
Bit Vector Data Flow Frameworks

Uday P. Khedker

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

May 2011



Part 1

About These Slides



MACS L111 Bit Vector Frameworks: About These Slides 1/44

Copyright

These slides constitute the lecture notes for

• MACS L111 Advanced Data Flow Analysis course at Cambridge
University, and

• CS 618 Program Analysis course at IIT Bombay.

They have been made available under GNU FDL v1.2 or later (purely for
academic or research use) as teaching material accompanying the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow

Analysis: Theory and Practice. CRC Press (Taylor and Francis
Group). 2009.

Apart from the above book, some slides are based on the material from
the following books

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

• F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag. 1998.

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Outline 2/44

Outline

• Live Variables Analysis

• Available Expressions Analysis

• Anticipable Expressions Analysis

• Reaching Definitions Analysis

• Common Features of Bit Vector Frameworks

May 2011 Uday Khedker



Part 2

Live Variables Analysis



MACS L111 Bit Vector Frameworks: Live Variables Analysis 3/44

Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

v=a∗b

a=v+2

End

p

Start

v=a∗b

v=a+2

End

p

Start

v = v + 2v=v+2

End

p

Start

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 3/44

Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

v is live at p

v=a∗b

a=v+2

End

p

Start

v=a∗b

v=a+2

End

p

Start

v = v + 2v=v+2

End

p

Start

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 3/44

Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

v is live at p v is not live at p

v=a∗b

a=v+2

End

p

Start

v=a∗b

v=a+2

End

p

Start

v = v + 2v=v+2

End

p

Start

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 3/44

Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

v is live at p v is not live at p v is live at p

v=a∗b

a=v+2

End

p

Start

v=a∗b

v=a+2

End

p

Start

v = v + 2v=v+2

End

p

Start

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 3/44

Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

Path based
specification

v is live at p v is not live at p v is live at p

v=a∗b

a=v+2

End

p

Start

v=a∗b

v=a+2

End

p

Start

v = v + 2v=v+2

End

p

Start

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 4/44

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 4/44

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Basic Blocks ≡
Single statements or Maximal groups
of sequentially executed statements

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 4/44

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Basic Blocks ≡
Single statements or Maximal groups
of sequentially executed statements

Control Transfer

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 4/44

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 4/44

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Local Data Flow Properties

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 4/44

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

For basic blocks
consisting of single statements,
Genn is same as Ref (n) and
Killn is same as Def (n)

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 5/44

Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }
Killn = { v | basic block n contains a definition of v }

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 5/44

Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }
Killn = { v | basic block n contains a definition of v }

r-value occurrence

Value is only read, e.g. x,y,z in

x.sum = y.data + z.data

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 5/44

Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }
Killn = { v | basic block n contains a definition of v }

r-value occurrence

Value is only read, e.g. x,y,z in

x.sum = y.data + z.data

l-value occurrence

Value is modified e.g. y in

y = x.lptr

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 5/44

Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }
Killn = { v | basic block n contains a definition of v }

r-value occurrence

Value is only read, e.g. x,y,z in

x.sum = y.data + z.data

l-value occurrence

Value is modified e.g. y in

y = x.lptr

within n

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 5/44

Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }
Killn = { v | basic block n contains a definition of v }

r-value occurrence

Value is only read, e.g. x,y,z in

x.sum = y.data + z.data

l-value occurrence

Value is modified e.g. y in

y = x.lptr

within n

anywhere in n

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 6/44

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 6/44

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Global Data Flow Properties

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 6/44

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Global Data Flow Properties
Edge based
specifications

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 7/44

Data Flow Equations For Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

Outn =







BI n is End block
⋃

s∈succ(n)

Ins otherwise

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 7/44

Data Flow Equations For Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

Outn =







BI n is End block
⋃

s∈succ(n)

Ins otherwise

• Inn and Outn are sets of variables

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 7/44

Data Flow Equations For Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

Outn =







BI n is End block
⋃

s∈succ(n)

Ins otherwise

• Inn and Outn are sets of variables

• BI is boundary information representin the effect of calling contexts
◮ ∅ for local variables
◮ set of global variables used further in any calling context

(conveniently approximated by the set of all global variables)

