)$	Ø
$\alpha_{x} = new$	$\{\rho_{X} \rightarrow *\}$	Ø	$prefixes(base(ho_x))$	Ø
$\alpha_{x} = Null$	$\{\rho_{X} \rightarrow *\}$	0	$prefixes(base(\rho_x))$	Ø
$\alpha_{x} = \alpha_{y}$	$\{\rho_{x} \rightarrow *\}$	Ø	$prefixes(base(ho_x)) \cup prefixes(base(ho_y))$	$\{\rho_{y} \rightarrow \sigma \mid \rho_{x} \rightarrow \sigma \in X\}$
End	Ø	Ø	summary (Globals)	Ø
other	Ø	Ø	Ø	Ø

Uday Khedker

Flow Functions for Handling Procedure Calls in Computing **Explicit Liveness**

Statement	ConstKill	DepKill(X)	ConstGen	DepGen(X)
$\alpha_x = f(\alpha_y)$	$\{\rho_x \rightarrow *\}$	0 01	$prefixes(base(ho_x)) \cup \\ prefixes(base(ho_y)) \cup \\ summary(\{ ho_y\} \cup Globals)$	Ø
return α_y	Ø	Ø	$prefixes(base(\rho_y)) \cup summary(\{\rho_v\})$	Ø

Anticipability of Heap References: An All Paths problem

Liveness of Heap References: An Any Path problem

Liveness of Heap References: An Any Path problem

Uday Khedke

Liveness of Heap References: An Any Path problem

Liveness of Heap References: An Any Path problem

Liveness of Heap References: An Any Path problem

Infinite Number of Unbounded Access Paths

Key Idea #5: Using Graphs as Data Flow Values

Finite Number of Bounded Structures

Key Idea #6: Include Program Point in Graphs

MACS L111

Key Idea #6: Include Program Point in Graphs

MACS L111

$$\{x, x \rightarrow n, x \rightarrow n \rightarrow n, x \rightarrow n \rightarrow n, ...\}$$

Different occurrences of n's in an access path are Indistinguishable

Access Graph : $x \xrightarrow{n} n_1$

May 2011

Key Idea #6: Include Program Point in Graphs

 $\{x, x \rightarrow n, x \rightarrow n \rightarrow n, x \rightarrow n \rightarrow n \rightarrow n, \ldots\}$

 $\{x, x \rightarrow n, x \rightarrow n \rightarrow n, x \rightarrow n \rightarrow n \rightarrow r\}$

$$1 \times = x.n$$

MACS L111

Different occurrences of n's in an access path are Indistinguishable

Access Graph: $x \xrightarrow{n} n_1$ n

Different occurrences of n's in an access path are Distinct

Access Graph: $x \xrightarrow{n} n_1 \xrightarrow{n} n_2 \xrightarrow{r} r_2$

May 2011

Iteration #1

Uday Khedke

Uday Khedke

Uday Khedke

Uday Khedke

77/96

Access Graph and Memory Graph

Program Fragment

$$[x.l = y.r] 1$$

$$[if (x.l.n == y.r.n)] 2$$

MACS L111 77/96 **Access Graph and Memory Graph**

Program Fragment Memory Graph

May 2011

Access Graph and Memory Graph

Program Fragment Memory Graph Acce

Access Graph and Memory Graph

Program Fragment

Memory Graph

Access Graphs

 Memory Graph: Captures the shape of heap Nodes represent locations and edges represent links (i.e. pointers).

Access Graphs

77/96

Memory Graph

- Memory Graph: Captures the shape of heap Nodes represent locations and edges represent links (i.e. pointers).
- Access Graphs: Captures the usage (or access) pattern of heap Nodes represent dereference of links at particular statements. Memory locations are implicit.

Program Fragment

Lattice of Access Graphs

- Finite number of nodes in an access graph for a variable
- \forall induces a partial order on access graphs
 - ⇒ a finite (and hence complete) lattice
 - \Rightarrow All standard results of classical data flow analysis can be extended to this analysis.

Termination and boundedness, convergence on MFP, complexity etc.

Access Graph Operations

- Union. G ⊎ G'
- Path Removal. $G \oplus \rho$ removes those access paths in G which have ρ as a prefix.
- Factorization (/).
- Extension.

