An Algebraic Approach to Internet Routing — Lectures 13, 14 Routing in Equilibrium (presented at MTNS 2010, Budapest)

João Luís Sobrinho

Timothy G. Griffin

Instituto de Telecomunicações Instituto Superior Técnico, Lisbon, Portugal joao.sobrinho@lx.it.pt

Computer Laboratory University of Cambridge, UK timothy.griffin@cl.cam.ac.uk

Michaelmas Term 2010

What algebraic properties are associated with global optimality?

Distributivity

```
L.D : a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c),
R.D : (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c).
```

What is this in $sp = (\mathbb{N}^{\infty}, \min, +)$?

```
L.DIST : a + (b \min c) = (a + b) \min (a + c),
R.DIST : (a \min b) + c = (a + c) \min (b + c).
```

Left Local Optimality

Say that **L** is a left-locally optimal solution when

$$\mathbf{L} = (\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I}.$$

That is, for $i \neq j$ we have

$$\mathbf{L}(i, j) = \bigoplus_{q \in V} \mathbf{A}(i, q) \otimes \mathbf{L}(q, j)$$

- L(i, j) is the best possible value given the values L(q, j), for all out-neighbors a of source i.
- Rows L(i,) represents out-trees from i (think Bellman-Ford).
- Columns L(_, i) represents in-trees to i.

Right Local Optimality

Say that **R** is a right-locally optimal solution when

$$\mathbf{R} = (\mathbf{R} \otimes \mathbf{A}) \oplus \mathbf{I}.$$

That is, for $i \neq j$ we have

$$\mathbf{R}(i, j) = \bigoplus_{q \in V} \mathbf{R}(i, q) \otimes \mathbf{A}(q, j)$$

- $\mathbf{R}(i, j)$ is the best possible value given the values $\mathbf{R}(q, j)$, for all in-neighbors q of destination j.
- Rows L(i,) represents out-trees from i (think Dijkstra).
- Columns L(_, i) represents in-trees to i.

With and Without Distributivity

With

For (well behaved) Semirings, the three optimality problems are essentially the same — locally optimal solutions are globally optimal solutions.

$$\mathbf{A}^* = \mathbf{L} = \mathbf{R}$$

Without

Suppose that we drop distributivity and \mathbf{A}^* , \mathbf{L} , \mathbf{R} exist. It may be the case they they are all distinct.

A World Without Distributivity

Global Optimality

This has been studied, for example [?, ?] in the context of circuit layout. See Chapter 5 of [?]. This approach does not play well with (loop-free) hop-by-hop forwarding (need tunnels!)

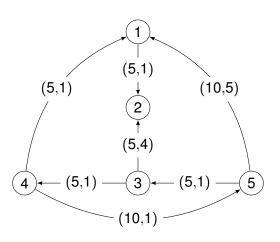
Left Local Optimality

At a very high level, this is the type of problem that BGP attempts to solve!!

Right Local Optimality

This approach does not play well with (loop-free) hop-by-hop forwarding (need tunnels!)

Example



(bandwidth, distance) with lexicographic order (bandwidth first).

Example's adjacency matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ (0,\infty) & (5,1) & (0,\infty) & (0,\infty) & (0,\infty) \\ (0,\infty) & (0,\infty) & (0,\infty) & (0,\infty) & (0,\infty) \\ (0,\infty) & (5,4) & (0,\infty) & (5,1) & (0,\infty) \\ 4 & (5,1) & (0,\infty) & (0,\infty) & (0,\infty) & (10,1) \\ 5 & (10,5) & (0,\infty) & (5,1) & (0,\infty) & (0,\infty) \end{bmatrix}$$

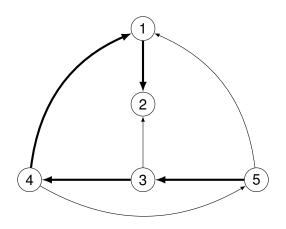
Global optima

Left local optima

$$\mathbf{L} = \frac{1}{3} \begin{bmatrix} (\infty,0) & (5,1) & (0,\infty) & (0,\infty) & (0,\infty) \\ (0,\infty) & (\infty,0) & (0,\infty) & (0,\infty) & (0,\infty) \\ (\mathbf{5},\mathbf{7}) & (5,3) & (\infty,0) & (5,1) & (5,2) \\ (10,6) & (5,2) & (5,2) & (\infty,0) & (10,1) \\ 5 & (10,5) & (5,4) & (5,1) & (5,2) & (\infty,0) \end{bmatrix},$$

Entries marked in **bold** indicate those values which are not globally optimal.