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 8/44

Data Flow Equations for Our Example

w = x1

while (x.data < max)2

x = x.rptr 3y = x.lptr4

z = New class of z5

y = y.lptr6

z.sum = x.data + y.data7

In1 = (Out1 − Kill1) ∪ Gen1
Out1 = In2
In2 = (Out2 − Kill2) ∪ Gen2

Out2 = In3 ∪ In4
In3 = (Out3 − Kill3) ∪ Gen3

Out3 = In2
In4 = (Out4 − Kill4) ∪ Gen4

Out4 = In5
In5 = (Out5 − Kill5) ∪ Gen5

Out5 = In6
In6 = (Out6 − Kill6) ∪ Gen6

Out6 = In7
In7 = (Out7 − Kill7) ∪ Gen7

Out7 = ∅

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 8/44

Data Flow Equations for Our Example

w = x1

while (x.data < max)2

x = x.rptr 3y = x.lptr4

z = New class of z5

y = y.lptr6

z.sum = x.data + y.data7

In1 = (Out1 − Kill1) ∪ Gen1
Out1 = In2
In2 = (Out2 − Kill2) ∪ Gen2

Out2 = In3 ∪ In4
In3 = (Out3 − Kill3) ∪ Gen3

Out3 = In2
In4 = (Out4 − Kill4) ∪ Gen4

Out4 = In5
In5 = (Out5 − Kill5) ∪ Gen5

Out5 = In6
In6 = (Out6 − Kill6) ∪ Gen6

Out6 = In7
In7 = (Out7 − Kill7) ∪ Gen7

Out7 = ∅

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 9/44

Performing Live Variables Analysis

Gen={x}, Kill ={w}

w = x

Gen={x}, Kill =∅

while (x.data < max)

Gen={x},Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen={y}, Kill ={y}
y = y.lptr

Gen={x , y , z},Kill =∅

z.sum = x.data + y.data

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 9/44

Performing Live Variables Analysis

Gen={x}, Kill ={w}

w = x

Gen={x}, Kill =∅

while (x.data < max)

Gen={x},Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen={y}, Kill ={y}
y = y.lptr

Gen={x , y , z},Kill =∅

z.sum = x.data + y.data

Gen and Kill need not be
mutually exclusive

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 9/44

Performing Live Variables Analysis

Gen={x}, Kill ={w}

w = x

Gen={x}, Kill =∅

while (x.data < max)

Gen={x},Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen={y}, Kill ={y}
y = y.lptr

Gen={x , y , z},Kill =∅

z.sum = x.data + y.data

z is an r-value occurrence and
not an l-value occurrence

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 9/44

Performing Live Variables Analysis

Gen={x}, Kill ={w}

w = x

Gen={x}, Kill =∅

while (x.data < max)

Gen={x},Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen={y}, Kill ={y}
y = y.lptr

Gen={x , y , z},Kill =∅

z.sum = x.data + y.data

x , y , z are considered to be used
based purely on local use even if
the value of z is not use later. A
different analysis called faint vari-
ables analysis improves on this.

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 9/44

Performing Live Variables Analysis

Gen={x}, Kill ={w}

w = x

Gen={x}, Kill =∅

while (x.data < max)

Gen={x},Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen={y}, Kill ={y}
y = y.lptr

Gen={x , y , z},Kill =∅

z.sum = x.data + y.data Initialization
∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 9/44

Performing Live Variables Analysis

Gen={x}, Kill ={w}

w = x

Gen={x}, Kill =∅

while (x.data < max)

Gen={x},Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen={y}, Kill ={y}
y = y.lptr

Gen={x , y , z},Kill =∅

z.sum = x.data + y.data

Traversal

Iteration #1
{x , y , z}

{x , y , z}

{x , y , z}

{x , y , z}

{x , y}

{x , y}

{x}

∅

{x}

{x}

{x}

{x}

{x}
Ignoring max be-
cause we are doing
analysis for pointer
variables w, x, y, z

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 9/44

Performing Live Variables Analysis

Gen={x}, Kill ={w}

w = x

Gen={x}, Kill =∅

while (x.data < max)

Gen={x},Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen={y}, Kill ={y}
y = y.lptr

Gen={x , y , z},Kill =∅

z.sum = x.data + y.data

Traversal

Iteration #1
{x , y , z}

{x , y , z}

{x , y , z}

{x , y , z}

{x , y}

{x , y}

{x}

∅

{x}

{x}

{x}

{x}

{x}
Ignoring max be-
cause we are doing
analysis for pointer
variables w, x, y, z

Iteration #2
∅

{x , y , z}

{x , y , z}

{x , y , z}

{x , y , z}

{x , y}

{x , y}

{x}

{x}

{x}

{x}

{x}

{x}

{x}

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 10/44

Performing Live Variables Analysis

Gen={x}, Kill ={w}

w = x

Gen={x}, Kill =∅
while (x.data < max)