Uday Khedk

Semantics of Access Graph Operations

- P(G, M) is the set of paths in graph G terminating on nodes in M. For graph G_i , M_i is the set of all nodes in G_i .
- S is the set of remainder graphs and $R(S, M_s)$ is the set of all paths in all remainder graphs in S.

Operation		Access Paths		
Union	$G_3 = G_1 \uplus G_2$	$P(G_3, M_3) \supseteq P(G_1, M_1) \cup P(G_2, M_2)$		
Path Removal	$G_2=G_1\ominus p$	$P(G_2, M_2) \supseteq P(G_1, M_1) - \{\rho \rightarrow \sigma \mid \rho \rightarrow \sigma \in P(G_1, M_1)\}$		
Factorization	$S = G_1/(G_2, M)$	$P(S, M_s) = \{ \sigma \mid \rho' \rightarrow \sigma \in P(G_1, M_1), \ \rho' \in P(G_2, M) \}$		
	$G_2 = (G_1, M) \# \emptyset$	$P\left(G_{2},M_{2}\right)=\emptyset$		
Extension	$G_2 = (G_1, M) \# S$	$P(G_2, M_2) \supseteq P(G_1, M_1) \cup \{a \Rightarrow \sigma \mid a \in P(G_1, M) \mid \sigma \in P(S, M)\}$		

Semantics of Access Graph Operations

- P(G, M) is the set of paths in graph G terminating on nodes in M. For graph G_i , M_i is the set of all nodes in G_i .
- S is the set of remainder graphs and $R(S, M_s)$ is the set of all paths in all remainder graphs in S.

Operation		Access Paths		
Union	$G_3 = G_1 \uplus G_2$	$P(G_3, M_3) \supseteq P(G_1, M_1) \cup P(G_2, M_2)$		
Path Removal	$G_2=G_1\ominus p$	$P(G_2, M_2) \supseteq P(G_1, M_1) - \{\rho \rightarrow \sigma \mid \rho \rightarrow \sigma \in P(G_1, M_1)\}$		
Factorization	$S=G_1/(G_2,M)$	$P(S, M_s) = \{ \sigma \mid \rho' \rightarrow \sigma \in P(G_1, M_1), \ \rho' \in P(G_2, M) \}$		
	$G_2 = (G_1, M) \# \emptyset$	$P(G_2, M_2) = \emptyset$		
Extension	$G_2 = (G_1, M) \# S$	$P(G_2, M_2) \supseteq P(G_1, M_1) \cup \{\rho \rightarrow \sigma \mid \rho \in P(G_1, M), \sigma \in P(S, M_c)\}$		

 ρ' represents quotient

 σ represents remainder

Union	Path Removal	Factorisation	Extension
$g_3 \uplus g_4 = g_4$ $g_2 \uplus g_4 = g_5$ $g_5 \uplus g_4 = g_5$ $g_5 \uplus g_6 = g_6$	Mol		

Union	Path Removal	Factorisation	Extension
$g_3 \uplus g_4 = g_4$	$g_6 \ominus x \rightarrow I = g_2$		
$g_2 \uplus g_4 = g_5$	$g_5\ominus x=\mathcal{E}_G$		
	$g_4\ominus x\rightarrow r=g_4$		
$g_5 \uplus g_6 = g_6$	$g_4\ominus x\rightarrow l=g_1$		

			4 1 1	•
Unio	n Pa	th Removal	Factorisation	Extension
$g_5 \uplus g_4$	$=g_5 g_4$	$ \Rightarrow x \Rightarrow r = g_4 $ $ \Rightarrow x \Rightarrow l = g_1 $	$g_2/(g_1, \{x\}) = \{rg_1\}$ $g_5/(g_1, \{x\}) = \{rg_1, rg_2\}$ $g_5/(g_2, \{r_2\}) = \{\epsilon_{RG}\}$ $g_4/(g_2, \{r_2\}) = \emptyset$	

			l
Union	Path Removal	Factorisation	Extension
$g_2 \uplus g_4 = g_5$ $g_5 \uplus g_4 = g_5$	$g_4 \ominus x \rightarrow r = g_4$	$g_{5}/(g_{1}, (^{\wedge})) = \{r_{g_{1}}, r_{g_{2}}\}$	$(g_3, \{l_1\}) \# \{rg_1\} = g_4$ $(g_3, \{x, l_1\}) \# \{rg_1, rg_2\} = g_6$ $(g_2, \{r_2\}) \# \{\epsilon_{RG}\} = g_2$ $(g_2, \{r_2\}) \# \emptyset = \mathcal{E}_G$

