An Algebraic Approach to Internet Routing Lecture 08 Semimodules and route redistribution

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

> Michaelmas Term 2010

> > **オロトオ部ナオミナオミナーミーの90**0

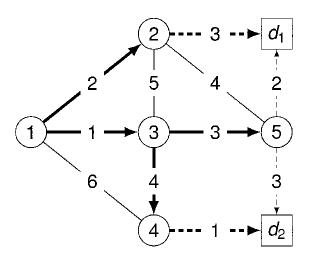
T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing L

T.G.Griffin@2010

1/22

Trivial example of forwarding = routing + mapping



matrix	solves
A *	$R = (A \otimes R) \oplus I$
A*M	$F = (A \otimes F) \oplus M$

Mapping matrix

$$\mathbf{F} = \begin{bmatrix} d_1 & d_2 \\ 1 & 5 & 6 \\ 2 & 3 & 7 \\ 5 & 5 \\ 4 & 5 & 2 & 3 \end{bmatrix}$$

Forwarding matrix

Routing Matrix vs. Forwarding Matrix (see [BG09])

- Inspired by the the Locator/ID split work
 - ► See Locator/ID Separation Protocol (LISP)
- Let's make a distinction between infrastructure nodes V and destinations D.
- Assume $V \cap D = \{\}$
- M is a $V \times D$ mapping matrix
 - ▶ $\mathbf{M}(v, d) \neq \infty$ means that destination (identifier) d is somehow attached to node (locator) v

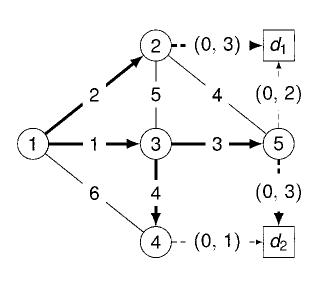
T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing L

T.G.Griffin@2010

3/22

More Interesting Example: Hot-Potato Idiom



Mapping matrix

$$F = \begin{bmatrix} d_1 & d_2 \\ 1 & (2,3) & (4,3) \\ 2 & (0,3) & (4,3) \\ 3 & (3,2) & (3,3) \\ 4 & (7,2) & (0,1) \\ 5 & (0,2) & (0,3) \end{bmatrix}$$

Forwarding matrix

▼ロト (部) (意) (意) (意) (型) の

General Case

G = (V, E), n is the size of V.

A $n \times n$ (left) routing matrix **L** solves an equation of the form

$$L = (A \otimes L) \oplus I$$

over semiring S.

D is a set of destinations, with size d.

A $n \times d$ forwarding matrix is defined as

$$F = L \triangleright M$$

over some structure $(N, \square, \triangleright)$, where $\triangleright \in (S \times N) \rightarrow N$.

◆ロト ◆昼 → ◆星 > ◆星 → からぐ

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing L

T.G.Griffin@2010

5/22

forwarding = routing + mapping

Does this make sense?

$$\mathsf{F}(i,\ d) = (\mathsf{L} \rhd \mathsf{M})(i,\ d) = \sum_{q \in V}^{\square} \mathsf{L}(i,\ q) \rhd \mathsf{M}(q,\ d).$$

- Once again we are leaving paths implicit in the construction.
- Forwarding paths are best routing paths to egress nodes, selected with respect □-minimality.
- □-minimality can be very different from selection involved in routing.

When we are lucky ...

matrix	solves		
A *	$L = (A \otimes L) \oplus I$		
A * ⊳ M	$F = (A \triangleright F) \square M$		

When does this happen?

When $(N, \square, \triangleright)$ is a (left) semi-module over the semiring S.

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing L

T.G.Griffin@2010

7/22

(left) Semi-modules

• $(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring.

A (left) semi-module over S

Is a structure $(N, \Box, \triangleright, \overline{0}_N)$, where

- $(N, \square, \overline{0}_N)$ is a commutative monoid
- \triangleright is a function $\triangleright \in (S \times N) \rightarrow N$
- $(a \otimes b) \triangleright m = a \triangleright (b \triangleright m)$
- $\overline{0} \triangleright m = \overline{0}_N$
- $s \triangleright \overline{0}_N = \overline{0}_N$
- \bullet $\overline{1} > m = m$

and distributivity holds,

$$LD : \mathbf{s} \rhd (\mathbf{m} \square \mathbf{n}) = (\mathbf{s} \rhd \mathbf{m}) \square (\mathbf{s} \rhd \mathbf{n})$$

$$\mathsf{RD} : (\mathbf{s} \oplus \mathbf{t}) \triangleright m = (\mathbf{s} \triangleright m) \square (\mathbf{t} \triangleright m)$$

Example: Hot-Potato

S idempotent and selective

$$egin{array}{lcl} egin{array}{lcl} egin{arra$$

$$\operatorname{Hot}(S, T) = (S \times T, \vec{\oplus}, \triangleright_{\operatorname{fst}}),$$

where $\vec{\oplus}$ is the (left) lexicographic product of $\oplus_{\mathcal{S}}$ and $\oplus_{\mathcal{T}}$.