Gen={x},Kill ={x}

x = x.rptr
Gen={x}, Kill ={y , z}

y = x.lptr
z = New class of z

y = y.lptr
z.sum = x.data + y.data

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 11/44

Local Data Flow Properties for Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

• Genn : Use not preceded by definition (Ref for a statement)

• Killn : Definition anywhere in a block (Def for a statement)

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 11/44

Local Data Flow Properties for Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

• Genn : Use not preceded by definition (Ref for a statement)

Upwards exposed use

• Killn : Definition anywhere in a block (Def for a statement)

Stop the effect from being propagated across a block

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 12/44

Local Data Flow Properties for Live Variables Analysis

Case Local Information Example Explanation

1 v 6∈ Genn v 6∈ Killn

2 v ∈ Genn v 6∈ Killn

3 v 6∈ Genn v ∈ Killn

4 v ∈ Genn v ∈ Killn

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 12/44

Local Data Flow Properties for Live Variables Analysis

Case Local Information Example Explanation

1 v 6∈ Genn v 6∈ Killn
a = b + c
b = c ∗ d

liveness of v is unaffected
by the basic block

2 v ∈ Genn v 6∈ Killn
a = b + c
b = v ∗ d

v becomes live
before the basic block

3 v 6∈ Genn v ∈ Killn
a = b + c
v = c ∗ d

v ceases to be live
before the statement

4 v ∈ Genn v ∈ Killn
a = v + c
v = c ∗ d

liveness of v is killed
but v becomes live
before the statement

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 13/44

Using Data Flow Information of Live Variables Analysis

• Used for register allocation.
If variable x is live in a basic block b, it is a potential candidate for
register allocation.

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 13/44

Using Data Flow Information of Live Variables Analysis

• Used for register allocation.
If variable x is live in a basic block b, it is a potential candidate for
register allocation.

• Used for dead code elimination.
If variable x is not live after an assignment x = . . ., then the
assginment is redundant and can be deleted as dead code.

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 14/44

Tutorial Problem 1 for Liveness Analysis

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+cn5

nop n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 {a, b, c} {a, t1}
n6 ∅ ∅

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 14/44

Tutorial Problem 1 for Liveness Analysis

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+cn5

nop n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 {a, b, c} {a, t1}
n6 ∅ ∅

Global Data Flow Information
Iteration #1 Iteration #2

Out In Out In

n6 ∅ ∅
n5 ∅ {a, b, c}
n4 {a, b, c} {a, b, c}
n3 ∅ {a}
n2 {a, b, c} {a, b, c , n}
n1 {a, b, c , n} ∅

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 14/44

Tutorial Problem 1 for Liveness Analysis

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+cn5

nop n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 {a, b, c} {a, t1}
n6 ∅ ∅

Global Data Flow Information
Iteration #1 Iteration #2

Out In Out In

n6 ∅ ∅ ∅ ∅
n5 ∅ {a, b, c} ∅ {a, b, c}
n4 {a, b, c} {a, b, c} {a, b, c} {a, b, c}
n3 ∅ {a} {a, b, c} {a, b, c}
n2 {a, b, c} {a, b, c , n} {a, b, c , n} {a, b, c , n}
n1 {a, b, c , n} ∅ {a, b, c , n} ∅

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 15/44

Tutorial Problem 2 for Liveness Analysis: C Program

1 int x, y, z;
2 int exmp(void)

3 { int a, b, c, d;
4 b = 4;
5 a = b + c;
6 d = a * b;
7 if (x < y)
8 b = a -c;
9 else

10 { do

11 { c = b + c;
12 if (y > x)

13 { do

14 { d = a + b;
15 f(b + c);
16 } while(y > x);

17 }
18 else
19 { c = a * b;
20 f(a - b);

21 }
22 g (a + b);

23 } while(z > x);

24 }
25 h(a-c);
26 f(b+c);

27 }

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 16/44

Tutorial Problem 2 for Liveness Analysis: Control Flow
Graph

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a − c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b;
f (a − b); n4

n5 d = a + b; n5

n6 f (b + c); n6

n7 g(a + b); n7

n8
h(a − c);
f (b + c); n8

Var = {a, b, c , d}

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 16/44

Tutorial Problem 2 for Liveness Analysis: Control Flow
Graph

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a − c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b;
f (a − b); n4

n5 d = a + b; n5

n6 f (b + c); n6

n7 g(a + b); n7

n8
h(a − c);
f (b + c); n8

Var = {a, b, c , d}

n5 and n6 have been
artificially separated.
gcc combines them.