Union	Path Kemovai	Factorisation	Extension
$g_2 \oplus g_4 = g_5$	85 0 1,7 0 6	rg_2 }	$(g_3, \{l_1\}) \# \{rg_1\} = g_4$ $(g_3, \{x, l_1\}) \# \{rg_1, rg_2\} = g_6$ $(g_2, \{r_2\}) \# \{\epsilon_{RG}\} = g_2$ $(g_2, \{r_2\}) \# \emptyset = \mathcal{E}_G$

Remainder is empty

Quotient is empty

Data Flow Equations for Heap Liveness Analysis

82/96

Computing Liveness Access Graph for variable v by incorporating the effect of statement n.

$$ELIn_n(v) = (ELOut_n(v) \ominus ELKillPath_n(v)) \uplus ELGen_n(v)$$

$$ELOut_n(v) = \begin{cases} makeGraph(v \rightarrow *) & n = End, \ v \in Globals \\ \mathcal{E}_G & n = End, \ v \notin Globals \\ & \downarrow \downarrow & ELIn_s(v) \text{ otherwise} \end{cases}$$

$$ELGen_n(v) = ELConstGen_n(v) \uplus ELDepGen_n(v)$$

(Note: This notation is slightly different from the notation in the book.)

Flow Functions for Explicit Liveness Analysis

 $G_{ ext{x}} = ext{makeGraph}(
ho_{ ext{x}}) \quad G_{ ext{x}}^B = ext{makeGraph}(ext{base}(
ho_{ ext{x}})) \ G_{ ext{y}} = ext{makeGraph}(ext{base}(
ho_{ ext{y}}))$

	Use α_{x} d	Use $lpha_{x}$	$\alpha_{x} = \alpha_{y}$	$lpha_{x} = Null, \ lpha_{x} = New$
$ELKillPath_n(x)$	\mathcal{E}	\mathcal{E}	$ ho_{x}$	$ ho_{x}$
$ELKillPath_n(y)$	ε	\mathcal{E}	\mathcal{E}	\mathcal{E}
$ELConstGen_n(x)$	G_{x}	$G_{\!\scriptscriptstyle X}^{B}$	$G_{\!\scriptscriptstyle extit{ iny }}^{B}$	$G_{\!\scriptscriptstyle X}^B$
$ELConstGen_n(y)$	\mathcal{E}_{G}	\mathcal{E}_{G}	G_y^B	\mathcal{E}_{G}
$ELDepGen_n(x)(X)$	\mathcal{E}_{G}	\mathcal{E}_{G}	\mathcal{E}_{G}	\mathcal{E}_{G}
$ELDepGen_n(y)(X)$	\mathcal{E}_{G}	\mathcal{E}_{G}	$(G_y, M_y) \# (X/(G_x, M_x))$	\mathcal{E}_{G}

Flow Functions for Explicit Liveness Analysis

 \mathcal{E}_{G}

 \mathcal{E}_{G}

 $ELDepGen_n(x)(X)$

 \mathcal{E}_{G}

 \mathcal{E}_{G}

 $(G_{v}, M_{v}) \# (X/(G_{x}, M_{x}))$

 \mathcal{E}_{G}

 \mathcal{E}_{G}

 $3 = x \cdot rptr$ \mathcal{E}_{G}

$\Rightarrow x \rightarrow l_4 \rightarrow l_6$ $1 \quad w = x$ $\Rightarrow x \rightarrow l_4 \rightarrow l_6$ $2 \quad \text{while (x.data < max)}$

7 z.sum = x.data + y.data

z.sum = x.data + y.data

May 2011

Uday Khedker

Uday Khedker

Which Access Paths Can be Nullified?

• Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable) for each reference field f of the object pointed to by ρ if $\rho \rightarrow f$ is not live at p then Insert $\rho \rightarrow f = \text{null}$ at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

Which Access Paths Can be Nullified?

Can be safely dereferenced

• Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable) for each reference field f of the object pointed to by ρ if $\rho \rightarrow f$ is not live at p then Insert $\rho \rightarrow f = \text{null}$ at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

Can be safely dereferenced

Consider link aliases at p

Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable) **for** each reference field f of the object pointed to by ρ if $\rho \rightarrow f$ is not live at p then Insert $\rho \rightarrow f$ = null at p subject to profitability

For simple access paths, ρ is empty and f is the root variable name.

Which Access Paths Can be Nullified?

Can be safely dereferenced

Consider link aliases at p

• Consider extensions of accessible paths for nullification.

• For simple access paths, ρ is empty and f is the root variable name.

Cannot be hoisted and is not redefined at p

Availability and Anticipability Analyses

- ρ is available at program point p if the target of each prefix of ρ is guaranteed to be created along every control flow path reaching p.
- ρ is anticipable at program point p if the target of each prefix of ρ is guaranteed to be dereferenced along every control flow path starting at p.

Availability and Anticipability Analyses

- ρ is available at program point p if the target of each prefix of ρ is guaranteed to be created along every control flow path reaching p.
- ρ is anticipable at program point p if the target of each prefix of ρ is guaranteed to be dereferenced along every control flow path starting at p.
- Finiteness.
 - An anticipable (available) access path must be anticipable (available) along every paths. Thus unbounded paths arising out of loops cannot be anticipable (available).
 - Due to "every control flow path nature", computation of anticipable and available access paths uses ∩ as the confluence. Thus the sets are bounded.
 - \Rightarrow No need of access graphs.

90/96

Ø

91/96

Anticipability Analysis of Example Frogram

Ø

 $\{x, y, z\}$

Uday Khedker

 $\{x, x \rightarrow \text{rptr }\}$

3 | x = x.rptr

{*x*}

 $\Rightarrow x \longrightarrow r_3 \longrightarrow l_4 \longrightarrow l_6$

Creating null Assignments from Live and Accessible Paths y = z = null

y.lptr = y.rptr = null

94/96

The Resulting Program

y = z = null

x.lptr = null

w = null

w = x

3

while (x.data < max)

x = x.rptr

4 y = x.lptr

 $z = New class_of_z$

y = y.lptr

z.sum = x.data + y.data

z.lptr = z.rptr = null

x.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = nullx.lptr.lptr.rptr = null

x.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null

y.lptr = y.rptr = null

x = y = z = null

Uday Khedker

x.n = null

95/96

x = x.nx.n.n = nullx.n.r = null6 x = x.n

z = x.n

x.n = null

May 2011

95/96

x.n = nullx = x.nx = x

z = x.n

x.n.r = null

May 2011

x.n.n = null

6

x = x.n

Uday Khedker

Non-Distributivity of Explicit Liveness Analysis

Uday Khedker

95/96

x.n = null

Uday Khedker

Non-Distributivity of Explicit Liveness Analysis

 $ELOut_1(x)$

95/96

May 2011

Uday Khedker

Non-Distributivity of Explicit Liveness Analysis

Non-Distributivity of Explicit Liveness Analysis

x.n = null

- Precision of information
 - Cyclic Data Structures
 - Eliminating Redundant null Assignments
- Properties of Data Flow Analysis: Monotonicity, Boundedness, Complexity
- Interprocedural Analysis
- Extensions for

Uday Khedke

Part 7

Conclusions

Conclusions

- Data flow analysis is a powerful program analysis technique
- Requires us to design appropriate
 - Set of values with reasonable approximations
 - \Rightarrow Acceptable partial order and merge operation
 - ▶ Monotonic functions which are closed under composition

Conclusions

- Data flow analysis can be used for discovering complex semantics
- Unbounded information can summarized using interesting insights
 - ► Example: Heap Analysis

Heap manipulations consist of repeating patterns which bear a close resemblance to program structure

Analysis of heap data is possible despite the fact that the mappings between access expressions and I-values keep changing

Static

MACS L111

