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What algebraic properties are associated with global
optimality?

Distributivity

LD : a®((boc) = (avb)d(awc),
RD : (aeb)ec = (a®c)d(b®c).

What is this in sp = (N°°, min, +)?

L.DIST : a+ (bminc) = (a+ b) mn(a + ¢),
R.DIST : (@amin b) + ¢ = (a + ¢) min(b + c).
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Left Local Optimality

Say that L is a left-locally optimal solution when

L=(AxL)al

That is, for i # j we have

L(i, j) = EP A, 9) @ L(q, J)

qeV

@ L(/, j)is the best possible value given the values L(q, j), for all
out-neighbors g of source i.

@ Rows L(/, _) represents out-trees from / (think Bellman-Ford).

@ Columns L(_, /) represents in-trees to /.
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Right Local Optimality

Say that R is a right-locally optimal solution when

R=(RaA)al

That is, for i # j we have

R(i, j) = EDR(. 9) @ A, )

geVv

@ R(/, j) is the best possible value given the values R(g, j), for all
in-neighbors q of destination ;.

@ Rows L(/, _) represents out-trees from / (think Dijkstra).
@ Columns L(_, /) represents in-trees to i.
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With and Without Distributivity

With
For (well behaved) Semirings, the three optimality problems are
essentially the same — locally optimal solutions are globally optimal

solutions.
A*=L=R

Without

Suppose that we drop distributivity and A*, L, R exist. It may be the
case they they are all distinct.
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A World Without Distributivity

Global Optimality

This has been studied, for example [?, ?] in the context of circuit
layout. See Chapter 5 of [?]. This approach does not play well with
(loop-free) hop-by-hop forwarding (need tunnels!)

Left Local Optimality

At a very high level, this is the type of problem that BGP attempts to
solve!!

Right Local Optimality

This approach does not play well with (loop-free) hop-by-hop
forwarding (need tunnels!)
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Example

(5,1)\

(5.1) } (10.5)
(5.:4)

~— (5.1) @ (5.1) —5
(10.1)

(bandwidth, distance) with lexicographic order (bandwidth first).

Sobrinho, Griffin ( Instituto Superior TécAn Algebraic Approach to Internet Routing — T.G.Grifin©2010  7/29



Example’s adjacency matrix

1 2 3 4 5
1 [ (0,00) (5,1) (0,00) (0,00) (0,00)
2 | (0,00) (0,00) (0,00) (0,00) (0,00)
A=3| (0,0) (5,4) (0,00) (5,1) (0,00)
4| (5,1) (0,0) (0,0) (0,00) (10,1)
5 | (10,5) (0,00) (5,1) (0,00) (0,00)
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Global optima

1 2 3 4 5
1 [ (00,0) (5,1) (0,00) (0,00) (0,00)
2 | (0,00) (00,0) (0,00) (0,00) (0,00)
A*=3 | (5,2) (53 (c0,0) (5,1) (5,2) [,
4 | (10,6) (5,2) (5,2) (o0,0) (10,1)
5 | (10,5) (5,4) (5,1) (5,2) (o0,0)
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Left local optima

1 2 3 4 5
1 [ (00,0) (5,1) (0,00) (0,00) (0,00)
2 | (0,00) (00,0) (0,00) (0,00) (0,00)
L=3| (5,7) (5,3) (c0,0) (5,1) (5,2) |,
4 | (10,6) (5,2) (5,

[8;]

5,2) (c0,0) (10,1)
(10,5) (5,4) (5,1) (5,2) (o0,0)

Entries marked in bold indicate those values which are not globally
optimal.
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Left-locally optimal paths to node 2
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Right local optima

1 2 3 4 5
1 [ (00,0) (5,1) (0,00) (0,00) (0,00)
2 | (0,00) (00,0) (0,00) (0,00) (0,00)
R=3]| (5,2) (5,3) (o0, 0) (5,1) (5,2) |,
4 | (10,6) (5,6) (5,2) (o0,0) (10,1)
5 | (10,5) (5,5) (5,1) (5,2) (o0,0)

Note : the (5,6) is (5,7) in the paper, which appears to be a bug!
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Right-locally optimal paths to node 2

PLIN
(2)

2
3—-2 4 -2

4
5—-2

4—3—>2_é><_5)2v

4 -2
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What are the conditions needed to guarantee
existence of local optima?