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 17/44

Solution of the Tutorial Problem

Local Global Information
Block Information Iteration # 1 Iteration # 2

Genn Killn Outn Inn Outn Inn

n8 {a, b, c} ∅ ∅ {a, b, c} ∅ {a, b, c}
n7 {a, b} ∅ {a, b, c} {a, b, c} {a, b, c} {a, b, c}

n6 {b, c} ∅ {a, b, c} {a, b, c} {a, b, c} {a, b, c}
n5 {a, b} {d} {a, b, c} {a, b, c} {a, b, c} {a, b, c}
n4 {a, b} {c} {a, b, c} {a, b} {a, b, c} {a, b}
n3 {b, c} {c} {a, b, c} {a, b, c} {a, b, c} {a, b, c}
n2 {a, c} {b} {a, b, c} {a, c} {a, b, c} {a, c}

n1 {c} {a, b, d} {a, b, c} {c} {a, b, c} {c}

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Live Variables Analysis 18/44

Tutorial Problems for Liveness Analysis

• Perform analysis with universal set Var as the initialization at
internal nodes.

• Modify the previous program so that some data flow value
computed in second iteration differs from the corresponding data
flow value computed in the first iteration.
(No structural changes, suggest at least two distinct kinds of
modifications)

• Modify the above program so that some data flow value computed
in third iteration differs from the corresponding data flow value
computed in the second iteration.
Write a C program corresponding to the modified control flow graph

May 2011 Uday Khedker



Part 3

Available Expressions Analysis



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 19/44

Defining Available Expressions Analysis

An expression e is available at a program point p, if
every path from program entry to p contains an evaluation of e

which is not followed by a definition of any operand of e.

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

a ∗ b

a ∗ b

a ∗ b

a =

Start Start

p

End

a ∗ b

a ∗ b

Start

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 19/44

Defining Available Expressions Analysis

An expression e is available at a program point p, if
every path from program entry to p contains an evaluation of e

which is not followed by a definition of any operand of e.

a ∗ b is
available at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

a ∗ b

a ∗ b

a ∗ b

a =

Start Start

p

End

a ∗ b

a ∗ b

Start

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 19/44

Defining Available Expressions Analysis

An expression e is available at a program point p, if
every path from program entry to p contains an evaluation of e

which is not followed by a definition of any operand of e.

a ∗ b is
available at p

a ∗ b is not
available at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

a ∗ b

a ∗ b

a ∗ b

a =

Start Start

p

End

a ∗ b

a ∗ b

Start

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 19/44

Defining Available Expressions Analysis

An expression e is available at a program point p, if
every path from program entry to p contains an evaluation of e

which is not followed by a definition of any operand of e.

a ∗ b is
available at p

a ∗ b is not
available at p

a ∗ b is not
available at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

a ∗ b

a ∗ b

a ∗ b

a =

Start Start

p

End

a ∗ b

a ∗ b

Start

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 20/44

Local Data Flow Properties for Available Expressions
Analysis

Genn = { e | expression e is evaluated in basic block n and
this evaluation is not followed by a definition of
any operand of e}

Killn = { e | basic block n contains a definition of an operand of e}

Entity Manipulation Exposition

Genn Expression Use Downwards

Killn Expression Modification Anywhere

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 21/44

Data Flow Equations For Available Expressions Analysis

Inn =







BI n is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 21/44

Data Flow Equations For Available Expressions Analysis

Inn =







BI n is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

Alternatively,
Outn = fn(Inn), where

fn(X ) = Genn ∪ (X − Killn)

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 21/44

Data Flow Equations For Available Expressions Analysis

Inn =







BI n is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

Alternatively,
Outn = fn(Inn), where

fn(X ) = Genn ∪ (X − Killn)

• Inn and Outn are sets of expressions

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 21/44

Data Flow Equations For Available Expressions Analysis

Inn =







BI n is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

Alternatively,
Outn = fn(Inn), where

fn(X ) = Genn ∪ (X − Killn)

• Inn and Outn are sets of expressions

• BI is ∅ for expressions involving a local variable

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 22/44

Using Data Flow Information of Available Expressions
Analysis

• Common subexpression elimination

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 22/44

Using Data Flow Information of Available Expressions
Analysis

• Common subexpression elimination

◮ If an expression is available at the entry of a block b and

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 22/44

Using Data Flow Information of Available Expressions
Analysis

• Common subexpression elimination

◮ If an expression is available at the entry of a block b and
◮ a computation of the expression exists in b such that

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 22/44

Using Data Flow Information of Available Expressions
Analysis

• Common subexpression elimination

◮ If an expression is available at the entry of a block b and
◮ a computation of the expression exists in b such that
◮ it is not preceded by a definition of any of its operands