Define ⊳_{hp} on matrices

$$(\mathsf{L}\rhd_{\mathrm{hp}}\mathsf{M})(i,\,d)=\sum_{q\in V}^{\vec{\ominus}}\mathsf{L}(i,\,q)\rhd_{\mathrm{fst}}\mathsf{M}(q,\,d)$$

◆ロト ◆団 > ◆ 豆 > ◆ 豆 > ◆ の へ の

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing L

T.G.Griffin@2010

9/22

Sanity Check: does this implement hot-potato?

Define M to be <u>simple</u> if either $M(v, d) = (1_S, t)$ or $M(v, d) = (\infty_S, \infty_T)$.

$$(\mathbf{L} \rhd_{\mathrm{hp}} \mathbf{M})(i, d)$$

$$= \sum_{q \in V} \mathbf{L}(i, q) \rhd_{\mathrm{fst}} \mathbf{M}(q, d)$$

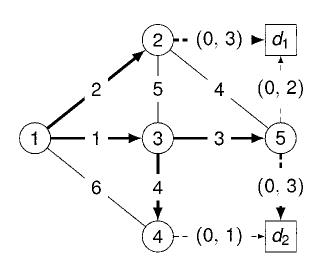
$$= \sum_{q \in V} (\mathbf{L}(i, q) \otimes_{S} s, t)$$

$$\mathbf{M}(q, d) = (s, t)$$

$$= \sum_{q \in V} (\mathbf{L}(i, q), t) \quad \text{(if M is simple)}$$

$$\mathbf{M}(q, d) = (1_{S}, t)$$

Example of hot-potato forwarding



matrix	solves
A *	$L = (A \otimes L) \oplus I$
$A^* \rhd_{hp} M$	$F = (A \rhd_{hp} F) \vec{\oplus} M$

			d_1	d_2
		1	$\lceil \infty \rceil$	∞]
		2	(0, 3)	∞
M	=	3	∞	$-\infty$
		4	∞	(0, 1)
		5	(0, 2)	(0, 1) (0, 3)

Mapping matrix

$$\mathbf{F} = \begin{array}{c} d_1 & d_2 \\ 1 & (2,3) & (4,3) \\ 2 & (0,3) & (4,3) \\ 3 & (3,2) & (3,3) \\ 4 & (7,2) & (0,1) \\ 5 & (0,2) & (0,3) \end{array}$$

Forwarding matrix

<ロ > < 回 > < 回 > < 豆 > < 豆 > 豆 > り < @

T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing L

T.G.Griffin@2010

11/22

Example: Cold-Potato

T idempotent and selective

$$egin{array}{lcl} \mathcal{S} &=& (\mathcal{S}, \oplus_{\mathcal{S}}, \otimes_{\mathcal{S}}) \ \mathcal{T} &=& (\mathcal{T}, \oplus_{\mathcal{T}}, \otimes_{\mathcal{T}}) \ &
ho_{\mathrm{fst}} &\in& \mathcal{S} imes (\mathcal{S} imes \mathcal{T})
ightarrow (\mathcal{S} imes \mathcal{T}) \ m{s_1}
ho_{\mathrm{fst}} (m{s_2}, \, m{t}) &=& (m{s_1} \otimes_{\mathcal{S}} m{s_2}, \, m{t}) \end{array}$$

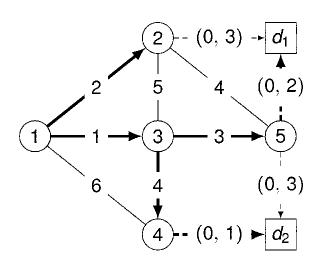
$$\operatorname{Cold}(S, T) = (S \times T, \stackrel{\leftarrow}{\oplus}, \triangleright_{\operatorname{fst}}),$$

where $\vec{\oplus}$ is the (left) lexicographic product of \oplus_{S} and \oplus_{T} .

