An Algebraic Approach to Internet Routing Lecture 12 Metric-neutral partitions

Timothy G. Griffin

computer Laboratory
University of Cambridge, UK

Michaelmas Term 2010

Hot off the press ...

Hybrid Link-State, Path-Vector Routing M. Abdul Alim and Timothy G. Griffin AINTEC 2010, November 15–17, 2010 Bangkok, Thailand

Motivation

- Corporate networks routing objectives include
 - Fast convergence
 - Minimize resource usage (computation, memory, bandwidth)
 - Least-cost paths
 - Load balancing (by traffic engineering)
 - Fault isolation
 - Scalability
- Link-state routing offers fast convergence, but has very high resource requirements.
- OSPF and IS-IS use link-state with partitioning.
- They use complicated routing metrics (e.g., intra-area and inter-area and L1, L2, L1→L2, and L2→L1).
- Breaks global optimality and prevents traffic engineering for load balancing.

An example

• The following graph is labelled with shortest-path $(\mathbb{N}^+, \min, +, 0, \infty)$ algebra

 The adjacency matrix and the all-pair shortest-paths matrix (solution to Equation (??)) are

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \infty & 7 & 3 & 1 & \infty \\ 2 & 7 & \infty & 3 & 3 & 2 \\ 3 & 3 & \infty & \infty & \infty & \infty \\ 4 & 1 & 3 & \infty & \infty & 7 \\ 5 & \infty & 2 & \infty & 7 & \infty \end{bmatrix} \quad \Rightarrow \quad \mathbf{A}^* = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 4 & 3 & 1 & 6 \\ 4 & 0 & 3 & 3 & 2 \\ 3 & 3 & 0 & 4 & 5 \\ 3 & 3 & 0 & 4 & 5 \\ 4 & 1 & 3 & 4 & 0 & 5 \\ 5 & 6 & 2 & 5 & 5 & 0 \end{bmatrix}.$$

Routing vs. Forwarding

- Routing solves $X = AX \oplus I$ with router adjacencies A.
- Forwarding solves $\mathbf{F} = \mathbf{AF} \oplus \mathbf{M}$, where \mathbf{M} is the mapping matrix.
- Link-state: **F** = **A*****M**.
- Path-vector: $\mathbf{F}^{[0]} = \mathbf{M}, \, \mathbf{F}^{[k+1]} = \mathbf{A}\mathbf{F}^{[k]} \oplus \mathbf{M}.$

Partitioning

- $\pi(G) = \{V_1, V_2, \cdots, V_m\}.$
- $\pi(G) \Rightarrow E_{s,t} = \{(u,v) \in E \mid u \in V_s \land v \in V_t\}.$
- Region subgraph $G_r = (V_r, E_{r,r})$.
- Border node $u \in V_r$ if $\exists v \in V_{s \neq r} \land (u, v) \in E_{r,s}$ and $E_{r,s}$ is inter-region edge.
- Boundary subgraph $G_b = (V_b, E_{r,s})$, may not be connected.
- Adjacency matrix of a partitioned graph

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} & \cdots & \mathbf{A}_{1,m} \\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} & \cdots & \mathbf{A}_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}_{m,1} & \mathbf{A}_{m,2} & \cdots & \mathbf{A}_{m,m} \end{bmatrix}.$$

Algebraic Model of AS Partitioning

The all-region adjacency matrix

$$\mathbf{R} = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{O}_{1,2} & \cdots & \mathbf{O}_{1,m} \\ \mathbf{O}_{2,1} & \mathbf{A}_{2,2} & \cdots & \mathbf{O}_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{O}_{m,1} & \mathbf{O}_{m,2} & \cdots & \mathbf{A}_{m,m} \end{bmatrix},$$

where $\mathbf{O}_{s,t}$ for $s \neq t$ is a sub-matrix of all $\overline{0}$ s.

• The routing solution of all the regions

$$\mathbf{R}^* = \begin{bmatrix} \mathbf{A}_{1,1}^* & \mathbf{O}_{1,2} & \cdots & \mathbf{O}_{1,m} \\ \mathbf{O}_{2,1} & \mathbf{A}_{2,2}^* & \cdots & \mathbf{O}_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{O}_{m,1} & \mathbf{O}_{m,2} & \cdots & \mathbf{A}_{m,m}^* \end{bmatrix}.$$

Algebraic Model of AS Partitioning

The adjacency matrix of of the boundary subgraph

$$\mathbf{B} = egin{bmatrix} \mathbf{O}_{1,1} & \mathbf{A}_{1,2} & \cdots & \mathbf{A}_{1,m} \\ \mathbf{A}_{2,1} & \mathbf{O}_{2,2} & \cdots & \mathbf{A}_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}_{m,1} & \mathbf{A}_{m,2} & \cdots & \mathbf{O}_{m,m} \end{bmatrix}.$$

 We can then define the transit matrix T to capture the weights virtual links between border nodes u and v.

$$\mathbf{T}(u, \ v) = \left\{ \begin{array}{ll} \mathbf{A}_{r,r}^*(u, \ v) & \text{if } (u, v) \text{ is a transit} \\ & \text{arc in region } r \\ \hline \overline{0} & \text{otherwise} \end{array} \right.$$

Define (the adjacency matrix of) the core graph

$$C = B \oplus T$$
.

where ${\bf T}$ represents all the virtual links in the graph.