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 22/44

Using Data Flow Information of Available Expressions
Analysis

• Common subexpression elimination

◮ If an expression is available at the entry of a block b and
◮ a computation of the expression exists in b such that
◮ it is not preceded by a definition of any of its operands

Then the expression is redundant

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 22/44

Using Data Flow Information of Available Expressions
Analysis

• Common subexpression elimination

◮ If an expression is available at the entry of a block b and
◮ a computation of the expression exists in b such that
◮ it is not preceded by a definition of any of its operands

Then the expression is redundant

• A redundant expression is upwards exposed whereas the expressions
in Genn are downwards exposed

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 23/44

An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b 5

6 d ∗ e 6

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Computed Killed Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000

2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000

3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000

4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000

5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000

6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 23/44

An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b 5

6 d ∗ e 6

Initialisation

0000

1111

1111

1111

1111

1111

1111

1111
1111

1111

1111

1111

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Computed Killed Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000

2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000

3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000

4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000

5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000

6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 23/44

An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b 5

6 d ∗ e 6

Iteration #1

0000

1100

1100

1110

1110

1000

1110

1100
1000

1001

1001

1001

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Computed Killed Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000

2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000

3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000

4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000

5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000

6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 23/44

An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b 5

6 d ∗ e 6

Iteration #2

0000

1100

1000

1010

1010

1000

1010

1000
1000

1001

1001

1001

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Computed Killed Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000

2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000

3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000

4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000

5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000

6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 23/44

An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b 5

6 d ∗ e 6

Final Result

0000

1100

1000

1010

1010

1000

1010

1000
1000

1001

1001

1001

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Computed Killed Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000

2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000

3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000

4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000

5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000

6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 24/44

Tutorial Problem for Available Expressions Analysis

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a − c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b;
f (a − b); n4

n5 d = a + b; n5

n6 f (b + c); n6

n7 g(a + b); n7

n8
h(a − c);
f (b + c); n8

Expr = { a ∗ b, a + b, a − b,
a− c , b + c }

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 25/44

Solution of the Tutorial Problem

Bit vector a ∗ b a + b a− b a − c b + c

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
iteration # 2 Redundantn

Genn Killn AntGenn Inn Outn Inn Outn

n1 10001 11111 00000 00000 10001 00000

n2 00010 11101 00010 10001 00010 00000

n3 00000 00011 00001 10001 10000 10000 00000

n4 10100 00011 10100 10000 10100 10000

n5 01000 00000 01000 10000 11000 00000

n6 00001 00000 00001 11000 11001 00000

n7 01000 00000 01000 10000 11000 00000

n8 00011 00000 00011 00000 00011 00000

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 26/44

Further Tutorial Problems

1 a + c 1

2 a ∗ b 2

3 b = 2 3 4 d = 3 4

5 a ∗ c 5

6 a ∗ b 6

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 26/44

Further Tutorial Problems

1 a + c 1

2 a ∗ b 2

3 b = 2 3 4 d = 3 4

5 a ∗ c 5

6 a ∗ b 6

Bit Vector

a+ c a ∗ b a ∗ c
BI Node

Initialization U Initialization ∅
Inn Outn Inn Outn

∅

1
2
3
4
5
6

U

1
2
3
4
5
6

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 26/44

Further Tutorial Problems

1 a + c 1

2 a ∗ b 2

3 b = 2 3 4 d = 3 4

5 a ∗ c 5

6 a ∗ b 6

Bit Vector

a+ c a ∗ b a ∗ c
BI Node

Initialization U Initialization ∅
Inn Outn Inn Outn

∅

1 000 100
2 100 110
3 110 100
4 110 110
5 100 101
6 101 111

U

1
2
3
4
5
6

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 26/44

Further Tutorial Problems

1 a + c 1

2 a ∗ b 2

3 b = 2 3 4 d = 3 4

5 a ∗ c 5

6 a ∗ b 6

Bit Vector

a+ c a ∗ b a ∗ c
BI Node

Initialization U Initialization ∅
Inn Outn Inn Outn

∅

1 000 100 000 100
2 100 110 000 010
3 110 100 010 000
4 110 110 010 010
5 100 101 000 001
6 101 111 001 011

U

1
2
3
4
5
6

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 26/44

Further Tutorial Problems

1 a + c 1

2 a ∗ b 2

3 b = 2 3 4 d = 3 4

5 a ∗ c 5

6 a ∗ b 6

Bit Vector

a+ c a ∗ b a ∗ c
BI Node

Initialization U Initialization ∅
Inn Outn Inn Outn

∅

1 000 100 000 100
2 100 110 000 010
3 110 100 010 000
4 110 110 010 010
5 100 101 000 001
6 101 111 001 011