Define ⊳_{cp} on matrices

$$(\mathsf{L} \rhd_{\operatorname{cp}} \mathsf{M})(i, d) = \sum_{q \in V}^{\biguplus} \mathsf{L}(i, q) \rhd_{\operatorname{fst}} \mathsf{M}(q, d)$$

Example of cold-potato forwarding



matrix	solves
A *	$L = (A \otimes L) \oplus I$
$A^* \rhd_{cp} M$	$F = A \rhd_{cp} F \stackrel{\leftarrow}{\oplus} M$

			U ₁	u_2
		1	$\lceil \infty \rceil$	∞]
		2	(0, 3)	$-\infty$
M	=	3	∞	∞
		4	∞	(0, 1)
		5	(0, 2)	(0, 1) (0, 3)

Mapping matrix

$$\mathbf{F} = \begin{array}{c} d_1 & d_2 \\ 1 & (4,2) & (5,1) \\ 2 & (4,2) & (9,1) \\ 3 & (3,2) & (4,1) \\ 4 & (7,2) & (0,1) \\ 5 & (0,2) & (7,1) \end{array}$$

Forwarding matrix

<ロ > < 回 > < 回 > < 豆 > < 豆 > 豆 > り < @

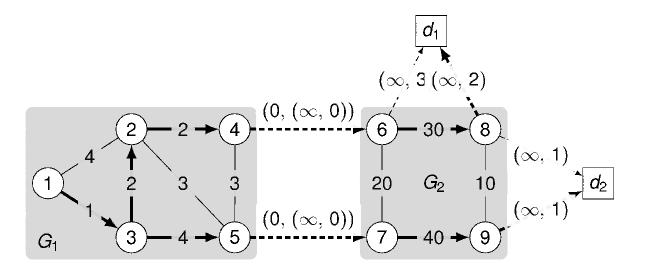
T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing L

T.G.Griffin@2010

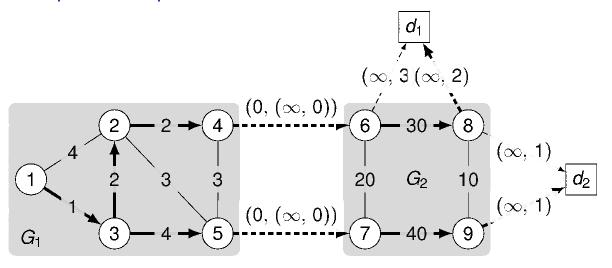
13/22

A simple example of route redistribution



We will will use the routing and mapping of G_2 to construct a forwarding F_2 , that will be passed as a mapping to G_1 ...

A simple example of route redistribution



- G₂ is routing with the bandwidth semiring bw
- G₂ is forwarding with Cold(bw, sp)
- G₁ is routing with the bandwidth semiring sp
- G_1 is forwarding with Hot(sp, Cold(bw, sp))

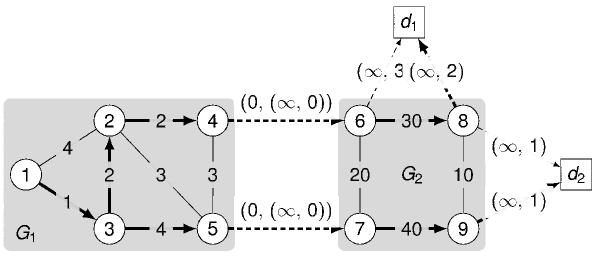
T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing I

T.G.Griffin@2010

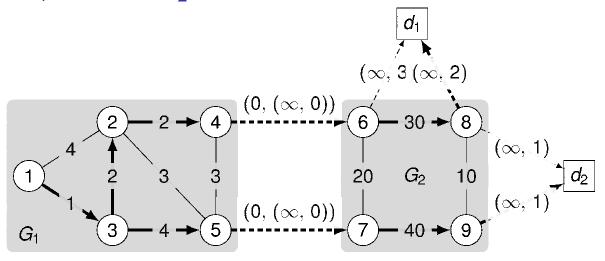
15/22

First, construct F₂



$$\mathbf{L}_2 = \begin{bmatrix} 6 & 7 & 8 & 9 \\ 6 & \infty & 20 & 30 & 20 \\ 7 & 8 & 0 & \infty & 20 & 40 \\ 8 & 30 & 20 & \infty & 20 \\ 9 & 20 & 40 & 20 & \infty \end{bmatrix} \qquad \mathbf{M}_2 = \begin{bmatrix} 6 & (\infty, 3) & \infty \\ \infty & \infty \\ 8 & (\infty, 2) & (\infty, 1) \\ 9 & \infty & (\infty, 1) \end{bmatrix}$$