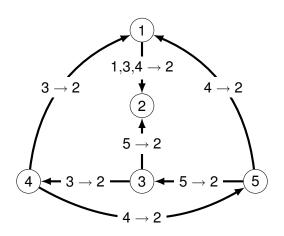
Left-locally optimal paths to node 2



Right local optima

Note: the (5,6) is (5,7) in the paper, which appears to be a bug!

Right-locally optimal paths to node 2



What are the conditions needed to guarantee existence of local optima?

For a non-distributed structure $S = (S, \oplus, \otimes, 0, 1)$, can be used to find local optima when the following property holds.

Strictly Inflationary

S.INFL:
$$\forall a, b \in S : a \neq \overline{0} \implies a < b \otimes a$$

where a < b means $a = a \oplus b$.

We know that (a modified) Bellman-Ford iteration will converge, but we currently have no bound on the number of iterations needed!

Dijkstra's algorithm

```
Input : adjacency matrix A and source vertex i \in V, Output : the i-th row of R, \mathbf{R}(i, \underline{\ }).
```

```
begin
    S \leftarrow \{i\}
    \mathbf{R}(i, i) \leftarrow \overline{1}
    for each g \in V - \{i\} : \mathbf{R}(i, g) \leftarrow \mathbf{A}(i, g)
    while S \neq V
        begin
             find q \in V - S such that \mathbf{R}(i, q) is \leq_{-\infty}^{L} -minimal
             S \leftarrow S \cup \{a\}
             for each j \in V - S
                 \mathbf{R}(i, j) \leftarrow \mathbf{R}(i, j) \oplus (\mathbf{R}(i, q) \otimes \mathbf{A}(q, j))
        end
end
```

Dijkstra's algorithm, annotated version

Subscripts make proofs by induction easier

```
begin
    S_1 \leftarrow \{i\}
    \mathbf{R}_1(i, i) \leftarrow \overline{1}
    for each g \in V - S_1 : \mathbf{R}_1(i, g) \leftarrow \mathbf{A}(i, g)
    for each k = 2, 3, ..., |V|
         begin
             find q_k \in V - S_{k-1} such that \mathbf{R}(i, q) is \leq_{\oplus}^{L} -minimal
             S_k \leftarrow S_{k-1} \cup \{a_k\}
             for each i \in V - S_k
                 \mathbf{R}_{k}(i, j) \leftarrow \mathbf{R}_{k-1}(i, j) \oplus (\mathbf{R}_{k-1}(i, q_k) \otimes \mathbf{A}(q_k, j))
         end
end
```

Assumptions on $(S, \oplus, \otimes, \overline{0}, \overline{1})$

- $(S, \oplus, \overline{0})$ is a commutative, idempotent, and selective monoid,
- $(S, \otimes, \overline{1})$ is a monoid,
- $\overline{0}$ is the annihilator for \otimes ,
- $\overline{1}$ is the annihilator for \oplus ,
- RINF : $\forall a, b : a \leq a \otimes b$

Recall that $a \le b \equiv a \le_{\oplus}^{L} b \equiv a = a \oplus b$.

The goal

Given adjacency matrix **A** and source vertex $i \in V$, Dijkstra's algorithm will compute $\mathbf{R}(i, _)$ such that

$$\forall j \in V : \mathbf{R}(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in V} \mathbf{R}(i, q) \otimes \mathbf{A}(q, j).$$

Main Claim

$$\forall k: 1 \leq k \leq \mid V \mid \implies \forall j \in S_k: \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j)$$

Observation 1

$$\forall k : 1 \leq k < |V| \Longrightarrow \forall j \in S_{k+1} : \mathbf{R}_k(i, j) = \mathbf{R}_{k+1}(i, j)$$

This is easy to see — once a node is put into *S* its weight never changes.

Observation 2

Observation 2

$$\forall k: 1 \leq k \leq \mid V \mid \implies \forall q \in \mathcal{S}_k: \forall w \in V - \mathcal{S}_k: \mathbf{R}_k(i, q) \leq \mathbf{R}_k(i, w)$$

By induction.