U

1 111 111
2 101 111
3 111 101
4 111 111
5 101 101
6 101 111

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 26/44

Further Tutorial Problems

1 a + c 1

2 a ∗ b 2

3 b = 2 3 4 d = 3 4

5 a ∗ c 5

6 a ∗ b 6

Bit Vector

a+ c a ∗ b a ∗ c
BI Node

Initialization U Initialization ∅
Inn Outn Inn Outn

∅

1 000 100 000 100
2 100 110 000 010
3 110 100 010 000
4 110 110 010 010
5 100 101 000 001
6 101 111 001 011

U

1 111 111 111 111
2 101 111 001 011
3 111 101 011 001
4 111 111 011 011
5 101 101 001 001
6 101 111 001 011

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 27/44

More Tutorial Problems

Number of iterations assuming that the order of Ini and Out i
computation is fixed (Ini is computed first and then Out i is computed)

1 b ∗ c 1

2 a ∗ b 2

3 b = 2 3 4 d = 3 4

5 a ∗ c 5

6 a ∗ b 6

Traversal

Initialization
U ∅
BI BI

U ∅ U ∅
Forward

Backward

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 27/44

More Tutorial Problems

Number of iterations assuming that the order of Ini and Out i
computation is fixed (Ini is computed first and then Out i is computed)

1 b ∗ c 1

2 a ∗ b 2

3 b = 2 3 4 d = 3 4

5 a ∗ c 5

6 a ∗ b 6

Traversal

Initialization
U ∅
BI BI

U ∅ U ∅
Forward 2 1 2 1

Backward

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 27/44

More Tutorial Problems

Number of iterations assuming that the order of Ini and Out i
computation is fixed (Ini is computed first and then Out i is computed)

1 b ∗ c 1

2 a ∗ b 2

3 b = 2 3 4 d = 3 4

5 a ∗ c 5

6 a ∗ b 6

Traversal

Initialization
U ∅
BI BI

U ∅ U ∅
Forward 2 1 2 1

Backward 3 4 4 2

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 28/44

Still More Tutorial Problems

A New Data Flow Framework

• Partially available expressions at program point p are expressions
that are computed and remain unmodified along some path
reaching p. The data flow equations for partially available
expressions analysis are same as the data flow equations of available
expressions analysis except that the confluence is changed to ∪.

Perform partially available expressions analysis for the previous
example program.

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Available Expressions Analysis 29/44

Result of Partially Available Expressions Analysis

Bit vector a ∗ b a + b a − b a − c b + c

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
iteration # 2 ParRedundn

Genn Killn AntGenn Inn Outn Inn Outn

n1 10001 11111 00000 00000 10001 00000

n2 00010 11101 00010 10001 00010 00000

n3 00000 00011 00001 10001 10000 11101 11100 00001

n4 10100 00011 10100 10000 10100 11100 11100 10100

n5 01000 00000 01000 10000 11000 11101 11101 01000

n6 00001 00000 00001 11000 11001 11101 11101 00001

n7 01000 00000 01000 11101 11101 01000

n8 00011 00000 00011 11111 11111 00011

May 2011 Uday Khedker



Part 4

Anticipable Expressions Analysis



MACS L111 Bit Vector Frameworks: Anticipable Expressions Analysis 30/44

Defining Anticipable Expressions Analysis

• An expression e is anticipable at a program point p, if every path
from p to the program exit contains an evaluation of e which is not
preceded by a redefinition of any operand of e.

• Application : Safety of Code Hoisting

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Anticipable Expressions Analysis 31/44

Safety of Code Motion

1 if (b == 0) 1

2 c = a/b 2 3 f (a/b) 3

False True

Hoisting a/b to the exit of 1 is un-
safe (≡ can change the behaviour
of the optimized program)

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Anticipable Expressions Analysis 31/44

Safety of Code Motion

1 if (b == 0) 1

2 c = a/b 2 3 f (a/b) 3

False True

1 if (b == 0) 1

2 c = a/b 2 3 print a/b 3

False True

Hoisting a/b to the exit of 1 is un-
safe (≡ can change the behaviour
of the optimized program)

??

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Anticipable Expressions Analysis 31/44

Safety of Code Motion

1 if (b == 0) 1

2 c = a/b 2 3 f (a/b) 3

False True

1 if (b == 0) 1

2 c = a/b 2 3 print a/b 3

False True

Hoisting a/b to the exit of 1 is un-
safe (≡ can change the behaviour
of the optimized program)

??