For a non-distributed structure S = (S, @, ®, 0, 1), can be used to
find local optima when the following property holds.

Strictly Inflationary

S.INFL:Va, be S:a#0 — a<b®a

where a< bmeansa=aaob.

We know that (a modified) Bellman-Ford iteration will converge, but we
currently have no bound on the number of iterations needed!
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Dijkstra’s algorithm

Input : adjacency matrix A and source vertex /i € V,
Output : thei-throw of R, R(/, _). }
begin
S — {i}
R(i, i)« 1
foreach g c V —{i} : R(i, q) — A(i, q)
while S # V
begin
find g € V — S such that R(/, g) is <% -minimal
S~ Su{q}
foreachjc V- S
R(i, j) — R(i. j) @ (R(i, ) ® A(q. }))
end
end

T.G.Griffin©2010 15/29
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Dijkstra’s algorithm, annotated version

Subscripts make proofs by induction easier ....

begin
Sy — {i} B
Ri(/, /) <1
foreach g c V — S; : Ry(i, q) — A(/, q)
foreach k =2,3,...,| V|
begin
find gx € V — Sk_4 such that R(/, g) is <L -minimal
Sk — Sk—1U{qk}
foreachjc V — S
Rk (7, j) < Ri—1(/, /) ® (Re—1(/, qk) ® A(qk, J))
end
end

16/29
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Assumptions on (S, @, ®, 0, 1)

@ (S, @, 0) is a commutative, idempotent, and selective monoid,
@ (S, ®, 1) is a monoid,

@ 0 is the annihilator for ®,

@ 1 is the annihilator for @,

@ RINF:Va,b:a<a®b

Recallthata<b=a<i b=a=aaob.
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The goal

Given adjacency matrix A and source vertex i € V, Dijkstra’s algorithm
will compute R(/, _) such that

vj e V:R(i, j) =1(i.j) ® @R, q) @ Aq, ))-
qeV

Main Claim

Vk:1<k<|V|= VjeS:Rk(i, ) =1(i.j))®& P R(i, 9)2A(q, j)
qeSk

v

Observation 1
Vk:1<k<|V|= Vje Skt :Rk(i, j) = Rey1(i, j)

This is easy to see — once a node is put into S its weight never
changes.
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Observation 2

Observation 2

Vk:1<k<|V|= Yge Sc:¥we V—S: Rk(i, q) <R(i, w)

By induction.
Base : Need 1 < A(i, w). OK
Induction. Assume

Vg e Sk:Vw e V — Sk : Rk(i, q) < Rk(i, w)
and show
Vq € Skp1: VW € V — Skiq: Reyq (7, ) < Ry (7, w)
Since Sk11 = Sk U {Qgk+1}, this is means showing

(1) Vge Sc:vweV =Skt :Rip1(i, q) < Repa (i, w)
(2) Vw eV — Skt Rey1(i, Grr1) < Ryya (i, w)
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By Observation 1, showing (1) is the same as
Vq € Sk:Vw e V — Sciq i Ri(i, q) <Ry (i, w)
which expands to (by definition of Ry 1(i, w))
Vg e Sk:Vw e V—-S8ki1 : Ri(i, q) < Rk(i, w)B(Rk(i, Qkr1)2A(Qks1, W)

But Rk(/, q) < Rk(i, w) by the induction hypothesis, and

Rk(i, q) < (Rk(i, k1) ® A(Qk+1, W)) by the induction hypothesis and
RINF.