Base : Need $\overline{1} \leq \mathbf{A}(i, w)$. OK

Induction. Assume

$$\forall q \in S_k : \forall w \in V - S_k : \mathbf{R}_k(i, q) \leq \mathbf{R}_k(i, w)$$

and show

$$\forall q \in S_{k+1} : \forall w \in V - S_{k+1} : \mathbf{R}_{k+1}(i, q) \le \mathbf{R}_{k+1}(i, w)$$

Since $S_{k+1} = S_k \cup \{q_{k+1}\}$, this is means showing

- (1) $\forall q \in S_k : \forall w \in V S_{k+1} : \mathbf{R}_{k+1}(i, q) < \mathbf{R}_{k+1}(i, w)$
- (2) $\forall w \in V S_{k+1} : \mathbf{R}_{k+1}(i, q_{k+1}) \leq \mathbf{R}_{k+1}(i, w)$

By Observation 1, showing (1) is the same as

$$\forall q \in \mathcal{S}_k : \forall w \in V - \mathcal{S}_{k+1} : \mathbf{R}_k(i, q) \leq \mathbf{R}_{k+1}(i, w)$$

which expands to (by definition of $\mathbf{R}_{k+1}(i, w)$)

$$\forall q \in \mathcal{S}_k : \forall w \in V - \mathcal{S}_{k+1} : \mathbf{R}_k(i, q) \leq \mathbf{R}_k(i, w) \oplus (\mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w))$$

But $\mathbf{R}_k(i, q) \leq \mathbf{R}_k(i, w)$ by the induction hypothesis, and $\mathbf{R}_k(i, q) \leq (\mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w))$ by the induction hypothesis and RINF.

Since $a \leq_{\oplus}^{L} b \wedge a \leq_{\oplus}^{L} c \implies a \leq_{\oplus}^{L} (b \oplus c)$, we are done.

By Observation 1, showing (2) is the same as showing

$$\forall w \in V - S_{k+1} : \mathbf{R}_k(i, q_{k+1}) \le \mathbf{R}_{k+1}(i, w)$$

which expands to

$$\forall w \in V - S_{k+1} : \mathbf{R}_k(i, q_{k+1}) \le \mathbf{R}_k(i, w) \oplus (\mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w))$$

But $\mathbf{R}_k(i,\ q_{k+1}) \leq \mathbf{R}_k(i,\ w)$ since q_{k+1} was chosen to be minimal, and $\mathbf{R}_k(i,\ q_{k+1}) \leq (\mathbf{R}_k(i,\ q_{k+1}) \otimes \mathbf{A}(q_{k+1},\ w))$ by RINF. Since $a \leq_{\oplus}^L b \wedge a \leq_{\oplus}^L c \implies a \leq_{\oplus}^L (b \oplus c)$, we are done.

Observation 3

Observation 3

$$\forall k: 1 \leq k \leq |V| \Longrightarrow \forall w \in V - S_k: \mathbf{R}_k(i, w) = \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, w)$$

Proof: By induction:

Base : easy, since

$$\bigoplus_{q \in S_1} \mathbf{R}_1(i, q) \otimes \mathbf{A}(q, w) = \overline{1} \otimes \mathbf{A}(i, w) = \mathbf{A}(i, w) = \mathbf{R}_1(i, w)$$

Induction step. Assume

$$\forall w \in V - S_k : \mathbf{R}_k(i, w) = \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, w)$$

and show

$$\forall w \in V - S_{k+1} : \mathbf{R}_{k+1}(i, w) = \bigoplus_{q \in S_{k+1}} \mathbf{R}_{k+1}(i, q) \otimes \mathbf{A}(q, w)$$

By Observation 1, and a bit of rewriting, this means we must show

$$\forall w \in V - S_{k+1} : \mathsf{R}_{k+1}(i, w) = \mathsf{R}_k(i, q_{k+1}) \otimes \mathsf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_k} \mathsf{R}_k(i, q) \otimes \mathsf{A}(q_{k+1}, w)$$

Using the induction hypothesis, this becomes

$$\forall w \in V - \mathcal{S}_{k+1} : \mathbf{R}_{k+1}(i, w) = \mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w) \oplus \mathbf{R}_k(i, w)$$

But this is exactly how $\mathbf{R}_{k+1}(i, w)$ is computed in the algorithm.