A guarded computation of an expression should not be converted to an
unguarded computation

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Anticipable Expressions Analysis 32/44

Defining Data Flow Analysis for Anticipable Expressions
Analysis

Genn = { e | expression e is evaluated in basic block n and
this evaluation is not preceded (within n) by a
definition of any operand of e}

Killn = { e | basic block n contains a definition of an operand of e}

Entity Manipulation Exposition

Genn Expression Use Upwards

Killn Expression Modification Anywhere

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Anticipable Expressions Analysis 33/44

Data Flow Equations for Anticipable Expressions Analysis

Inn = Genn ∪ (Outn − Killn)

Outn =







BI n is End block
⋂

s∈succ(n)

Ins otherwise

Inn and Outn are sets of expressions

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Anticipable Expressions Analysis 34/44

Tutorial Problem for Anticipable Expressions Analysis

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a − c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b;
f (a − b); n4

n5 d = a + b; n5

n6 f (b + c); n6

n7 g(a + b); n7

n8
h(a − c);
f (b + c); n8

Expr = { a ∗ b, a + b, a − b,
a− c , b + c }

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Anticipable Expressions Analysis 35/44

Result of Anticipable Expressions Analysis

Bit vector a ∗ b a + b a − b a − c b + c

Local
Information

Global Information

Block Iteration # 1 Changes in
iteration # 2

Genn Killn Outn Inn Outn Inn

n8 00011 00000 00000 00011

n7 01000 00000 00011 01011 00001 01001

n6 00001 00000 01011 01011 01001 01001

n5 01000 00000 01011 01011 01001 01001

n4 10100 00011 01011 11100 01001 11100

n3 00001 00011 01000 01001 01000 01001

n2 00010 11101 00011 00010

n1 00000 11111 00000 00000

May 2011 Uday Khedker



Part 5

Reaching Definitions Analysis



MACS L111 Bit Vector Frameworks: Reaching Definitions Analysis 36/44

Defining Reaching Definitions Analysis

• A definition dx : x = y reaches a program point u if it appears
(without a refefinition of x) on some path from program entry to u

• Application : Copy Propagation
A use of a variable x at a program point u can be replaced by y if
dx : x = y is the only definition which reaches p and y is not
modified between the point of dx and p.

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Reaching Definitions Analysis 37/44

Defining Data Flow Analysis for Reaching Definitions
Analysis

Let dv be a definition of variable v

Genn = { dv | variable v is defined in basic block n and
this definition is not followed (within n)
by a definition of v}

Killn = { dv | basic block n contains a definition of v}

Entity Manipulation Exposition

Genn Definition Occurence Downwards

Killn Definition Occurence Anywhere

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Reaching Definitions Analysis 38/44

Data Flow Equations for Reaching Definitions Analysis

Inn =







BI n is Start block
⋃

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

BI = {dx : x = undef | x ∈ Var}

Inn and Outn are sets of definitions

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Reaching Definitions Analysis 39/44

Tutorial Problem for Reaching Definitions Analysis

n1
b1 : b = 4;
a1 : a = b + c ;
d1 : d = a ∗ b;

n1

n2 b2 : b = a− c ; n2

n3 c1 : c = b + c ; n3

n4
c2 : c = a ∗ b;

f (a − b); n4

n5 d2 : d = a + b; n5

n6 f (b + c); n6

n7 g(a + b); n7

n8
h(a − c);
f (b + c); n8

Defs = { a0, b0, c0, d0, a1, b1,
b2, c1, c2, d1, d2 }

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Reaching Definitions Analysis 40/44

Result of Reaching Definitions Analysis

Local
Information

Global Information

B
lo
ck Iteration # 1 Changes in

iteration # 2

Genn Killn Inn Outn Inn Outn

n1

{a1,
b1,
d1}

{a0, a1,
b0, b1, b2,
d0, d1, d2}

{a0, b0, c0, d0} {a1, b1, c0, d1}

n2 {b2} {b0, b1, b2} {a1, b1, c0, d1} {a1, b2, c0, d1}

n3 {c1} {c0, c1, c2} {a1, b1, c0, d1} {a1, b1, c1, d1}
{a1, b1, c0,
c1, c2, d1, d2}