Hybrid Routing?

Main Claim

$$\mathbf{A}^* = \mathbf{R}^* \oplus \mathbf{R}^* \mathbf{C}^* \mathbf{R}^* \tag{1}$$

Interpretation

- Ompute R* − solve the region routing problem.
- **3** Construct the the core graph, matrix $\mathbf{C} = \mathbf{B} \oplus \mathbf{T}$.
- Ompute C* − solve the core routing problem.
- **4** Construct A^* by computing $R^*(I \oplus C^*R^*)$.

Note that *different algorithms* – link-state or path-vector – can be used in the 1st and the 3rd steps.

A Partitioning Example

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ \infty & 7 & 3 & 1 & \infty \\ 7 & \infty & 3 & 3 & 2 \\ 3 & 3 & \infty & \infty & \infty \\ \hline 1 & 3 & \infty & \infty & \infty \\ \hline 5 & 2 & \infty & 7 & \infty \end{bmatrix}$$

A Partitioning Example

The all-region adjacency matrix and corresponding routing solution

$$\mathbf{R} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 7 & 3 & 0 & \infty \\ 2 & 0 & 7 & \infty & 3 & \infty & \infty \\ 3 & 3 & \infty & \infty & \infty \\ 5 & 0 & \infty & \infty & 7 \\ 5 & 0 & \infty & \infty & 7 & \infty \end{bmatrix} \Rightarrow \mathbf{R}^* = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 6 & 3 & 0 & \infty & \infty \\ 2 & 0 & 0 & 3 & \infty & \infty \\ 6 & 0 & 3 & \infty & \infty \\ 3 & 3 & 0 & \infty & \infty \\ \hline \infty & \infty & \infty & 0 & 7 \\ 5 & 0 & \infty & \infty & 7 & 0 \end{bmatrix}$$

The boundary matrix and the transit matrix

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \infty & \infty & \infty & 1 & \infty \\ \infty & \infty & \infty & 3 & 2 \\ \infty & \infty & \infty & \infty & \infty \\ 4 & 5 & \infty & \infty & \infty & \infty \end{bmatrix}, \mathbf{T} = \begin{bmatrix} 1 & 2 & 4 & 5 \\ \infty & 6 & \infty & \infty \\ 6 & \infty & \infty & \infty \\ \infty & \infty & \infty & 7 \\ \infty & \infty & 7 & \infty \end{bmatrix}$$

A Partitioning Example

The core graph with virtual links

Core graph adjacency matrix and the routing solution

$$\mathbf{C} = \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & \infty & 6 & 1 & \infty \\ 6 & \infty & 3 & 2 \\ 1 & 3 & \infty & 7 \\ 5 & \infty & 2 & 7 & \infty \end{bmatrix} \implies \mathbf{C}^* = \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 0 & 4 & 1 & 6 \\ 4 & 0 & 3 & 2 \\ 1 & 3 & 0 & 5 \\ 5 & 6 & 2 & 5 & 0 \\ \end{bmatrix}$$

Equations of Hybrid Model

Using the distinctions of routing and forwarding:

- **1** Solve $\mathbf{F}_1 = \mathbf{RF}_1 \oplus \mathbf{I}$ for region routing \mathbf{R}^* .
- 2 Build the core graph $C = B \oplus T$.
- Solve $F_2 = \mathbf{CF}_2 \oplus \mathbf{F}_1$ for core routing \mathbf{C}^* and exporting region internal routes to the core $\mathbf{C}^*\mathbf{R}^*$.
- $\textbf{ § Solve } \textbf{F} = \textbf{F}_1 \oplus \textbf{F}_1 \textbf{F}_2 \text{ for importing inter-region routes } \textbf{R}^* (\textbf{I} \oplus \textbf{C}^* \textbf{R}^*).$

Combinations of link-state and path-vector mechanisms

Hybrid	Region	Core
D-over-D	link-state	link-state
B-over-D	link-state	path-vector
D-over-B	path-vector	link-state
B-over-B	path-vector	path-vector

Problem Set III (Due 1 December)

- Construct an interesting weighted graph using the *scoped product* $(S \ominus T)$. Show adjacency and routing matrix. A picture might help.
- ② Construct an interesting weighted graph using the *metric-neutral* partitions (this lecture). Show adjacency and routing matrix.
- **3** Prove this : $(()^*X \oplus Y) = X^*(YX^*)^*$.
- Prove the Main Claim above.