Proof of Main Claim

Main Claim

$$\forall k: 1 \leq k \leq \mid V \mid \implies \forall j \in S_k: \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j)$$

Proof : By induction on k.

Base case: $S_1 = \{i\}$ and the claim is easy.

Induction: Assume that

$$\forall j \in \mathcal{S}_k : \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in \mathcal{S}_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j)$$

We must show that

$$\forall j \in \mathcal{S}_{k+1} : \mathbf{R}_{k+1}(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in \mathcal{S}_{k+1}} \mathbf{R}_{k+1}(i, q) \otimes \mathbf{A}(q, j)$$

Since $S_{k+1} = S_k \cup \{q_{k+1}\}$, this means we must show

(1)
$$\forall j \in S_k : \mathbf{R}_{k+1}(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in S_{k+1}} \mathbf{R}_{k+1}(i, q) \otimes \mathbf{A}(q, j)$$

(2)
$$\mathbf{R}_{k+1}(i, q_{k+1}) = \mathbf{I}(i, q_{k+1}) \oplus \bigoplus_{q \in S_{k+1}} \mathbf{R}_{k+1}(i, q) \otimes \mathbf{A}(q, q_{k+1})$$

By use Observation 1, showing (1) is the same as showing

$$\forall j \in \mathcal{S}_k : \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in \mathcal{S}_{k+1}} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j),$$

which is equivalent to

$$orall j \in \mathcal{S}_k : \mathsf{R}_k(i,\,j) = \mathsf{I}(i,j) \oplus (\mathsf{R}_k(i,\,q_{k+1}) \otimes \mathsf{A}(q_{k+1},\,j)), \oplus \bigoplus_{q \in \mathcal{S}_k} \mathsf{R}_k(i,\,q) \otimes \mathsf{A}(q_{k+1},\,j)$$

By the induction hypothesis, this is equivalent to

$$\forall j \in \mathcal{S}_k : \mathbf{R}_k(i, j) = \mathbf{R}_k(i, j) \oplus (\mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, j)),$$

Put another way,

$$\forall j \in S_k : \mathbf{R}_k(i, j) \leq \mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, j)$$

By observation 2 we know $\mathbf{R}_k(i, j) \leq \mathbf{R}_k(i, q_{k+1})$, and so

$$\mathbf{R}_{k}(i, j) \leq \mathbf{R}_{k}(i, q_{k+1}) \leq \mathbf{R}_{k}(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, j)$$

by RINF.

26 / 29

To show (2), we use Observation 1 and $I(i, q_{k+1}) = \overline{0}$ to obtain

$$\mathbf{R}_k(i,\ q_{k+1}) = \bigoplus_{q \in \mathcal{S}_{k+1}} \mathbf{R}_k(i,\ q) \otimes \mathbf{A}(q,\ q_{k+1})$$

which, since $\mathbf{A}(q_{k+1}, q_{k+1}) = \overline{0}$, is the same as

$$\mathbf{R}_k(i, \ q_{k+1}) = \bigoplus_{q \in S_k} \mathbf{R}_k(i, \ q) \otimes \mathbf{A}(q, \ q_{k+1})$$

This then follows directly from Observation 3.

Finding Left Local Solutions?

$$\mathbf{L} = (\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I} \qquad \Longleftrightarrow \qquad \mathbf{L}^T = (\mathbf{L}^T \otimes^T \mathbf{A}^T) \oplus \mathbf{I}$$

$$\mathbf{R}^T = (\mathbf{A}^T \otimes^T \mathbf{R}^T) \oplus \mathbf{I} \quad \iff \quad \mathbf{R} = (\mathbf{R} \otimes \mathbf{A}) \oplus \mathbf{I}$$

where

$$a \otimes^T b = b \otimes a$$

Notice that this exchanges RINF for LINF!

LINF :
$$\forall a, b : a \leq b \otimes a$$

Conclusion

- Complexity of solving for left local optima?
 - Previous work has shown that Bellman-Ford will find a solution as long as only simple paths are explored — but no time bounds are known.
 - ▶ But, now we know that O(V³) will due with Dijkstra's greedy algorithm.
 - Could do better in sparse graphs using Fibonacci heaps ...