First, construct **F**₂



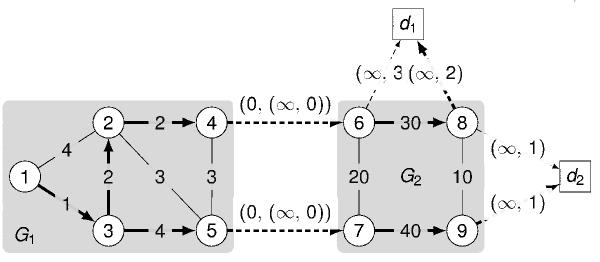
$$\mathbf{F}_2 = \mathbf{L}_2 \rhd_{\mathrm{cp}} \mathbf{M}_2 = \begin{bmatrix} d_1 & d_2 \\ 6 & (30, 2) & (30, 1) \\ 7 & (20, 2) & (40, 1) \\ (\infty, 2) & (\infty, 1) \\ 9 & (20, 2) & (\infty, 1) \end{bmatrix}$$

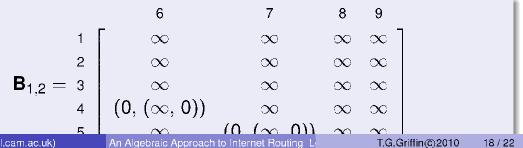
T. Griffin (cl.cam.ac.uk)

An Algebraic Approach to Internet Routing L

T.G.Griffin@2010

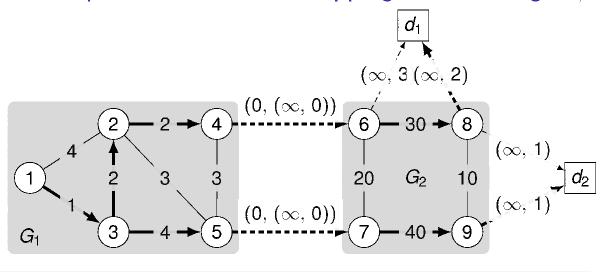
Now, ship it over to G_2 as a mapping matrix, using $\mathbf{B}_{1,2}$





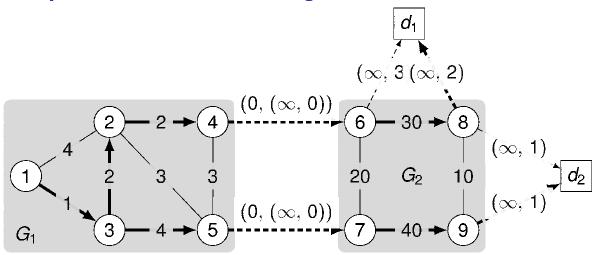
T. Griffin (cl.cam.ac.uk)

Now, ship it over to G_2 as a mapping matrix, using $B_{1,2}$

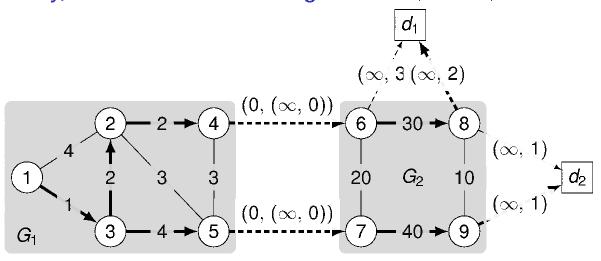


$$\mathbf{M}_1 = \mathbf{B}_{1,2} \lhd_{hp} \mathbf{F}_2 = 3 \\ 4 \\ (0, (30, 2)) \\ (0, (30, 1)) \\ (0, (30, 2)) \\ (0, (40, 1)) \\ \text{T. Griffin (cl.cam.ac.uk)} \\ \text{An Algebraic Approach to Internet Routing L} \\ \mathbf{D}_2 \\ \mathbf{D}_3 \\ \mathbf{D}_4 \\ \mathbf{D}_4 \\ \mathbf{D}_4 \\ \mathbf{D}_5 \\ \mathbf{D}_6 \\ \mathbf{D}_6$$

Finally, construct a forwarding matrix \mathbf{F}_1 for G_1



Finally, construct a forwarding matrix \mathbf{F}_1 for G_1



Bibliography I

[BG09] John N. Billings and Timothy G. Griffin.

A model of internet routing using semi-modules.

In 11th International Conference on Relational Methods in Computer Science (RelMiCS10), November 2009.