Since a<t bra<hbc = a<k (b®c), we are done.
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By Observation 1, showing (2) is the same as showing
Yw e V — Skt Re(i, Q1) < Ryya (7, w)
which expands to
Yw e V — Ski1: Re(i; grs1) < Ri(i, w) @ (Re(F; k1) @ A(Qks1, W)

But Rk(/, gk+1) < Rk(i, w) since gx;1 was chosen to be minimal, and

Ric(i; Qi+1) < (Ric(l, Qi+1) ® A(Qk+1, W)) by RINF.
Since a<t bra<hbc = a<k (b®c), we are done.
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Observation 3

Observation 3

Vk:1<k<|V|= vYwe V-Sc:Rg(i, w) = @ Ri(i, 9)2A(q, w)
qE Sk

Proof: By induction:
Base : easy, since

B Ri(i, 9) ©A(g, w) =T@A(i, w) = A(i, w) = Ry(i, w)
qeSy

Induction step. Assume

vYw e V — Sk : Rg(i, w) @Rk q) @ A(g, w)

Qe Sk
and show
VYw e V — Ski1: Regr(i, w) @ Ri.1(i, 9) ® A(g, w)
QESk+1
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By Observation 1, and a bit of rewriting, this means we must show

YW € V—=Ski1 : Rey1 (i, W) = Re(i, Gur1)®A(Ghs1, w)D ED Ri(i,
qeSk

Using the induction hypothesis, this becomes
Yw e V — Sip1 : Ripr (i, W) = Ri(/; k1) @ A(Qir1, W) & Ri(i, w)

But this is exactly how R, 1(i, w) is computed in the algorithm.
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Proof of Main Claim

Main Claim

VKk:1<k<|V|= Vje S: R, ) =1(i,))® E Rk(i, 9)@A(q, j)
qeSk

Proof : By induction on k.
Base case: Sy = {i} and the claim is easy.
Induction: Assume that

Vj € Sk : Ri(i, j) =1(i,j) @ @5 R«(i, q) @ A(q, J)
Q€ Sk

We must show that

Vj € Skit 1 Rt (i ) =1, )) & P Rur1(i, q) @ A(q, j)

Q€ Sk41
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Since Sk 1 = Sk U {Qgk+1}, this means we must show

(1) Vj € Sk : Rer1 (i, ) =1(1,)) © Dges,,, Re+1(i, 9) @ A(a, )
(2) Riq1(i, Q1) =10, Q1) ® Dges,., Re1(/; @) @ A(Q, Gr+1)

By use Observation 1, showing (1) is the same as showing

Vje Sc:Ri(i, ) =1(i.) o @ Rk(i. )@ A, j),

QESk 11

which is equivalent to

Vj € Sk : Ri(i, j) = 1(i, )Rk (i, Grr1)2A(Gks1, 1)), & €D Ru(i, 9)@A(q,
Q€ Sk

By the induction hypothesis, this is equivalent to

Vj € Sk : Ri(i, j) = Ri(i, J) ® (Rk(/, Q+1) @ A(Qk+1, /)
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Put another way,
Vj € Sk : Re(i, J) < Rk(i, Q1) @ A(Qk+1, J)
By observation 2 we know R(i, j) < Rk(i, gk.1), and so

Ri(i, j) < Rk(i, gkr1) < Rk(i, Qkr1) @ A(Qkat, f)

by RINF.
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To show (2), we use Observation 1 and I(/, gx1) = 0 to obtain

Rk(i, k1) = €D R, 9) @ A(G, Ghrr)

QESk 11

which, since A(Qk+1, Gks+1) = 0, is the same as

, Gk1) = EP Rk, 9) @ A(G, Gkrr)
Qe Sk

This then follows directly from Observation 3.
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Finding Left Local Solutions?

L=(AgL)el < LT=(L"e"TAN)al

R"=(AT@"RT)el <+ R=(RoA)l

where
a®’' b=bxa

Notice that this exchanges RINF for LINF!

LINF:Va,b:a<b®a
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Conclusion

@ Complexity of solving for left local optima?

» Previous work has shown that Bellman-Ford will find a solution as
long as only simple paths are explored — but no time bounds are
known.

» But, now we know that O(V3) will due with Dijkstra’s greedy
algorithm.

» Could do better in sparse graphs using Fibonacci heaps ...
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