{a1, b1,
c1, d1, d2}

n4 {c2} {c0, c1, c2} {a1, b1, c1, d1} {a1, b1, c2, d1}
{a1, b1,
c1, d1, d2}

{a1, b1,
c2, d1, d2}

n5 {d2} {d0, d1, d2} {a1, b1, c1, d1} {a1, b1, c1, d2}
{a1, b1,
c1, d1, d2}

n6 ∅ ∅ {a1, b1, c1, d2} {a1, b1, c1, d2}

n7 ∅ ∅ {a1, b1, c1,
c2, d1, d2}

{a1, b1, c1,
c2, d1, d2}

n8 ∅ ∅
{a1, b1, b2, c0,
c1, c2, d1, d2}

{a1, b1, b2, c0,
c1, c2, d1, d2}

May 2011 Uday Khedker



Part 6

Common Features of Bit

Vector Data Flow Frameworks



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 41/44

Defining Local Data Flow Properties

• Live variables analysis

Entity Manipulation Exposition

Genn Variable Use Upwards

Killn Variable Modification Anywhere

• Analysis of expressions

Entity Manipulation
Exposition

Availability Anticipability

Genn Expression Use Downwards Upwards

Killn Expression Modification Anywhere Anywhere

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 42/44

Common Form of Data Flow Equations

Xi = f (Yi)

Yi = ⊓ Xj

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 42/44

Common Form of Data Flow Equations

Xi = f (Yi)

Yi = ⊓ Xj

Data Flow Information So far we have seen sets (or bit vectors).
Could be entities other than sets.

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 42/44

Common Form of Data Flow Equations

Xi = f (Yi)

Yi = ⊓ Xj

Data Flow Information So far we have seen sets (or bit vectors).
Could be entities other than sets.

Flow Function
So far we have seen con-
stant Gen and Kill . Could
be dependent Gen and Kill .

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 42/44

Common Form of Data Flow Equations

Xi = f (Yi)

Yi = ⊓ Xj

Data Flow Information So far we have seen sets (or bit vectors).
Could be entities other than sets.

Flow Function
So far we have seen con-
stant Gen and Kill . Could
be dependent Gen and Kill .

Confluence
So far we have seen ∪ and ∩.
Could be other operations.

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 43/44

A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 43/44

A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

Any Path

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 43/44

A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

Any Path

All Paths

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 43/44

A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

Any Path

All Paths

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 43/44

A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

Any Path

All Paths

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 43/44

A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

Any Path

All Paths

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 44/44

Data Flow Paths Discovered by Data Flow Analysis

v

Liveness

a∗b a∗b

a∗b

Anticipability

a∗b

a∗b

a∗b

Availability

a∗b

Partial
Availability

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 44/44

Data Flow Paths Discovered by Data Flow Analysis

v

Liveness

Sequence of blocks (b1, b2, . . . , bk)
which is a prefix of some potential
execution path starting at b1 such that:

• bk contains an upwards exposed
use of v , and

• no other block on the path
contains an assignment to v .

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 44/44

Data Flow Paths Discovered by Data Flow Analysis

a∗b a∗b

a∗b

Anticipability

Sequence of blocks (b1, b2, . . . , bk)
which is a prefix of some potential
execution path starting at b1 such that:

• bk contains an upwards exposed
use of a ∗ b, and

• no other block on the path contains
an assignment to a or b, and

• every path starting at b1 is an
anticipability path of a ∗ b.

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 44/44

Data Flow Paths Discovered by Data Flow Analysis

a∗b

a∗b

a∗b

Availability

Sequence of blocks (b1, b2, . . . , bk)
which is a prefix of some potential
execution path starting at b1 such
that:

• b1 contains a downwards
exposed use of a ∗ b, and

• no other block on the path
contains an assignment to a or
b, and

• every path ending at bk is an
availability path of a ∗ b.

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 44/44

Data Flow Paths Discovered by Data Flow Analysis

a∗b

Partial
Availability

Sequence of blocks (b1, b2, . . . , bk)
which is a prefix of some potential
execution path starting at b1 such that:

• b1 contains a downwards exposed
use of a ∗ b, and

• no other block on the path
contains an assignment to a or b.

May 2011 Uday Khedker



MACS L111 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 44/44

Data Flow Paths Discovered by Data Flow Analysis

v

Liveness

a∗b a∗b

a∗b

Anticipability

a∗b

a∗b

a∗b

Availability

a∗b

Partial
Availability

May 2011 Uday Khedker


	About These Slides
	Outline
	Live Variables Analysis
	Available Expressions Analysis
	Anticipable Expressions Analysis
	Reaching Definitions Analysis
	3.5inCommon Features of Bit Vector Data Flow Frameworks
	Common Features of Bit Vector Frameworks

